
The authors may be contacted at Constantine & Lockwood, Ltd., 58 Kathleen Circle, Rowley, MA 01969; tel: 1 (978) 948
5012; fax: 1 (978) 948 5036; mailto:larry@foruse.com © 2000, Constantine & Lockwood, Ltd.

Working Paper

From Abstraction to Realization in User Interface Designs:
Abstract Prototypes Based on Canonical Abstract Components

Larry Constantine,∗ Helmut Windl,† James Noble,‡ & Lucy Lockwood¶

In July 2000, a group of colleagues convened for a colloquy on the state and
future of usage -centered design. This meeting served not only as a forum for
review and consolidation of accumulated experience in usage -centered design,
but also as a workshop for refinement and improvement of the process,
especially with regards to convergence with other design and development
processes and models. Out of the discussions emerged a number of conceptual
and practical breakthroughs, among them a dramatically improved form of
abstract prototype that simplifies and speeds the process of producing high
quality user interface designs based on task models.

Learn more about usage-centered design, including training in canonical
abstract prototypes, at http://www.forUse.com.

Abstract Prototypes
One of the truly powerful tools in usage-centered design is the abstract prototype
[Constantine, 1998; Constantine & Lockwood, 1999]. An abstract prototype allows
designers to describe the contents and overall organization of a user interface without
specifying its detailed appearance or behavior; it is, thus, a model of the architecture
of the user interface being designed. We and our clients have found that abstract
prototypes provide an effective bridge between task models based on task cases
(essential use cases)1 and a final design in the form of a realistic prototype, whether on
paper or in software. In particular, by maintaining a focus on content, organization,
and function independent of layout, appearance, and behavior, abstract prototypes
have repeatedly been found to encourage both sound architecture and creative
innovation [Constantine, 1998]. Driven by an appropriate task model, abstract
prototypes help designers to devise user interface solutions that are both practical and
novel [Constantine, 2000].

∗ Director of Research, Constantine & Lockwood, Ltd., and Professor of Computing Science,

University of Technology, Sydney (Australia)
† Director, Usability Competence Center, Siemens AG
‡ Lecturer, University of Victoria, Wellington (New Zealand) and Consulting Associate,

Constantine & Lockwood, Ltd.
¶ President, Constantine & Lockwood, Ltd.

Constantine & Lockwood, Ltd.

mailto:larry@foruse.com
http://www.forUse.com

Working Paper: Abstraction to Realization page 2

State of the Abstract Art
In its most common form in usage-centered design, an abstract prototype consists of a
content model and a navigation map. The content model comprises a series of views
(interaction contexts)1 populated with abstract components, that is, with the tools and
materials needed for users to perform the tasks being supported within each view. The
navigation map complements the content model showing the possible paths or
transitions interconnecting all the views (interaction contexts) in the user interface.

In a conventional content model, each view is usually represented by a separate,
labeled piece of paper onto which abstract components are posted, typically in the
form of sticky-notes. Where the distinction makes sense, simple glyphs (small icons)
are employed to distinguish materials, which represent the containers and information
of interest to users, from the tools that operate on these materials or perform other
actions for users. An example of a conventional abstract prototype is shown in Figure
1.

Standard test running
test list

configuration
display

print option
setter

test changer

test starter
status display test stopper

Standard test running
test listtest list

configuration
display
configuration
display

print option
setter
print option
setter

test changer test changer

test startertest starter
status displaystatus display test stoppertest stopper

Figure 1 – Example of conventional (fully) abstract prototype.

Other variations of abstract prototypes include “wire -frame” mockups and abstract
layout diagrams. Wire -frame mockups, such as the one shown in Figure 2, represent
the relative size and position of visual user interface elements. Color-coding of the
areas may also be used to indicate the type of element represented or the relative
importance or priority of the information or function. This latter variation has enjoyed
some popularity among graphic designers for Web-based applications.

Working Paper: Abstraction to Realization page 3

Store Home PageStore Home Page
Logo bar

Left navigation
channel

Manager’s specials New
listings

Featured products

Store Home PageStore Home Page
Logo bar

Left navigation
channel

Manager’s specials New
listings

Featured products

Figure 2 – Example of wire-frame mockup.

An abstract layout diagram, such as the one shown in Figure 3, is a form of “low-
fidelity” prototype. It shows the relative size and position of user interface elements,
but not their exact appearance.

C5.1 - Review/Modify Dialog
Image name and source

Image thumbnail Image statistics

Tracking options

Print Cancel HelpBack Next Save

C5.1 - Review/Modify DialogC5.1 - Review/Modify Dialog
Image name and source

Image thumbnail Image statistics

Tracking options

Print Cancel HelpBack Next Save

Image name and source

Image thumbnail Image statistics

Tracking options

Print Cancel HelpBack Next Save

Figure 3 – Example of abstract layout diagram.

The sundry forms of paper (diagrammatic) prototypes can be ranked from most
abstract to most concrete or realistic:

1. conventional (fully abstract) content model
2. wire-frame mock-up

3. abstract layout diagram
4. low-fidelity paper prototype (rough-sketch)
5. high-fidelity paper prototype (realistic detail design)

Abstract Problems

Despite their demonstrated utility as a design tool, abstract prototypes have also
proved to be stumbling blocks for some designers, especially relatively inexperienced
ones or those who are still learning the rudiments of usage-centered design. The most
common recurrent problems include:

• difficulty naming or describing components in abstract terms
• difficulty distinguishing tools from materials

Working Paper: Abstraction to Realization page 4

• difficulty translating abstract components into physical components
• difficulty laying out screens and other user interface contexts from abstract views

Less-experienced designers often find it hard to think in abstract terms when naming
the components to support task cases. Often they struggle to devise appropriately
non-committal abstract names. Should it be called an “Employee Record” or an
“Employee Record Holder” or an “Employee Description Holder” or what? Without
careful choice of terms, designers may end up inadvertently incorporating implicit
assumptions about what final form the components will take when realized in the
actual user interface. An abstract component called “Employee Data Grid,” for
example, may imply a particular user interface data control.

For this reason, usage-centered design has discouraged the use of abstract component
names that are too specific or incorporate technical terms or jargon. Instead of
“Search Criteria Entry Field,” for example, designers are encouraged to write something
like “Sought-Person Description Holder.” Unfortunately, although this practice defers
the commitment to any particular implementation, if strictly followed, it introduces its
own problems when the abstract prototype is later translated into an implementation
model. If precise terms from the application domain, such as references to actual
domain classes or methods, are abandoned in the content model in the interest of
abstraction, the model—even though supposedly derived directly from the task
model—can become disconnected from the other design models and the established
vocabulary of the rest of the project.

Following recommended conventions for naming abstract components (such as, “Name
Holder” “Constraint Stuff Getter” and the like), designers can ended up with a model
that is not only disconnected from the final physical design, but also from the other
models. These missing connections must ultimately be recovered and restored to the
design in order to complete it and build it. (On one project, for example, the design
team frequently had to go back and rediscover what domain objects were involved
within each view before devising a visual prototype.) Content models with highly
abstract components are also difficult to share with outsiders or with other parts of
the development group: basically, if you were not there when they were developed,
they may make little sense to you.

Beginning designers may also agonize over whether a particular need from the task
model is best fulfilled by an active component or a passive one, that is, by an abstract
tool or abstract material. Is an editable display field an active tool or a passive
material? The debate goes on!

Bridging the Semantic Gap
Such difficulties aside, most designers, once they gain some practice, find that deriving
an initial content model from task cases is usually relatively straightforward.
Essentially, all that is necessary is to work through the task case narratives step-by-
step, identifying the tools and materials needed on the user interface to enable the
completion of each step. From a modeling perspective, the semantic gap between the
task model and the content model is typically rather small, as can be appreciated from
the example of Figure 4. There is usually a relatively simple, if not perfectly one -to-one,
mapping from steps to abstract tools and materials.

Working Paper: Abstraction to Realization page 5

Standard test running
test list

configuration
display

print option
setter

test changer

test starter
status display test stopper

Standard test running
test listtest list

configuration
display
configuration
display

print option
setter
print option
setter

test changer test changer

test startertest starter
status displaystatus display test stoppertest stopper

USER INTENTION SYSTEM RESPONSIBILITYUSER INTENTION SYSTEM RESPONSIBILITYUSER INTENTION SYSTEM RESPONSIBILITYUSER INTENTION SYSTEM RESPONSIBILITY
Extensions: {reset; stop test} {error}

show standard test list
pick test
{[modify] [set printing]}

show test configuration
confirm & start

run test & report

Figure 4 – Example of mapping from task case to content model.

In contrast, the semantic gap between a fully abstract content model and a good final
design can often be enormous; the realistic paper prototype looks nothing like the
content model. Between the abstract and the realistic models of the user interface lie
dozens of decisions and difficult tradeoffs. Actual user interface components must be
chosen or designed, screen layout must be determined, and other aspects of
appearance and behavior must be resolved. Highly skilled, talented designers are
usually able to leap this gap with relative ease, especially after gaining practice in
usage-centered design, but beginners and more pedestrian designers often stumble
and fall at this point. The result can be a significant amount of confusion and
unproductive churning.

Although the abstract content model was originally devised to aid in the transition
from a task model to a realistic prototype, experience suggests that it is relatively too
close to the task model and too far from the desired goal of a finished visual and
interaction design. Often, the abstract prototype as originally conceived has proved to
be hard to develop relative to the payoff received.

Building a Better Bridge
A review of experiences on a range of projects has highlighted many of the
disadvantages of abstract prototyping but has also convinced us of the overall
advantage of a model intermediate between the task model and the final user interface
design or implementation model. For relative novices, abstract prototypes appear to
lead to substantially better initial designs than are typically achieved without their use.
For advanced and sophisticated designers, abstract prototypes facilitate creative
thinking, leading to more innovative solutions.

What is needed is a variant of the abstract prototype positioned closer to the final
design so as to serve as a better translator from the task model to the implementation
model. Such a revised form of model needs to be: (1) easier and more natural to
develop in the first place, (2) easier to translate into an actual visual and interaction
design; and (3) connected more effectively with the rest of the models through the

Working Paper: Abstraction to Realization page 6

Domain Model. With respect to (3), an obvious solution is to ensure that descriptions
and names used with abstract components employ the vocabulary of the domain and
of the users, just as with all other models in usage-centered design.

To meet objectives (1) and (2), we concluded that abstract prototyping is best done in
the form of an abstract layout diagram constructed from a standardized set of abstract
components. For less experienced designers, a standard set of abstract tools and
materials would simplify and guide the construction of the abstract prototype and
would narrow the choices for a final design. For example, one could have a list of
possible realizations of an abstract selector from which the designer could choose. For
more advanced designers, a simple, standardized set of abstract components should
speed and simplify the modeling process, freeing the designer to attend to subtle
problems and creative solutions. Standardized abstract components should also make
it easier to recognize and describe patterns that favor particular visual and interaction
design solutions. Although we do not believe it desirable to turn the user design
process into a cookbook approach, a standard way of describing abstract problems
may help the design community to devise good general solutions to certain standard
problems.

Canonical Abstract Components
Just as graphical user interfaces offer a standard toolkit of actual components from
among which a designer can choose, canonical abstract components provide a
standard “toolkit” of abstract components for abstract prototyping. The proposed set
of canonical abstract components described here was devised through several
iterations of successive refinement and trial application. The current version is by no
means a theoretical minimum or rigorously defensible set, but we believe it is a
practical and usable one that covers all the common cases arising in the practice of
usage-centered user interface design.

Table 1 summarizes the set of canonical abstract components. (A printable full-page
version of this table can be found at the end of this paper.) Canonical abstract
components are identified by a name and a simple icon or glyph that serves as a
graphic shorthand for advanced designers and as an aid to visual recognition and
interpretation of abstract prototypes. (We are keenly aware that appropriate tool
support is necessary to make such a shorthand a real shortcut.) The new symbols are
derived by theme-and-variation from the two symbols already used to represent tools
and materials, respectively. Although not all of the symbols may be intuitable on first
sight, we have tried to make them serviceable as good reminders once they are learned.

The proposed canonical abstract components, summarized in Table 1, includes (a)
generic or all-purpose abstract components (b) a core set of additional basic abstract
components and (c) a handful of auxiliary, special-purpose components that were
recognized as often desirable from a practical standpoint even if not theoretically
required. (The optional components are marked with a double asterisk in Table 1.) All
the materials are effectively specializations of the generic container and all the tools
are specializations of the generic operation/action, so generic components can always
be used for any purpose.

Working Paper: Abstraction to Realization page 7

Table 1 – Summary of Canonical Abstract Tools and Materials

Materials

There are three basic abstract materials:

• container (generic)

• element
• collection

plus two auxiliary components:

• notification
• acceptor (active container).

For modeling, the accept tool can be thought of and used as either an active material,
that is a container that takes input from the user, or as a tool operating on a container.

The proposed convention for naming abstract materials is simply to use the name of
the contents, that is, the object, class, data element, or the like being represented.
Appending a term like “Holder” or “Container” is acceptable if it clarifies the model,
but is not required (e.g., “current machine configuration” or “target language holder”).
For collections, the convention is either to use plurals to suggest multiple contents

!!

container* contents
element (single item) contents
collection (multiple items) contents [or set]
notification** message/condition
accepter** (active material) [Accept] contents

EXAMPLESDESCRIBED BYMATERIALS
Configuration holderConfiguration holder

Product image thumbnail Product image thumbnail

Personal address listPersonal address list

TOOLS
action/operator* action
start action
stop/suspend [action]
select [Select] element
create [Create] element
delete [Delete] element
modify [Modify] element
move [Move] element
duplicate [Copy] element
go/link/drill** [To/Open] target
perform** (and return) [Perform] action
toggle** [Toggle] condition

Access privileges denied!! Access privileges denied!!
Search term entry fieldSearch term entry field

Print invoicePrint invoice

Start consistency analysisStart consistency analysis

Stop searchingStop searchingStop searching

Group member selectorGroup member selector

New customerNew customerNew customer

Remove network connectionRemove network connection

Change shipping addressChange shipping addressChange shipping address

Put into approved listPut into approved list

Copy user profile detailsCopy user profile detailsCopy user profile details

To home pageTo home page

Set user preferences…Set user preferences…Set user preferences…
Detail display on/offDetail display on/off

* generic (all-purpose) component ** optional (specialized) component

Working Paper: Abstraction to Realization page 8

(e.g., “special symbols”) or to describe the nature or type of collection (“address list”)
as appropriate and required for clarity.

Whether on paper, in CASE tools, or on pre -printed forms, abstract components can be
labeled with either the icon alone or the icon plus component type followed by the
user-supplied name. For example:

 Collection: Personal Address List

 Personal Address List
Notification is actually just a message container or indicator and should be named by
the message or condition or event represented (for example, “too many items” or
“machine not synchronized” or “on”).

Tools
Operations and actions are two distinct kinds of abstract tools. Operations are abstract
tools that operate upon materials, and actions are abstract tools that cause or trigger
some action. In addition to a generic action/operation, there are eight basic abstract
tools.

actions:

• initiate/start

• terminate/quit

operations

• select

• create

• delete

• modify

• move

• duplicate
auxiliary tools:

• go/link/drill
• perform (with return)

• toggle

The proposed convention for naming abstract tools is just to specify the action. For
generic actions, the prefixes “Do” or “Start” are optional (e.g., “Do symbol checking” or
“Print symbol table”). The graphical symbol or name alone can be used where the
results are clear for the intended purposes of the model. The assumption is that the
graphical symbol and action name could, in most cases, substitute for each other.
Thus, the following are the same component described in three different ways:

Close configuration

 Configuration

 Close: Configuration
Where needed for clarity, tools that operate upon materials (operations) should name
the materials. In abstract prototypes, operations can just be placed with or on the

Working Paper: Abstraction to Realization page 9

materials upon which they operate wherever this is graphically convenient and
meaningful.

What does this all look in practice? We now believe that for most user interface design,
the most useful form of abstract prototype is an abstract layout diagram in which the
size and relative positions of abstract components is meaningful. Figure 5 is an
example of an abstract layout using canonical components. It is intended to be
illustrative rather than exemplary or worthy of imitation. As shown in this example,
nesting of abstract components within other components is sometimes necessary or
expedient.

Film Clip List

Film Clip Identifier & Name
(criteria)

Film Clip View

Back 1 FrameBack 1 Frame Up 1 Frame

StopPlay

(Frame Image) Frame

Time

Film Viewing and Editing

FindFind

(Name)(Name)

Figure 5 – Example of abstract layout using canonical components.

As already discussed, varied forms of abstract prototypes have varying degrees of
abstraction. Another variation that is often useful, especially for Web-based projects or
for extremely large design problems, is a text-based, non-graphical form that merely
lists the views and their contents. As can be seen in the example below (a simple
translation based on Figure 5), the use of canonical abstract components, with or
without graphic symbols, improves readability and aids interpretation in text-based
content models. (Note the nesting of abstract components.)

Context: Film Viewing and Editing
Accept: Film Clip Identifier and Name

Do: Find
Collection: Film Clip List

Modify: Name
Duplicate
Delete
Select

Element: Film Clip View
Element: Frame Image
Element: Frame
Element: Time

Working Paper: Abstraction to Realization page 10

Duplicate
Delete

Do: Back 1 Frame
Do: Up 1 Frame
Do: Play
Do: Stop

Designing from Canonical Prototypes

Design Process

The use of a set of canonical components in abstract prototypes offers potential
advantages for both highly experienced, sophisticated designers and designers of more
modest experience and talents. The translation from canonical prototype to realistic
prototype or final design involves two concurrent and interdependent design activities:
visual design and interaction design. Visual design involves (a) the selection or design
of visual components to realize each canonical component combined with (b) the
layout of these visual components within a view or context in the interface. Interaction
design involves (a) the selection or devising of interaction idioms, (b) describing the
required behavior of the interface and underlying system, and (c) organizing the
workflow or sequence of interaction within and between views or contexts.

For conventional designs, each canonical component is simply realized by one or more
standard user interface widgets. For the best results, the designer should identify the
various alternative realizations for each abstract component. A trial layout for the
paper prototype is constructed based on an initial selection from among these
alternatives. The selection of actual user interface components typically implies much
of the interaction design and the layout determines the workflow. The resulting
interaction design should be reviewed against the task cases being supported and
refined, along with the component selection and layout, for efficient and effective
support of task cases.

Where high performance or breakthrough design is the objective, the canonical model
provides additional guidance for creative design. The use of canonical components
makes it easier for experienced designers to recognize and categorize patterns or
common situations that imply certain kinds of problems or solutions. For example, a
review of past design work suggests that certain configurations are often ripe with the
opportunity for invention of new user interface controls that are both highly efficient
to use and make better use of screen real estate. In the hands of an advanced design
team, for example, nested combinations of containers, collections, or elements with
included (nested) tools can often be turned into compact and efficient non-standard
user interface controls.

In outline, the process of innovative design based on a canonical prototype goes like
this. First, closely related or grouped abstract components, especially nested
combinations, are noted. For each such group or combination:

6. Identify both conventional/routine realizations and creative ones.

7. Select promising combinations.
8. Synthesize and refine.

Working Paper: Abstraction to Realization page 11

Applied Example
For a simplified example, consider the portion of an abstract prototype shown in
Figure 6, in which a collection of items can be arbitrarily rearranged into a new order
by the user. A number of visual design approaches are possible, including, among
others:

• a list with editable sequence numbers
• a list with up and down buttons that move a selected item within the list
• a temporary holding list allowing items to be removed and reinserted within the

main list
Each of these approaches involves slightly different visual components and layout
issues.

Abstract Prototype

Items

Reorder

Abstract PrototypeAbstract Prototype

Items

Reorder

Items

ReorderReorder

Figure 6 – Example with tool nested in container.

Interaction design involves identifying potential interface behavior and interaction
idioms to solve this problem. In this case, these include, among others:

• click to select source point and target
• drag-and-drop
• edit sequence numbers
• click on move-up or move-down buttons

A promising combination that supports both novice and more advanced usage
patterns would be to support both moving within the list using up-down buttons and
moving by drag-and-drop. An initial design might resemble Figure 7(a), which
highlights several problems. The up-down buttons are easily confused with the
scrollbar buttons if placed in their conventional location. If simply moved to the left,
however, they are easily missed and their function might not be clear.

Such problems can be overcome with appropriate visual and interaction design. As
shown in Figure 7(b), the distinctiveness of the up-down buttons can be enhanced by
shifting them to the left, changing their shape, and highlighting them with color
glyphs. The interface can become self-instructive through progressive enablement if
the up-down buttons are initially disabled (grayed) and become enabled and
highlighted with color on selection of an item in the list. Being able to drag-and-drop
items within the list is a desirable capability, especially for advanced users, but the
capability is hidden behavior without suitable feedback to the user. Move affordance
can be communicated to the user by changing the cursor to an up-down move form on
mouse-down whenever an item in the list is being selected.

Working Paper: Abstraction to Realization page 12

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

1.Asdfa sdfa sd
2.Asdfj dfasdf wret
3.Jllj jodfg9i sr
4.Dfjasdg sdioiiert rrey
5.Wertiu ero sfdg

(a) (b)
Figure 7 – Refinement of possible solution to problem.

Conclusions
Abstract layout diagram using canonical abstract components offer an exciting new
tool to smooth and speed the process of usage-centered design. As described here,
these “canonical prototypes”

• are constructed from specific abstract components selected from a small set of
standard components described in a standard notation

• show layout, including relatives size, position, and nesting or overlay of
components

• use the same standard vocabulary of the users and application domain as
employed all other models throughout a project

Canonical prototypes are, thus, simple and straightforward to construct from task
cases and yet are also closer to a final design than previous forms of abstract
prototypes. Canonical prototypes allow designers to easily model the specific contents
of user interfaces and to experiment with general layout without committing to details
of appearance or graphic design. The designer is provided with a complete set of
standard but abstract components from which to choose in expressing the content and
general layout of user interface designs. Because the resulting models more closely
resemble actual user interfaces while omitting detail, canonical prototypes facilitate
final design without closing out the possibility of inventive or non-standard
realizations.

Future work could further enhance the value of canonical prototypes. For any
particular implementation environment, the various available realizations can be
cataloged in advance for each different canonical component. Especially for beginners,
such guidance could be very useful. For more advanced designers, user interface
design patterns can be organized and described in terms of combinations or
configurations of canonical components.

References
Constantine, L. L. (1998) “Rapid Abstract Prototyping,” Software Development, 6, (11),

November.
Constantine, L. L. (2000) “Inventing Software,” Software Development, 8, (5), May.
Constantine, L. L., & Lockwood, L. A. D. (1999) Software for Use: A Practical Guide to

the Models and Methods of Usage-Centered Design. Boston: Addison-Wesley.

Working Paper: Abstraction to Realization page 13

Glossary
abstract layout a low-fidelity prototype of a user interface view that shows

the layout, including the relative size and position of
components, but not the exact details of appearance

abstract material an abstract user interface component representing a
container, information, or data

abstract prototype any of a range of models representing a user interface design
in the abstract

abstract tool an abstract user interface component that operates upon
material(s) or initiates some action(s)

canonical component one of a standard set of abstract tools and materials

canonical prototype an abstract prototype showing layout, size, and position of
canonical components described in terms of the vocabulary
of users and of the application domain

content model an abstract prototype representing only the abstract tools
and materials in a view independent of their appearance,
behavior, or layout

task case an essential use case [Constantine & Lockwood, 1999]
supporting one or more user roles

view an interaction context; a portion of a user interface within
which a user can interact with a system; for example, a
screen, dialog box, window, or the like

Notes

1 Some terminology in usage -centered design is in the process of being revised for simplicity

and economy of expression as well as for compatibility with other methods and notations. See
Glossary.

Learn more about usage-centered design, including training in canonical
abstract prototypes, at http://www.forUse.com.

http://www.forUse.com

© 2001, Constantine & LockwoodConstantine & Lockwood, Ltd.

!!

container* contents
element (single item) contents
collection (multiple items) contents [or set]
notification** message/condition
accepter** (active material) [Accept] contents

EXAMPLESDESCRIBED BYMATERIALS

* generic (all-purpose) component ** optional (specialized) component

Configuration holder

Product image thumbnail
Personal address list

TOOLS
action/operator* action
start action
stop/suspend [action]
select [Select] element
create [Create] element
delete [Delete] element
modify [Modify] element
move [Move] element
duplicate [Copy] element
go/link/drill** [To/Open] target
perform** (and return) [Perform] action
toggle** [Toggle] condition

Access privileges denied!!
Search term entry field

Print invoice

Start consistency analysis

Stop searching

Group member selector

New customer

Remove network connection
Change shipping address

Put into approved list

Copy user profile details

To home page

Set user preferences…
Detail display on/off

Canonical Components for Abstract Prototypes

