Ana Cristina Ramada Paiva Pimenta

Automated Specification-Based Testing of
Graphical User Interfaces

Universidade do Porto
Faculdade de Engenharia

FEUP

Department of Electrical and Computer Engineering

November 2006

Ana Cristina Ramada Paiva Pimenta

Automated Specification-Based Testing of
Graphical User Interfaces

Faculdade de Engenharia

FEUP

Dissertagao apresentada para a obtencdo do grau de Doutor em Engenharia
Electrotécnica e de Computadores

Dissertacao realizada sob a orientagcéo cientifica de
Doutor Raul Fernando de Almeida Moreira Vidal

Professor Associado do Departamento de Engenharia Electrotécnica e de
Computadores, FEUP,

e co-orientagao partilhada de
Doutor Joao Carlos Pascoal de Faria

Professor Auxiliar do Departamento de Engenharia Electrotécnica e de
Computadores, FEUP, e

Doutor José Nuno Fonseca de Oliveira

Professor Associado do Departamento de Informética, Escola de Engenharia,
Universidade do Minho

Novembro 2006

Abstract

Today's software systems usually feature Graphical ldsenfaces (GUIs). GUIs
have become an important and accepted way of interactingosligly's software.
They can be a crucial point in the users' decisions to usetarse the system.
However, GUI testing is difficult, extremely time-consuminggd acostly, with
very few tools and techniques available to aid in the testing process.

This dissertation addresses the GUI testing problem. Thasgmaintroduce more
systematization and automation into the GUI testing processafplying
specification-based testing methods. The use of formal spéicifisaallows the
automatic generation of test cases containing not only the inpubdaglso the
outcomes expected. Specification-based testing methods have beed &mplie
API testing but are insufficiently developed for GUI testiBgme of the specific
challenges posed by GUI testing are addressed in this research work.

The starting phase of the GUI testing process proposed is theuctios of the

GUI model. Then test cases are generated from the model aexkearged on the
GUI implementation. The results obtained from the GUI are caedpaith the

results derived from the specification (test oracle). Wheandtiere is a
conformance error it is reported.

A set of guidelines are proposed for GUI modelling. For scalability and réitysabi
reasons, GUI models are organized as a set of modules se<ld3esides
modelling the atomic user actions and their effect on the Gié,sit is also
possible to model composite actions (sequences of atomic acti@ss$, (e.g.,
navigation map), and use case scenarios.

Test cases are automatically generated in a two-stepspracé&SM is built by a
bounded exploration of the GUI model first; secondly, test sequenees a
generated from the FSM according to some coverage crieega {ull transition
coverage). The exploration process calculates the set bbdseavailable in each
state (those whose pre-condition holds) and calls them with patanates
taken from domains supplied by the tester. Test cases are sesjoéperations
that model user actions interleaved with operations to cheauthemes of those
actions.

The quality/adequacy of the generated FSM is assessed acdortliegdegree of
coverage of the model elements (actions, scenarios and)visvavell as
additional test conditions supplied by the tester. In order to ratieceumber of
test cases, it was developed an algorithm to reduce the FSkérbgving

redundant states and transitions with respect to the coverage goald.define

Conceptually, during test execution test cases are run in both, Ispetsfication
and implementation, in a "lock-step” mode and their results ar@arech after
each step. This requires the definition of a mapping betweenaetbsictions
defined in the specification and concrete actions on concrete GUit®lijethe
implementation. To automate this process it was developed &&jgping Tool
that allows the tester to interactively relate the absaations with concrete GUI

Abstract

objects. The tool also generates automatically the codesaft of methods that
simulate the concrete user actions on the GUI, and binds such méthtios
abstract actions for test execution.

The approach proposed in this research is illustrated and tealitég two case
studies performed on two software applications: the Notepad applicatichips
with the Microsoft Windows operating system, and the Address Baakiple
application freely available with the open-source Eclipséfgola. In spite of
being used for several years, two errors were found in the atbtapplication
related to uncommon sequences of user actions. Since the sourcef dbde
Address Book application is available, a mutation testing technigsi@myaied to
assess the defect detection capability of the test gasesated automatically. All
defects injected were detected.

Overall, the approach proposed represents a significant impeoweover the
current GUI testing approaches based on Capture/Replay touls, thiey only
automate the execution and recording of the test cases.

Vi

Resumeé

Les systéemes logiciels d'aujourd’hui comportent habituellermentinterfaces
utilisateur graphiques (GUIs). Les GUIs sont devenus une forrpertamte et
admise d'agir I'un sur l'autre avec le logiciel d'aujourd'tsipéuvent étre un
point crucial dans les décisions des utilisateurs pour employer gasremployer
le systeme. Cependant, I'essai de GUI est difficile, extréanelong, et colteux,
avec tres peu d'outils et techniques disponibles a l'aide dans le pratessas

Ce travail adresse le probleme d'essai de GUI. Le buleegtrésenter plus de
systématisation et d'automation dans le processus de egsshildm appliquant

des méthodes d'essai spécification-basées. L'utilisation destérestiques

formelles permet génération automatique des cas d'espécenasintaon

seulement les données d'entrée mais également les rgsudtats. Des méthodes
d'essai spécification-basées ont été appliquées pour I'api eramiaés sont

insuffisamment développées pour l'essai des GUI. Certainss sigficifiques

posés par I'essai de GUI sont adressés dans ce travail.

La phase initiale du processus d'essai des GUI proposé eshdauction du
modeéle des GUI. Aprés ca les cas d'espéce sont produits du neddsdet
exécutés sur I'exécution de GUI. Les résultats obtenus & gartGUI sont
comparés aux résultats dérivés des speécifications (ad@dsai). Toutes les fois
gu'il y a une erreur de conformité on la rapporte.

On propose un ensemble de directives pour modeler des GUI. Poaistes ide
balance et de réutilisation, des modeéeles de GUI sont orgaris@#se ensemble
de modules ou de classes. Il est tant possible de modelettitass aatomiques
d'utilisateur et leur effet sur I'état des GUI comme de teodes actions
composees (ordres des actions atomiques), les vues (par exeamie,de
navigation), et les scénarios de cas d'utilisation.

Des cas d'espéce sont automatiquement produits dans un proeessgesix
étapes: premierement, un FSM est construit par une explora®mli modéle
des GUI; deuxiemement, les ordres d'essai sont produit du FSN getlques
critéres d'assurance (par exemple, pleine assurance de drgndig procédé
d'exploration calcule I'ensemble de méthodes disponibles dans chatj(meex
dont les prises de condition préalable) et les appelle avealbess de parametre
prises des domaines a fourni par l'appareil de controle.dsed'espéece sont des
ordres des opérations que les actions modéles d'utilisateurtenctalé avec des
opérations pour vérifier les résultats de ces actions.

La qualité/adéquation du FSM produit est évaluée selon le degsérdiase des
éléments modéles (actions, scénarios et vues) aussi bierongiions d'essai
additionnelles fournies par I'essayeur. Afin de réduire le nombre de casé,dspe

vii

Resumé

a été développé un algorithme pour réduire le FSM par I'enléneétats et
transitions superflus en ce qui concerne les buts d'assurance définis.

Conceptuellement, pendant l'exécution d'essai des cas d'espéceuwsantdans

les deux niveaux, spécifications et I'exécution, en mode de «serrpes-étdeurs
résultats sont comparées aprés chaque étape. Ceci exiginigodéde tracer

entre les actions abstraites définies dans les spédifisatit les actions concréetes

sur les objets concrets de GUI dans I'exécution. Pour autonegipeocessus c'a

été développé un GUI tracant l'outil qui permet a l'essagurrapporter
interactivement les actions abstraites avec les obmisrets de GUI. L'outil
produit également automatiguement du code d'un ensemble de méthodes qui
simulent les actions concrétes d'utilisateur sur le GUI, et liellds méthodes aux

actions abstraites pour lI'exécution d'essai.

L'approche proposée dans ce travail est illustrée et egtidédeux études de cas
réalisées sur deux applications de logiciel: I'applicationblde-notes qui se
transporte avec le logiciel d'exploitation de Microsoft Windogtd,exemple de
carnet d'adresses application librement disponible avec lefglae d'éclipse
d'ouvrir-source. Malgré étre employé pendant plusieurs annéesedeurs ont
été trouvées dans l'application de bloc-notes liée aux ordres des actions
d'utilisateur. Depuis le code source de l'application de cadfztresses est
disponible, une méthode d'essai de mutation a été appliquée pour dealuer
possibilités de détection de défaut des cas d'espéece produaitsatigtiement.
Tous les défauts injectés ont été détectés.

D'une facon générale, l'approche proposée représente une anw#liorati
significative au-dessus des approches de essai courantes ddmg&es sur la
Captation/Rejoue des outils, puisquils automatisent seulementuitexe et
I'enregistrement des cas d'espece.

viii

Resumo

Os sistemas de software possuem normalmente uma interfda= g@dm o
utilizador. Este tipo de interface tornou-se a forma maisuen e importante de
interagir com o software e a sua qualidade € um factor detarte na decisédo de
o usar. O teste de interfaces graficas com o utilizadorfiéil,dimoroso,
dispendioso e dispde de poucas ferramentas e técnicas.

Esta dissertacdo trata o problema do teste de interfedfisag com o utilizador.
Tem por objectivo introduzir uma maior sistematizacdo e ag@onao processo

de teste de interfaces graficas com o utilizador aplicandtodos de teste
baseados em especificacdes formais. Os métodos baseados eificagjes
formais possibilitam a geracdo automatica de casos de testeps dados de
entrada e também os resultados esperados, e tém sido aplicatksteade
software através de APIs. No entanto, estes métodos ainda nao estd
suficientemente desenvolvidos para testar software at@evésterface gréafica
com o utilizador.

Na fase inicial do processo de teste de interfaces gsafiom o utilizador
constroi-se 0 modelo e, em seguida, 0s casos de teste sdo gepaits do
modelo e executados ha implementacdo. Os resultados obtidos a partir daeinterfac
gréfica sdo comparados com os resultados derivados da esgécifi Todos os
erros de conformidade detectados sdo documentados.

A abordagem apresentada nesta dissertacdo propde um conjuntentiE;des

para modelar interfaces graficas com o utilizador. Asfates graficas com o
utilizador séo representadas por conjuntos de moédulos ou classeazpes

relacionadas com a escalabilidade e a reutlizacdo do cédigm He se
modelarem as acc¢des atdbmicas do utilizador e o seu efeiitenface a testar,
ainda é possivel modelar ac¢cdes compostas (sequéncias de dbgdieasy

vistas (ex.: mapa de navegacao) e cenarios de utilizacdo.

Os casos de teste sdo sequéncias de operacbes que modelepdess da
utilizador intercaladas com operagdes que verificam os rdesltéessas accoes e
sdo gerados automaticamente em dois passos. No primeiro passoj-sensma
maquina de estados finita, por um processo de exploracdo do modelofdadnter
grafica com o utilizador, e no passo seguinte, geram-se as sequéadeste, a
partir da maquina de estados de finita, de acordo com determicritdoi®s de
cobertura (por ex. a cobertura total de transicfes). O pomais exploracdo
calcula o conjunto de métodos disponiveis em cada estado (préamndic
verdadeira) e invoca-os com valores apropriados dos parameirado® dos
dominios fornecidos pelo utilizador (aquele que esta a testar).

A gqualidade/adequacédo da maquina de estados finita geradaaélads acordo
com o grau de cobertura dos elementos do modelo (accdes, cenddtaske
condicbes de teste adicionais fornecidas pelo utilizador (aquelestid a testar).
De modo a reduzir o nUmero de casos de teste, desenvolveu-sertitmalgara

Resumo

reduzir a maquina de estados finita removendo estados e demnsignsiderados
redundantes relativamente aos objectivos de cobertura de testdadefini

Conceptualmente, o teste baseado em especificacfes execatoe de teste nos
dois niveis, especificacdo e implementagéo, e compara os desuliatidos. Para
isso, é necessario relacionar accdes abstractas defimadaspecificacdo com
accodes concretas em objectos concretos da interface gidfica gtilizador. Para
automatizar este processo, desenvolveu-se uma ferramentaM@piding Tool"
gue permite relacionar interactivamente as accbes abstraomm objectos
concretos da interface gréfica com o utilizador. A ferrameambém gera
automaticamente o cédigo dos métodos que simulam as acc¢des ddautdizare
a interface e relaciona esses métodos com as accOestabgiera execucdo dos
testes.

A abordagem proposta nesta dissertacdo é ilustrada e validadeipeasos de
estudo sobre duas aplicacdes de software distintas: o editextdeNotepad,
disponivel em conjunto com o sistema operativo Microsoft Windosvsa
aplicacdo Address Book que esta disponivel dentro da platakwriipae. Apesar
de ser usada ja ha varios anos, foram detectados dois errdeagéapNotepad
relacionados com sequéncias ndo comuns de acc¢fes do utilizadoret)mee o
codigo da aplicagdo Address Book esta acessivel, aplicou-sgécamiza de teste
baseada em mutacBes para avaliar a capacidade de dete@@osdios testes
gerados automaticamente. Todos os erros injectados foram detectados.

Em concluséo, a abordagem proposta representa uma melhoriaaigaisobre
as abordagens correntes de teste de interfaces com zadatilibaseadas em
ferramentas "Capture/Replay"”, uma vez que estas sO autamadizZxecucao e
gravacao dos casos de teste.

Acronyms

ACP — Algebra for Communicating Processes
API — Application Program Interface

ASM — Abstract State Machines

AsmL — Abstract State Machines Language
AUT — Application Under Test

BNF — Backus-Naur Form

CCS - Calculus of Communicating Systems
ClO — Concrete Interaction Objects

CIS — Complete Interaction Sequences

CSP — Communicating Sequential Processes
CTL — Computation Tree Logic

CTT — ConcurTaskTrees

DFA — Deterministic Finite state machines Automata
DNF — Disjunctive Normal Form

DTD — Document Type Definition

FSM — Finite State Machine

GUITAR — GUI Testing Framework

GUI — Graphical User Interface

HCI — Human Computer Interaction

HFSM — Hierarchical Finite State Machines
HyTech — The Hybrid TECHnology Tool

IDATG — Integrated Design and Automated Test Case
Generation

IDE — Integrated Development Environment

LTL — Linear Temporal Logic

MC/DC — Modified Condition/Decision Coverage
MVC — Model-View-Controller

NFA — Nondeterministic Finite state machines Automata
ObCS - Object Control Structure

OCR - Optical Character Recognition

OSU - Oregon Speedcode Universe

PAC — Presentation-Abstraction-Controller
RAISE — Rigorous Approach to Industrial Software
Engineering

RSL — RAISE Specification Language
SYNGRAPH — SYNtax directed GRAPHics
SMV - Symbolic Model Verifier

SWT - Standard Widget Toolkit

TAG — Task-Action Grammar's

TCTL — Timed CTL

Ul — User Interface

UIMS — User Interface Management System
VDM - Vienna Development Method

Xi

Acronyms

VEG - Visual Event Grammar

VFSM — Variable Finite State Machine
WYSIWYG — What You See Is What You Get
XIML — eXtensible Interface Markup Language
XML — eXtensible Markup Language

XSL — eXtensible Stylesheet Language

Xii

Contents

Contents

RESUME ..ottt ettt eee et ane e es Vil
ST U1V, [2 IX
ACRONYMS e e e e aees Xl
CONTENT S e et e e et e e e e e e e e e X1l
LISTOF FIGURESot XVII
ACKNOWLEDGMENTS. ... eeee et XXI
CHAPTER Lottt e e e e 1
INTRODUCTION ..ottt et e et e e e s s e e s aab e e s eabanss 1
1.1. THE CHALLENGE ...ttt e etetti e ee et e e s et e e s eeas e e e s eraaan s e esenbanaens
1.1.1. Formal MethodScoeeveviivviieeeieeiin
1.1.2. Specification-based testing.................
1.1.3. Specification-based GUI testing
1.2. RESEARCH GOALciiivviieiiitieeeeeetiee e e eeaa e e e e s vaaae s e s s esaaseesenes
1.3. METHODOLOGY ..uiittiiitieineiieite et et e e et e et s st s ea e st e eanseanenanss
1.4 CONTRIBUTIONS ...ctiit e iie et e et e et s et esaesa s ane s s sanaas
1.5. OVERVIEW OF THE DISSERTATION. .. ccuuiitiiitieiniiieeineeieeaeeaneeans
CHAPTER .o 15
GUI DEVELOPMENT AND TESTING.....ccoiieiieeiee e 15
2.1. TYPES OFUSERINTERFACESucitiiticiieiiieieeeee e e e aiaeaaaas 16
2.2. DESIRED QUALITIES AND COMMON DEFECTS INJIS..........e.eeeee. 18
2.3. GUI CONCEPTUAL ARCHITECTURES.....uuuiiiiittieieeeeniieeeerennnnnens 20
2.4. GUI DEVELOPMENT PROCESSES AND TOOLS.......ccvvueieerenrnnnnnns 22
2.4.1. Non model-based tools..........cccoovvvviiiiccceeeeee e 22
2.4.2. Model-based to0ISoeeviiiiiiiii i 24
2.5. GUIVEV ..o 27
2.5.1. Manual GUIteStING.....cccuiiiiiiiieaiiaiiii e 29
2.5.2. Static @analysSiS.......coooiiiiiiiiiiii e 30
2.5.3. Automated GUI testing approachesccccccceeeennn. 39
2.6. (600 N (oI US] (0] V= 48
CHAPTER ..o et e e e 51
SPECIFICATION-BASED GUI TESTING ...covvviiiieeies e 51
3.1. GUI TEST AUTOMATION CHALLENGES.uuiiiiiviveeeererieeeeeevannnns 52
3.2. FORMAL GUI SPECIFICATIONciivvvieeeeeviieeeeeevaieeeeeeennneees 54.
K T B €1 7-1 1 01 1 1 = £ 54
3.2.2. Finite state MachineS...........cooeviiiiiiiiecceeee e 58
3.2.3. Model-based specificationsvvummmmmmeeeeeeeeeeeenenn 60
3.2.4. Property-basedcccccuiiiiiiiiiiiiiiieeeeee e 62
3.2.5. Behaviour-based..........ccooouuiiiiiiiiii e 63
3.2.6. Hybrid approaches.........ccccoiiiiiiiiii e 67

Xiii

Contents

3.3. SPECIFICATION-BASED TEST CASE GENERATION.......cccvvuvuennnnn. 68
3.3.1. Testdata generation...........cooeveiiiiiiiccmmen e 69
3.3.2. Generation of expected test resultsccceeeeeeeeeeeee..... 70
3.3.3. Coverage analySiS........ccieeeeiaiiiiiiiiiiiceeee e 71
3.3.4. Test generation from grammars...........cc..ceecmeeeeeeeeeeennnn 73
3.3.5. Test generation from FSMS.........ccccovviiimmmmmmmeeeeiieeiines 73

3.3.6. Test generation from model-based specifications........ 75
3.3.7. Test generation from property-based specificatians.... 76
3.3.8. Test generation from behaviour-based specifications.. 76
3.3.9. Test case generation from GUI models.......cccoomeu..ee.... 77

3.4. CONFORMITY CHECKttttttiia e e e e e ee et ettt e e e e aaeeaaeeeees 78
3.5. CONCLUSIONSeiieiiiiiiuiiaaa e e e e e e et eeeeeeetbebseae e e s e e e e e aaaeeeeennes 80
CHAPTER IV ..ottt 58
SPECIFICATION-BASED GUI TEST AUTOMATIONccc.t voeeee. 85
4.1. GUI TESTINGPROCESS. ...ttt iiieeeiieeeeiiiiiieae e eeeeeeneains 86
O I o 1= Tox S V] (] o 89
4.1.2. Automated model-based testing with Spec Explorer.... 90
4.2. GUI MODELLING WITH SPEGY AND SPECEXPLORER................ 93
4.2.1. Modelling GUI structure and behaviour.........cccceeuuneee. 94
4.2.2. Modelling SCENANOScccuvvrrrrrrrereees e eesevneveneeeeeeees

4.2.3. State machine views
4.2.4. Obtain complete models from navigation maps and

dialog VIEWS. ..o 107
4.2.5. Independent dialogscoooeviieeiiiiiiiiici e 113
4.3. TESTCASE GENERATION. ..cccttuttiiaaeaeeaeeeeeeeeneiniiiaaaaeeeeaens 115
4.3.1. Overview of test case generation with Spec Explarer115
4.3.2. Domain definitioncccccoeiiiiiiiiiieeee 117
4.3.3. Test coverage and adequacy criteria on the FSM...... 118
4.3.4. FSM reduUCHION.ccceiiiiiiiiie ettt e e 122
4.4, GUI MAPPINGTOOL....eeeieeiiiiiieeeeessiiiieeee e s ssiiieeee e e ssneeeeee e 124
4.5. CONCLUSIONSctteiiee ettt e e e ettt e e e et e e e st e e e e e 132
CHAPTER V ..ottt et e e e e 513
CASE STUDIESoitii ittt smmmmre et e etaae e e e s enntane e e e e snnnneeee s 135
5.1. NOTEPAD APPLICATION. ...cctttttutuuuaaaeaeaaeeeeeeenniniaaaesaaaaaens 136
5.LL. MOAEl it 136
5.1.2. SCENANOS....utiiiieiiiiiiiiiae et 142
5.1.3. TeStiNg gOalScuuuuiiiiiiiiiiiiiaiee e 145
5.1.4. Choosing domain values for adequate testing--.. 145
5.1.5. State filtering........ccccooei i 149
5.1.6. FSM generation and reductioncccoceeeereeriennnns 150
5.1.7. FSMvalidation..........cccoccuveeiieiiiiiiiienie e 150
5.1.8. Test case generation and execution.........ccceceeeerrennnns 158
5.1.9. TeSLIeSUIS ..ooiiiiiiiiiiie e 158
5.1.10. MELIICS ceiiiiiiiiiiee et 160
5.2. ADDRESS BOOK APPLICATION.uutteeeeeieeeeeieititiaasaeeeeaaaeeees ne
5.2, MOEl ..ot 161
5.2.2. SCENANOS ...ttt 164
5.2.3. Testing g0alSuuuuiiiiiiiiiiiiiiieee e 167
5.2.4. Choosing domain values for adequate testing--.. 167
5.2.5. State filtering........ccoooiiiiiiiiiiee e 170
5.2.6. FSM generation and reductioncccccceeereeiiennnnns 170
5.2.7. FSMvalidation.........ccccoccuveeiieiiiiiiiiiiae e

5.2.8. Test case generation and execution
5.2.9. Capacity of detecting errors

Xiv

Contents

LI K O T 1Y/ 1Y 1 (o2 179
5.3. (600 N (oI U ST (0] NS 180
CHAPTER Vet a e 318
CONCLUSIONS AND FUTURE WORK ..ot 183
6.1. SUMMARY OF CONTRIBUTIONSeuuiiiinieeieeereeeeieeeeneeseaneeeanns 183
6.2. SUMMARY OF EXPERIMENTAL RESULTS.....uuieevviieeneeieieeeennns 185
6.3. FUTUREWORK.ouiiitieeee et 185
BIBLIOGRAPHY ..ottt 189
AP PENDIX A oo 20
A.1. NOTEPAD SPECIFICATION. .. .ceuuteitueeeunteeeieeeteeeeteeeeaeeeeaeeeeanns 205
A.2. ADDRESSBOOK SPECIFICATIONccuuiitiiteiiieitieeieesneseneesneesnees 217
A.3. WINDOW MANAGER AND FILE MANAGERcoiitiiiiieiieiiieieeiieeanas 227

XV

Contents

XVi

List of Figures

Figure 1: The morphism of abstraction.cccccoviiiiiiiiiiiiieee 6
Figure 2: Form Master/Detall..............uuueeiiiiiiiiiiiiie e 16
Figure 3: Seeheim architecture..............cccooo e, 21
Figure 4: Arch model ... 21
FIgure 5: MVC MOUEIeeieei e 21
Figure 6: PAC MOEL.........ccooiiii e 22
Figure 7: Model Checking...........ccoooieii 31
Figure 8: a) linear time; b) branching time.............ccccco i, 32
Figure 9: YOrk INteractor...........ccvvviiiiiiiiiiiiiieeiiieeieieiieevveee e 33
Figure 10: Models PiE and RED-PIE........cccccoooiiiiiiiiiieeee 36
Figure 11: Relation between windowed data and scroll bar (taken from
27) PSSR 37
Figure 12: Model-based testing PrOCESS.cvvvvvvieeieeeeiieeeieeiveevveeiieenrrennnens 43
Figure 13: Visual test development environment (taken from [147])........ 44
Figure 14: IDATG test process (taken from
www.qualityscope.com/28.NtMI)uuuviiiiiiiiii e 45
Figure 15: GUITAR process (taken from
www.cs.umd.edu/~atif/GUITARWeb/guitar_process.htm)...................... 46
Figure 16: Event-Flow Graph for WordPad --> Connect to Printer
(taken from www.cs.umd.edu/~atif/ GUITARWED)..........cccccvvvevvrvvvrnnnnnnns 46
Figure 17: Integration Tree for WordPad (taken from
www.cs.umd.edu/~atif/GUITARWED)ccooiiiiee a7
FIQUIE 18: PEtri NEL....uiiiiiiiiiiiiiiiiiiii s a e na e e e e 63
Figure 19: ObCS notation (taken from [16])........c.ccccceeeiiiiiiiiiiiiiiiieeee 64
Figure 20: Symbolic execution tree examplecccccooiiiiiiiiiiieiieeiins 70
Figure 21: Testing flow (taken from [10])covvvvvviiviiiiiiiiiiiiiiiiiieiiiiiens 74
Figure 22: Conformity tests model.............ccccoeeeeie 79
Figure 23: Overview of the GUI modelling and testing process............... 87
FIgure 24: SPECH SYSEIMuuiiice i, 89
Figure 25: Boogie static Verifier.........cccceiii 90
Figure 26: State variables of a textboX...........ccccccciiiiiii 95
Figure 27: Find Next pre-Condition........... .. i 95
Figure 28: Find dialog inside Notepad software application..................... 95

XVii

List of Figures

Figure 29: Probe action example extracted from the Notepad's GUI

a0 o = PP P PR 96
Figure 30: WIiNdOW MAaNAQENccovviiiiiiieiiieeieeeeeeeeeeeeeeeeeeeeeevesvaeeevenaaeees 97
Figure 31: Message box of acknowledgeccccceeeiiiiiiiiiiiiiieeeeeee 97
Figure 32: Message box with different possible answers......................... 98
Figure 33: Open file scenario within the Notepad application 100
Figure 34: Navigation map obtained from focus property of the
WINAOWS .. e aaaaaaaeaaaaaaaaaaaaaees 103
Figure 35: Navigation map obtained from the enabled windows'

1 0] o 1=] o Y5 104
Figure 36: Navigation map obtained from opened windows abstracting
AWaY the MESSAJE DOXESuuiiiiiiiii e 104
Figure 37: Open dialog view obtained from the projection on¢o th
interactive object with the focus in each moment..............cccccccnnnnn. 105
Figure 38: Open dialog view obtained from the projection on¢o th
manipulated variables ... 106
Figure 39: Changes in the set of enabled actions inside Find dialog...... 107
Figure 40: State machine of an application with dialogs D1ofacti

Al) and D2 (actions A3 10 AB)........cceeeeeeeieeeieee e, 109
Figure 41: State machines of dialogs D1 and D2 projected from the
FSM depicted in Figure 40. Dotted lines represent test cases................ 110
Figure 42: HFSM with three [evels............cccoiiieee e, 111
Figure 43: Dependent dialogS..........ccevvvevveeiiieiiieeiiiiiviieeiieiereeeieeaeinnnn, 115
Figure 44: Test Case geNerationcccoooiioeieeare e 116
Figure 45: Open SCENAIO VIBWuuuuruuueiiieninniaaaaaaaaaaaeaaaeaaaeeaaaeeaaeens 120
Figure 46: Coverage analysis of a special case condition 121
Figure 47: GUI modelling and testing proCess..........cccceeeeeeeeeeeeieeeeneec, 125
Figure 48: Architecture of the GUI Mapping TOOl........ccccoeeeieiiieennennnnn. 126
Figure 49: Front-end of the GUI Mapping Tool...........ccccvvvvvvvvvvevennnnnne, 126
Figure 50: Selection of Menu OptioNS.........cccvviiiieiiiiii e, 127

Figure 51: Examples of methods implemented in the GUI test library .. 129

Figure 52: Excerpt of the code generated automatically fer th

Notepad example ... 130
FIgure 53: TeSt EXECULIONuuuuieiiiceee e e e 132
Figure 54: Notepad main WINAOWooccuiimiiiieeeeiniiiiiieieeeee e 136

Figure 55: Open dialog ... 139
Figure 56: File not found message boX...........ccovvvvvvvieiieeiiieiiiiiiiiiiiiiiinns 139
Figure 57: File manager Module............uueuueeiiieiieee e 140

XVviil

List of Figures

Figure 58: FiNd dialog.........oooiiiiiiiiiiieeeeeee e 141
Figure 59: Find scenario within Notepad applicationcccceevveeeeee. 142
Figure 60: Replace scenario within Notepad application........................ 143
Figure 61: Open file scenario within the Notepad application................ 144
Figure 62: Save scenario within Notepad application.................cccuvveee. 144
Figure 63: Navigation map obtained from focus property of the
WINTOWS ...ttt ettt e et e e e e e e s e bbb et e e e e e e e e annbbeneeees 151
Figure 64: Open dialog VIEWcooviiiiiiiiiiiiiieiiiieiiiiiiiieeeieeeieeenaes 152
Figure 65: Find dialog VIEWcccooieiiiiiiiii e, 153
Figure 66: Navigation map obtained from the enabled windows'

[010] o1=T 1 YU UUP PP 154
Figure 67: Open dialog view obtained from the projection on¢o th
manipulated variables..............ccco v 155
Figure 68: Save SCENANO VIEW..........ccuuiiiiiiiieeeeieiieee e 156
Figure 69: FiNd SCENATIO VIEWccooiiiiieeeeieee e 156
Figure 70: Coverage analysis of a functional dependency...................... 157
Figure 71: Coverage analysis of a special case situatiorer&de
occurrences overlapping each other" ... 158
Figure 72: Address book main windowccccccvvviievieevieeeieee, 161
Figure 73: Contact dialog of the Address BooK............cccceeeeiiiiieiniennnn. 163
Figure 74: Find dialog of the Address BooKccccceiiiiiiiiieeee, 164
Figure 75: Navigation map view of the Address Book software

=1 0] 0] 0% 11 T o 171
Figure 76: Open dialog VIEWccoviiiiiiiiiiiiiiiiiiieiiiiiiieieeieeeeeeeeenees 172
Figure 77: Save dialog VIEW..........oooiuiiiiiiiieeeeee et 172
Figure 78: Contact dialog VIEWuuuuueeuiiiiie e sse s 173
Figure 79: Find dialog VIEWcccooiieiiiiiiiii e, 175
Figure 80: ClOSE SCENANO VIEWuviiiiiiiiieeiiiiiiieee e 176
Figure 81: Find SCENAIO VIEWccoooeiiiiei e, 176
Figure 82: Open SCENAIO VIEW............eevvererverrrerrrirnnnenrrrnnnninnnennnnnna—.s 177
Figure 83: Save SCENANO VIEW..........cc.uuiiiiiiieeeee e 177

Figure 84: GUI Mapping Tool relating model action of the Address
Book application with interactive CONtrolS............ccceeveeeieeiiiiiiiieiiee e, 178

XiX

Acknowledgments

I would like to thank my supervisor, Professor Raul Fernando de Almeida Moreira
Vidal, from Engineering Faculty of Porto University, for bisidance, determined
search of resources, unforgettable mentoring and encourageratmatie this
dissertation possible.

A special thank is due to my co-supervisor Professor Jodo Carlos PasEadbge
also from Engineering Faculty of Porto University, for his inpatghusiasm and
his invaluable perceptiveness in the discussions we had thaheshrmy
perspective.

It was a privilege to have the co-supervision of Professe¢ Muno Oliveira,
from Minho University, to whom | would like to express my eartieahkfulness
for being actively interested in my work.

| am indebted to Eng.° Vitor Santos from Microsoft Portugairfsoducing me to
the Foundations of Software Engineering group within Microsoft &ebein
Redmond, USA.

I am also grateful to the Department of Electrical and @dsr Engineering, in
the person of Professor Silva Matos, and to the Informaticso8ent the person
of Professor Eugénio Oliveira, for having financially suppottedairplane travel
of my first visit to the Microsoft Research in Redmond in whiakstablished

contacts and planed collaborations that were undoubtedly importaninyfor
research work as a guide to the real problems felt by GUI testers.

My overwhelming thanks goes to the coordinator of the FoundatioBsfafare
Engineering group in Microsoft Research in Redmond, Wolfram Schaltéhé
interest on my work, for supporting my stay in the first visiRedmond, and for
inviting me and supporting all the expenses of my second visit tamift. | also
want to thank Wolfram Schulte and Microsoft for the unconditidiv@ncial
support to this research work that will foster future collaborations.

| owe special thanks to Nikolai Tillmann, researcher of MicrosoReédmond, for
the suggestions, feedback, the time we spent working togetigertha talk he
gave here in Engineering Faculty of Porto University. In pdeticd want to

thank him for his help in structuring the presentations of thendseapers in the
conferences ASM'05 and ICFEM'05.

During my visits to Microsoft, in Redmond, | had the privilege teemmany
researchers to whom | wish to thank for their disinterestedhamts on my
research. Among others, to Wolfgang Grieskamp, Margus Veanes, Lev
Nachmanson, Colin Campbell, and Yuri Gurevich for being so kind and gentle
me.

| would like to thank Isidro Ramos Salavert, from "DepartamaetdSistemas
Informaticos y Computacion of the Universitat Politecnica\tdencia”, and

XXi

Pedro J. Molina for behing so kind with me during my visit to tmeversity of
Valencia.

| wish to express my gratitude to my parents, Silvério #and Albertina
Ramada, for all their support, comprehension, and love. Thank you.

Finally, | thank my husband, Jodo, for his encouragement, patience, samplort,
love, and my dear son, Rui, for being so sweet and for giving me amhents of

joy.

XXii

to my parents
Albertina e Silvério

to my husband Joé&o and
my dear son Rui

XXiil

Chapter I

Introduction

This chapter gives a general introduction to the main sshgegct
this dissertation: formal methods in software engineering, th
application of formal methods to software testing, and, more
precisely, the specification-based testing of graphical user
interfaces (GUIs). The problems with current practices W G
testing and how formal methods applied to software testing can
help to overcome those problems are briefly pointed out. dt als
describes the objectives of the research work and the
methodology used, presents the main scientific contributions, and
gives an overview of the dissertation structure.

Our society is becoming more and more dependent on softwaeensyS hey are
present in virtually all parts of modern society: airplanes @ars have computer
boards, we do payments electronically, our identity informatiamegsstered on
databases, we do shopping on the Internet, among others. This growing
implantation of software systems makes our daily life moqgedéent on their
functioning without errors. The correct functioning depends on thectex
unambiguous and complete capture of the customer requirements. It is well known
that problems resulting from a misunderstanding of the cust@geirements are

the most expensive to correct, and there is a need to vakdpiieements as early

as possible with the customer.

One of the most widespread activities to increase the confidetice correctness
of software systems is testing. Testing a softwareesy$tvolves executing that
system with a set of inputs and evaluate whether the outptaged match the
ones expected. There are different kinds of tests: white-bax ¢alked structural

Chapter |

testing) and black-box tests (also called functional testingihite-box testing,
the knowledge of the source code is used to derive a set oasest that cover the
source code to a specific degree (all statements, aBidesj etc.). In black-box
testing techniques, the software system is seen as a closébbreceives inputs
and produces outputs. Test cases are derived from requireorentedels of
varying degrees of formality (implicit, explicit but informaxplicit and formal).
When system models are used to derive test cases, the tecimigaded
(black-box) model-based testing. Although semi-formal models (e.g., lmased
UML diagrams) can be used to derive test cases, in thésertation
"specification-based testing" will always mean that formaldels are used. In
addition, "model-based testing" will refer to testing technigies use models
which are not necessarily formal.

The use of formal models enables a rigorous approach to softexeoping and
testing and a higher degree of test automation.

1.1. The Challenge

Today's software systems usually feature Graphical ldsenfaces (GUIs). GUIs
have become an important and accepted means of interacting oslitly'st
software. They can be a crucial point in the users' decisions to eitherneuse
the system.

However, GUI testing is difficult, extremely time-consumiagd costs a lot of
money, with very few tools and techniques available to aid in the testinggs.

Currently used GUI testing methods are almost ad hoc andreethe test
designer to manually develop test cases, identify the conditionbeck during
test execution, determine when to check these conditions, and evaluether
the GUI software is suitably tested. There is no guarasft@glequate coverage
according to some criteria, and the evaluation decision whetheGlitHeis
properly tested is taken based on the developer's experience withotgtical
justification. Applications are becoming bigger and more complex amdiaha
testing of GUIs is becoming an even more difficult activityhen the GUI is
modified, the developer needs to redefine the test suite and run tregtasts

There have been efforts to automate the GUI testing proSesse tools, called
Capture/Replay tools wivw.testingfags.org/t-gui.htinl are commercially
available. They can be used to record user interactions aral riky@m later.
Among other problems [199], these tools still require too much mafiest and

postpone the testing activity to the end of the development pratessthe GUI

is already constructed.

Introduction

1.1.1. Formal Methods

Formal Methods are "mathematically based techniques forribiesc system
properties" [197]. They can be seen as the applied mathematissftafare
engineering, providing the notations, theories, models and analigdahiques
that can be used to control and analyse software designs. Forthaldslean be
helpful to increase the confidence in the correctness fiiva® by proof,
refinement and testing (both at the specification and atrtpkementation levels)
[115]. Proof, sometimes called formal verification, involves gonmous
demonstration (usually involving deductive logic) that an impleat@am matches
its specification. Refinement is the development of implementtthat are
correct by construction (a specification is rigorously transéairto derive an
efficient implementation). An introduction to the subject can be fauf@9,139].

Testing at the specification level involves executing (animgathe specification
to verify (i.e., detect internal inconsistencies and problems)validate (i.e.,
assure that customer requirements are correctly captuahed)specification.
Testing at the implementation level involves executing an im@hgation with
some input and comparing the actual results to the ones expectied.dase of
specification-based testing or conformance testing, the resujpected are
obtained from the specification, thus reducing the effort required to prteane

There are two different ways of performing formal verifigcat theorem proving
and model checking.

Theorem proving may be supported by interactive reasoning tools @agedof
systems with a set of axioms and inference rules, like Hiogpion, rewriting,
and induction. The proofs are constructed in a traditional mattehatay as a
sequence of steps. The implementation and the specification are eaphesagh
the same formal language and the goal is to verify that tipdeinentation
performs the specification. The logical implication or ediginee relation
between the implementatioh) @nd the specificationS[is written as a theorem
(I - Sorl =9 that has to be proved.

Model checking is a technique intended to prove automatically tHagieal
property,P, holds of a system behaviolB, specified as a finite state machine.
Properties are expressed in temporal logic that allows regsouer the possible
execution paths. In order to verify that the property hdds, P, the entire state
space of the finite state machine may be exhaustively ashlyState space
explosion is the main drawback of the model checking techniquéd\ SP
(spinroot.conp, and SMV (Symbolic Model Verifier)
(www.cs.cmu.edu/~modelcheck/smv.hiané examples of model checking tools.
The main advantage of these techniques is the fact thatdb&is automatically
evaluated. The main drawback of model checking techniques is the intapabil
deal with infinite state spaces.

A formal specification allows capturing the customer requirdsnén an exact,
unambiguous and complete manner. The high level of abstraction fréesrus
thinking about implementation and platform details focusing thataiteon the
real problem. Formal methods can be generically classifiech@del-based,

Chapter |

property-based, and behaviour-based. Model-based specifications dekeribe
states of the system explicitly by using mathematical coctsdns like sets, lists,
maps, etc. Examples of model-based specification language®dtd158], and

Z [179]. In property-based specifications, the data types are mobdedf®icitly
and the behaviour of the system is modelled as a set of propéstasples of
property-based specification languages are OBJ [76] and Larch [82].
Behaviour-based specifications describe systems as a sequepussibife states
and are normally used to model concurrent and distributed systenmspleseof
behaviour-based specification languages are Petri nets, Calcafus
Communicating Systems (CCS), and Communicating SequentialsBescé€CSP)
[94].

Formal methods are rigorous and systematic. Nevertheless, thef dieamal
methods in the industry is still quite limited. Some of thasoms for such
difficulty are:

— Limited tool support: Existing tools usually cover only specific tasks
and aspects, and the integration of different tools is diffidue to
different notational rules.

— Lack of integration with other methods like IDEs (Integrated
Development Environments), with a higher degree of acceptance in
industrial environments.

— Complexity and unfamiliarity with formal notations: Formal
notations are based on simple mathematical concepts, but some of
them may seem unfriendly to software engineers.

— Incomplete life-cycle coverage There is a lack of models and
notations that support all the activities of software devetypm
(specification, implementation, verification and validation).

— Limited application of Formal Methods to the development b
graphical user interfaces (GUI) Nowadays, a considerable part of
the time spent in application development is consumed by the user
interface. Formal specification of user interfaces is itgparto find
errors and inconsistencies during the initial phases of development
and to prove desired properties. In spite of the research work in
applying Formal Methods to user interfaces, this area is noa yet
common area of application.

Although formal methods are not widespread in common industry envirosyment
it is possible to find some examples of companies that use fonetods to
develop their projects all over the Europe : ATX Software Rortugal
(www.atxsoftware.cojn B-Core in the UK ww.b-core.com Cinderella in
Denmark www.cinderella.dk Clearsy in France
(www.clearsy.com/html/clearsy.ntm Escher Technologies in the UK
(www.eschertech.comlFAD in Denmark (www.ifad.dl; Praxis Critical Systems

in the UK (vww.praxis-his.cojp Prover Technology in Sweden
(www.prover.com Sidereus in PortugaiMvw.sidereus.pt Telelogic in Sweden
(www.telelogic.com and Trusted Logic in Francenyw.trusted-logic.coim

Introduction

In addition, it is also possible to find a considerable numberuotessful
industrial experiences on the application of formal methodsaloprejects [45].
One example, very well know in Portugal, was the applicatioorofidl methods
to solve the problem of assigning teachers to available pladggh-schools. In
2004, the Portuguese government contracted a software company topdavel
software system to solve the teacher's assignment problepréblem was that
the software system was not able to construct a correctosofot the problem:
teachers with low priority were assigned to places that dhioel occupied by
teachers with a higher priority. The software company thatldped the software
couldn't fix the problem and high-school lectures didn't start ome.tifien,
another company, ATX Software, developed an efficient algorithrh abald
solve the problem. This company used formal method to provéhenatigorithm
developed by them was able to finish and produce a correct soluticthefor
problem.

The interest on formal methods from academic environments is far from eAding
list of conferences on this topic can be found/iifimnet.info/meetingand can
easily illustrate the academic interest on this subject.

Because of its inherent rigor, formal methods have been avekpted when
applied to critical systems. The same cannot be said aboutl fiotiaods being
applied to common systems. In this case, formal methods wereailtfectsof
severe critics. One of the critics were related to #oe that formal methods were
too far away from the software development methods used in ipdiiss known
that testing is the most widespread activity to increasectiididence in the
correctness of software systems in industries. But,ngestnd formal methods
were traditionally totally apart activities. Today, thés® methods can be seen
together in software projects, complementing each other.

1.1.2. Specification-based testing

Software testing is laborious, cost intensive, and almost m@pirFormal
methods, on the other hand, are systematic and have always beamewndgéh
the formal correctness of software. They introduce systemeln early in the
software development process with inherent advantages. idradliy, formal
methods and testing were completely separated activities. Fometaods are
rigorous but not common in industrial environments. Testing actiNtks
systematization but is very common in the development of softsystems. By
using formal methods and testing together, it is possible ttersgtize and
automate more the testing process [26].

Specification-based testing checks if a software systamislementation
conforms to the specification of the same system. Formalfigaicins can be
used as input to generate test cases that fulfil a givtariar to generate input
data, and as an oracle to calculate the expected resultguiferments change
along the software project, the specification can be maoddied the test cases
generated again.

Chapter |

The characteristics of the specification language used wflueince the
techniques used to generate test-cases within the spémifibased testing
process. Formal specification can be executable or not. Whenotieisgto
automate the testing process, the latter can turn that goa muwe difficult one

to reach.
¢ Abstract Op G

° Concrete Op Q

Figure 1: The morphism of abstraction.

Conceptually speaking, specification-based testing runs relateatiope on both
levels, implementation and specification, and compares thegedudined from
both in each run step. The specification operations are abstrect automate the
conformance checking, a map (eeds to be defined between concrete operations
and states of the implementation and abstract operations aied sifathe
specification [4] (Figure 1). An error is reported evempdithe concrete and
abstract states or results after executing each step do not match.

One of the main problems with specification-based testing is that sofiysteams
are typically infinite or have a huge unmanageable number of sTdtes problem
is known asstate space explosioproblem and it usually happens because the set
of possible values for a particular type is boundless. For irestahe domain of
possible values for an integer is only limited by the hardwarst@onts. In a
system of 64 bits, an integer can get values from %4.2The challenge is to
reduce the state space of the system to a manageable sigtllatwbcribe the
system in a level of abstraction without losing relevamial®ur from the tester
perspective. There are several techniques that can be used to rediiate thgace
of the systems. One of those techniques restricts the darhpbssible values for
the variables. Even so, this technique may not be sufficient.

1.1.3. Specification-based GUI testing

It is known that nowadays a considerable part of the time spespplication
development is consumed by the user interface [141] and that thentestace

can be a determinant point in the decision of the users to use or not use the syste
So, it is important to develop a systematic process to help ngglkigher quality

user interfaces.

Specification-based testing has been applied to the testing of sofiplications
through their APl (Application Program Interface), but it is notcemmonly
applied to the testing of software applications through t&eil. To perform GUI

Introduction

specification-based testing, a GUI model has to be construdkedGUI model

can vary on the level of abstraction either modelling atomér astions (like

clicking on a button); or composed actions constructed as a sequfeatmmic

actions (like "drag and drop" which is the sequence of ingg¢se mouse button
in the origin point, dragging the mouse to the destination pointedadsing the
mouse button); or modelling high level properties of the GUé (GUI navigation

map); or modelling scenarios that describe how the user shoetdahwith the

GUI to achieve a specific goal. The level of abstractibthe GUI model should
be the best suited for the testing goals.

The construction of the GUI model may be quite laborious. Howeudls @re
constructed by reusing interactive components or entire dialodee GUI model
should promote the reuse of already modelled behaviour.

Depending on the nature of the GUI models, different techniquebecased to
generate test cases [19,53,159] from them. As soon as test mggnerated,
they can be executed on the GUI in order to verify the conforpgitween the
implementation and the specification. Test cases are seguehoperations to
manipulate the GUI interleaved with operations to read andyvdréd results
obtained after each operation performed on that GUI.

In order to automate the conformity check, a map needs to beeddietween
methods and states of the GUI and its specification. This caaldtesely easy
when the source code (or an API) of the GUI under test isadl@ihnd structured
as a set of operations that correspond to the actions thaegaerformed by a
user on the GUI. However, sometimes, the only interface alailalthe GUI
itself. In this case, some intermediate code needs to be ceoedttadnteract with
the GUI simulating the user. This intermediate code will bpped to operations
of the specification to be run in steps and results comparadeaith step. This
intermediate code can be built based on available libraries (eig32WAPI,
Abbot @bbot.sourceforge.ngtand Jemmyjémmy.netbeans.oygetc.) that allow
to simulate user actions interacting with the GUI. Howevée tmanual
construction of this intermediate code may involve too much worlclwhan
compromise the application of GUI specification-based testing techniques.

The state space explosion problem is even more challenging alkarg tabout
GUIs. GUIs increase even further the number of possible stateaise there are
several different modes of interacting with a GUI, like ause and a keyboard,
different ways to achieve one goal, and there is no restrictiothe sequence
according to which parameters can be given.

The process of writing a specification can also be useflintb user interface
errors and inconsistencies during initial phases of developmentoapdote

desired properties that can result in time and money savingsies of these
properties are: absence of deadlock, predictability of a ceomhmability to

reinitiate, availability of a command, succession of commanddusen of

commands, bound of state variable and integrity constraints [152), &is

construction of models enables the analysis of alternativerdesiighout having
to code them.

Chapter |

In spite of investigation about Formal Methods applied to userfaces, this area
is not yet a common area of application.

1.2. Research goal

The goal of this research work is to improve current GUingstnethods and
tools, taking advantage of formal behavioural models to enable utioenatic
generation of test cases and the automatic conformity cheoindghe
implementation with respect to the specification, and hence, coetributhe
construction of higher quality graphical user interfaces.

As a side effect, one wants to stimulate the use of form#iads in industrial
environments. Also, with the construction of formal specificatiohgraphical

user interfaces, we give a contribution to the constructbrunambiguous
documentation that can be used for other purposes besides testingl Forma
specifications can be used, for instance, by code genematsush a way as to
transfer legacy systems to more recent technologies.

1.3. Methodology

According to Zelkowitz and Wallace, in [200], research methodatogan be
classified into scientific, engineering, empirical, and amzdy These research
methodologies can vary on the type of problem they try to solve and on the type of
solution they propose to solve the identified problem. A sdienthethod
identifies a phenomenon without a scientific explanation and taedevelop a
theory to explain it. An engineering method formulates a hypotlesidries to
develop and test a proposed solution. An empirical method usedicsthtis
methods as a means to validate a given hypothesis. An anatytitadd develops

a formal theory. The characteristics of the problem resesrband, the research
guestion, and the solution proposed (e.g., method, methodology, theory, or tool)
influence the research approach and the techniques used toevahdiaevaluate

the approach.

The above mentioned research methodologies can be applied to science in general,
but software engineering research may require specific metgydobmbining
diverse research approaches from different research fildsto the fact that
software engineering may combine several different issuesh $wman,
organizational, and referring to computer science, so the bordesitvgednm
software engineering and its scientific base is not chfined. In [200],
Zelkowitz et al. present a list of twelve software eegring validation models

that are classified into three categories: observatiorsthrigal, and controlled.
Observational methods gather information considered reledaming the
development of the project, e.g., project monitoring, case studytiassemd

Introduction

field study. Historical methods gather existing informationuabarojects that
have already been concluded, e.g., literature search, legagyet®ons learned,
and static analysis. Controlled methods are the classical mathedperimental
design used in other scientific disciplines and they gathern#tion from
different instances of an observation for statistical Wglidif the results, e.g.,
replicated experiment, synthetic environment experiments, dynamlisanand
simulation. In addition, validation methods can also be classifiedrdiag to
another dimension which results in a separation between quastitgtialitative,
and hybrid evaluations [111]. Quantitative methods measure somertpr{gme
properties) of the software product or system that is exphéctehange as a result
of the use of the approach to evaluate. Qualitative methoddasart analysis"
to describe a qualitative evaluation. Hybrid approaches combingrdsadf the
previous methods.

The research methodological difficulties of software engingeresearch have
not (yet) been solved so the researcher has to choose @hemgaroach which is
suitable for his problem at hand [166].

The scientific area of this research work is softwargireering. The research
process consisted of four phases: information gathering; hypottiefistion;
approach development; approach evaluation. Throughout these phasesntdiffe
methods, the ones considered the best adapted, were used.

Information gathering

The information gathering was the initial phase of the rekeawork. Collect,
study, and synthesize information on the main topics for the pnodiefined
considered relevant were the main activities involved atstage. The goals were
(1) to gain knowledge about the theory related to the resesgah(2) to identify
the remaining open issues, and (3) to indicate the direction foarckselhe
information gathered was structured in an easy accashabke and consisted
mainly of scientific papers published in magazines, journals, anference
proceeding, books, and websites. The main topics subject of gatéamti were:
currently used approaches for developing and testing GUIs; fore#ilods and
more precisely formal specification of GUIs; and specifizatiased testing. The
research methods used in this phase were essentially histogitends as it is the
case of literature search.

Hypothesis definition

After having gathered, studied, and synthesized the informatiohyhathesis
was formulated:

"The use of GUI formal behavioural models enables
improving GUI testing process in terms of higher de grees
of automation and systematization".
Higher degrees of automation can be achieved by generatingcasss
automatically from formal models, and executing those testematically

Chapter |

checking conformity between specification and the GUI undstr By executing
test cases automatically, it is possible to run more tests more often.

By using formal methods and testing together it is possible tadser the
systematization of the testing process. Formal methods intradodels early in
the software development process from which conditions to checigdest case
execution as well as the moment when these conditions should kedmeay be
inferred. In addition, formal models can be used to evaluate if tHes@tware is
adequately tested.

Approach development

After formulating the hypothesis, the approach was developed. Theaappr
entails the development of a method to specify GUIs using a moskaitba
specification language, called Spec#; the constructing ofgamitam to reduce
the state space and the size of the test cases; and theuctmrstof a tool to
reduce the manual work required to perform conformity testsvden a
specification of a GUI and its implementation. The researethods used in this
phase were observational ones.

Interaction with Microsoft researchers and testers wasatrincthis phase of the
research process to understand the real needs and problems of test&s and
as a way to discuss and exchange ideas.

Approach evaluation

Once constructed the proposed solution for the identified problentyvatieaal
methods, like case study, and controlled methods, like replicateetiments,
were conducted to validate the solution.

The results obtained during the research work were presentedismudsed in
international conferences after being approved in its reviewing precesse

1.4. Contributions

The main contributions of the research work spread over theitaetfied GUI
testing problems:

1. GUI modelling problem

- A GUI modelling approach that provides a set of guidelines for
modelling GUIs for testability and reusability (GUI componeauts
specified as reusable classes or modules).

2. State space explosion problem

— An algorithm to reduce the state space of the GUI model and
consequently the size of the test suite based on a hiegdrstriecture
of the GUI model [151].

10

Introduction

3. Model-to-implementation mapping problem

- A tool to automatically construct the code needed to interabt avit
GUI simulating the user [149]. The main goals of this tool are:

0 to reduce the manual work required to test an application
through its GUI,

0 to bridge the gap between a model written in a high-level
modelling language and the simulation of user events;

0 to test GUI applications even if their source code isn't
available.

These contributions (1-3) were described in the following papesepted in
international conferences after being approved by a reviewing process:

- (1) (3) — "A Model-to-implementation Mapping Tool for Automated
Model-based GUI Testing" presented at th& Tternational
Conference on Formal Engineering Methods (ICFEM'05), 2005.

- (1) (2) — "Modelling and Testing Hierarchical GUIs" presentetha
12" International Workshop on Abstract State Machines, 2005.

- (1) - "Automated Specification-based Testing of Interactive
Components with AsmL" presented at th& ®dition of the
international conference QUATIC (Quality: the bridge to tieirfe in
ICT), 2004.

- (1) - "Specification-based Testing of User Interfaces" pteseat
10th DSV-IS Workshop - Design, Specification and Verification of
Interactive Systems, 2003

- (1) - "Métodos Formais na Especificacdo de Interfaces com o
utilizador: a linguagem VDM++ e o tratamento de eventos" ptede
at the "32 Conferéncia da Associacdo Portuguesa de Sistemas de
Informacé&o”, 2002.

Each paper is preceded with numbers within round brackets deatify the
contributions described in each one of them.

1.5. Overview of the dissertation

This dissertation is structured into three main logicatices. The fist one
presents a review of the several approaches to develop am@ltss It is spread
over Chapters |, Il, and lll. Chapter Il presents techniquest@uid to develop
and test GUIs without the support of formal methods. Chapter #temts
techniques for specification-based testing of GUIs. The secanidrsg@resents
the approach proposed in this dissertation in Chapter IV, whisalidated and
evaluated in Chapter V. The third part presents conclusions and futtke wo

11

Chapter |

Chapter |

This chapter gives a general introduction to the main sghiddhis dissertation:
formal methods in software engineering, the application of formathods to
software testing, and the specification-based testing of grapidea interfaces
(GUIs). The problems with current practices in GUI testing hod formal
methods used in combination with software testing can help to overtmwse
problems are briefly pointed out. It also describes the dbgescof the research
work and the methodology used, and presents the main scientific contributions.

Chapter I

This chapter begins by classifying the different kinds of userfaces and their
desired qualities and common defects. After that it gives arvieve of the
current practices in the GUI development process and presents mbai
problems. An overview of the current practices for testings@&)presented and
compared with other approaches to promote the quality of GUIs.nTdie
drawbacks of each described approach are then pointed out.

Chapter Il

This chapter opens with the presentation of the main challefigesaphical User
Interface (GUI) testing either when compared to ApplicatioogRrmming

Interface (API) testing or when one wishes to automate theresess. After that
it presents a survey on the work related with GUI spetificebased testing. It
begins by describing different ways of modelling GUI using diffedd@nds of

formal specification languages and then presents diffeemfitniques used to
generate test cases from those different formal spatitfits. At the end, different
strategies of performing automatically verification of thst results (conformity
check) influenced by the kind and style of the specification used are presente

Chapter IV

This chapter presents a new approach to model and test GiHsmodel is
written in Spec# and structured in a hierarchy. The methodotigyved and the
decisions taken to model GUIs are explained in detail. Tharblécal structure
of the model is used by an algorithm to reduce the number of efates model
and contribute to diminish the state space explosion problem. Anthefethe

chapter, a tool prototype to support the specification-based t@&ling is

described. This tool is an extension of the specification-basghd tool, Spec
Explorer, developed at Microsoft Research that already supportenatid

generation and execution of test cases for API testing, butesfilires too much
work to test software applications through their GUI.

12

Introduction

Chapter V

This chapter presents and discusses the results ofdbestealies used to evaluate
and validate the specification-based testing approach proposed in tertatiss.

Chapter VI

This chapter presents the main achievements of the caseark described in
this dissertation and points out topics which deserve future attention.

13

14

Chapter II

GUI development and testing

This chapter gives an overview of the current practinethe

GUI development. It starts by classifying the different kinéls
user interfaces and their desired qualities and common ddtects
then offers an overview of the current practices for GUlirtgs
Other approaches to promote the quality of GUIs are presented,
compared, and their main drawbacks pointed out.

User interfaces (UIs) are mediators between users and systesrsintisract with

user interfaces to perform tasks. A Ul is a crucial padrointeractive system in
the sense that it determines how system is. It can thendbteaminant point in
the decision on whether to use or not to use it. A Ul provides whygontrolling

the system through inputs and ways to observe the system throughs otitpre

are different modalities in which inputs and outputs can be sefmseidstance,

vision and audition. Different modalities can be combined in the system and
for the same task there can be a multiplicity of differantlalities available. For
instance, a user can see outputs of the system in a computdéornzond send
inputs to the system through sensors or devices like keyboard, ,namas®uch

screens. The ways in which these modalities are implementedogigin to

different interaction styles.

15

Chapter I

2.1. Types of User Interfaces

There are two main user interface styles: command-line aaphigal user
interfacing (GUIs).

Command-line interfaces(CLI) are examples of synchronous and sequential user
interfaces. The dialog between the system and the usertabligsed as a
sequence of questions and answers. At each execution step, & wgsts for

the user command, processes it, writes the output, and moves owthera
execution step. An example of this type of interfaces is the Unix.Shell

Graphical user interfaces (GUIs) are richer CLIs in the sense that they can
support other kinds of interaction-styles like form fill-inemu selection, and
direct manipulation. A GUI may have multiple windows on screen with
interactive objects, like menus, and buttons, mixed with texigirajphical display
which creates a more pleasant environment than text-only tesmMahdows
allow users to switch among multiple tasks, or multiple parta sefngle task.
Typically, the user can resort to the mouse as a pointing dévicelect a
command from the menu, rather than type the equivalent commarabimnaand
language, click on a button, select an item, or drag and drop an item.

When interacting through GUIs, the order in which tasks are npesfb is
arbitrary. In particular, users can interrupt one task to icitenath another
window/dialog, e.g., to get information from a database, and themnr¢o
complete the first task, e.g., by using the information previoresyg from the
database. The concept of "multi-threaded dialog" is usedtHisr kind of
interaction [175].

It is common to let information exchange among sub-dialogs of dnee s
application and among related data. One example for the latter case is ahgitilog
shows information gathered by two different tabl&sand B, of a database
associated by an one-to-many relation (Figure 2). Typicallsetitbalogs have a
master/detaiktructure that allows one to select a particular objedteofitst table

(A), asmaster and shows thaetailed information of that particularly master
gathered from tabl®. Every time the user changes the selection, the detailed
information should be updated accordingly.

Department: | Marketinc Iiﬂ

Employees

John Smith

Carl Cooper

Peter Di: ﬂ

Figure 2: Form Master/Detail

16

GUI development and testing

Another particularity of GUIs is semantic feedback. Semdrtdback refers to
outputs made visible to the user that are application-specific.ifstance, a

graphical editor of entity relationship diagrams may displapjessage warning
users whenever trying to connect two relationship objects, whiahmeaningful

and not allowed operation [175].

There are different kinds of GUIs: hypertext, web-based, fmased,
direct-manipulation, rich client, multi-modal, and virtual reality.

Hypertext is a non-linear way of presenting information to the user. The
information is structured as a network of nodes and limkghich readers are free

to navigate and create their own reading order. This kind of usefaices does
not support the drag and drop interaction style.

Web-based user interfaces provide a way to access infra-structamed
applications from remote computers using internet or intranbey &ccept input
and provide output by generating web pages which are transportibe visernet
and viewed by the user using a web browser program.

A form-based interface is an independent graphical window, with a set of
embedded controls. It can be seen as electronic versionpaper form that
common public services ask clients to fill-in. Form-based unserfaces allow for
typing information and pointing with the mouse.

With a direct manipulation interface, the user seems to operate directly on the
objects visible on a graphical display using actions mordasita the actions in
the physical world. Examples of direct-manipulation are windowziresior
changing the directory of a file by dragging and dropping the icdrnrépaesents

it on the new location.

Rich client or smart clients are software applications that can work online or
offline whether connected or disconnected from the internetosbér Outlook is

an example of this kind of software applications. It can ohbck for new mail
messages when connected to the internet but it allows readingystg received
messages even when disconnected from the internet.

Multi-modal systems are a sophistication of standard GUIs. The godlesé t
systems is to make communication with machines easier. ink@yt to extract
meaning from the different possible ways of communicatioargyrhumans, like
speech, gestures, and visual recognition, and use such modal impojsits to
the system.

Virtual reality user interfaces are examples of concurrent and real-time
interfaces. They use computer-generated graphics to sinaulat@ or imagined
environment with three dimensions of width, height and depth for thetoiser
enter, explore and interact with. The user can manipulate maneone device at

a time to achieve a goal which may vary from common devlike&eyboard and
mouse to more sophisticated ones like data gloves and head-mountegsdispl
Computer games are examples of this kind of user interfaces.

The focus of this research work is on form-based, direct matiguland rich
client GUIs.

17

Chapter I

In the sequel, GUI means form-based, direct manipulation, and rastt cdiser

interfaces. When there is a need to mention other kinds of GUIswiitielye
individually cited.

2.2. Desired qualities and common defects in
Uls

Regardless of its type, the quality of a given Uls can béuate from two
different perspectives: the user's perspective (exterraalYl the software
engineering's perspective (internal) [77].

External perspective

The user's perspective is more concerned with the so calleditygaioiperties of

the system. These properties, which are indicators of howiteiastp use the Ul,
can be classified as follows:

— Satisfaction — this is related to the user's subjective view of the
systems, e.g., how pleasant, comfortable, intuitive, consistent it is.

— Reliability — from the user's perspective, this refers to the errorsra us
can do when using the system. This property is closely relatiée to
degree of flexibility of the system. A flexible systegives more
freedom to the user and more opportunities to fail while a rigitem
gives less freedom to the user but less opportunities to fail.

— Learnability — this refers to the time users take to learn how to work
with the system and how much the users recall when redoing a task.

- Efficiency of use- this refers to how efficient the user can be when
performing a task using the system. This can be measured timéhe
taken and/or the number of actions needed to perform a task. An
inefficient Ul can be usefulness.

Internal perspective

From the software engineer perspective, Ul quality is judgedwayasimilar to
other parts of the system, as follows:

— Code — assess its readability, logical structure; easiness of
maintenance, style, etc.

— Architecture — represents systems in terms of abstract components
with external visible properties and relationships. The ardhiteof a
system can influence the degree of manageability and scalability.

- Run time efficiency — time needed to underlying the execution is
closely related to the complexity of the algorithms.

18

GUI development and testing

— Correctness — There are different ways of defining software
correctness [160]: the software is correct if it meeatsecification,
also known as verification, and either specification or software
correct if it meets the requirements of its users, also knas/n
validation. Breaks in the contract established with the user ar
detected during validation process. Errors or discrepanciegsedet
the calculated/computed and expected values are detected during the
verification process. Both processes are important to deerdhe
confidence in the correctness of the UL.

GUI errors

A GUI can increase the number of errors or failures of thenlyidg application
of a software system. The different types of GUI errorsifed can be classified
as follows:

Usability errors or failures are related to the difficulties the user has/&mcome
when using the system. They can be due to problems of communicati@ebet
application and users, confusing command structure and entry, andcleedba
missing [108]. There are errors in the communication betweeaptblecation and
the user whenever the user is expecting information whiatigsing to continue
his task or, for instance, when messages shown to the useotackear or have
spelling errors. The user can easily get lost when the comrtraistlise and entry
is confusing like when there are inconsistencies with namesu positions and
command entry style. System feedback should be complete and andabdé to
the user in order to make them easier to use. However, tlagrexist problems
in the output of certain data, it can be impossible to redinggut, and it may be
difficult to control output layout (e.g., colours, font, scaling graphs, etc).

Usually, to detect errors from an external perspective, thiersyis tried out by
real users in controlled environments. Information is gatheredKiygathe users
to fill in forms, or by gathering information about the time rdp® achieve a
given goal, or time spent in redoing a previously performski @ the number of
steps needed to perform a task. The information gatheredhiatiadysed and the
system is improved accordingly.

Functionality errors or failures are related to the tasks or functionality the system
should support. Problems or errors are detected when the systemedehav
unexpectedly; or performs in an awkward or incomplete mannekeor when it
does more than it was expected to. Functionality may be missingdectteere are
commands missing or existing commands are either not availabtite root work.

The system does not do what was expected when, for instances ihdbensure
data validation, provides incorrect field defaults, when it does amforce
mandatory fields, when wrong fields or wrong number of rows drieved by
gueries, when windows have incorrect modality, when derived vaesot
updated or wrongly calculated, and so on.

To detect functionality errors, one need to know before hand what dredéut
functionality of the system is, that is, what its expected\aebris. This can be
kept in the developer's head only, in an informal requirements' égodwn in a

19

Chapter I

formal specification. The way in which requirements are keptsbaastrong
impact on which technique to use to find errors.

Performance errors/failures are non-functional errors. These errors are related to
the efficiency of the system. They can be measured in teftie time taken to
perform a task, or the amount of resources consumed. Errodeteeed when
the system takes too much time to perform a given task, like, for instantieye¢he
taken to show a message to the user or the time taken tothwwersor to the
end of a text file.

Sometimes, performance testing is combined with stress tdstinogeck what
happens when a load bound is exceeded. Usually, performance erdetemted

with the help of tools that are capable of measuring how peafarenvaries, for
example, with the load number of users vs. response time. An example of this kind
of tools is Compuware Corporation's QACenter Performance Bditio
(www.compuware.com/products/qaceter

A main concern of this work is on finding functionality errans failures. By
testing a software application through its GUI it is posstbledetect defects
related to the underlying application and also related to the GUI itself.

2.3. GUI conceptual architectures

The GUI model-based development process comprises requirements ssuch a
capture, design, implementation, verification/testing, and mainten However,

tools that support GUI development process present deficiemtig® modelling

and verification phases. Typically, models only exist in the progwens head

and the verification phase is restricted to the realizatiomafual tests without
systematization concerns.

Among the first attempts to make Ul development more sysiemae find
UIMS (User Interface Management Systems), which are basetbrreptual
architectures that make a clear distinction between theemied®n and the
application. The goal was to increase the portability (degremdspendence
between the presentation level and the underlying applicationjpdanotability
(the capacity of the systems to deal with changes, e.g., eagpits' changes,
system improvements and correction of errors) of the sgst€hese architectures
can present a layered or an object oriented structure. Eeamyfl these
architecture models are Seeheim (Figure 3), Arch (Figure 4), MVC (Fjyuaad
PAC (Figure 6) models.

The Seeheim model was inspired in linguistic systems. It gplitssystem into
lexical, syntactic, and semantic aspects that correspgme:sentationF), dialog
(D), and application interfac@l) respectively (Figure 3).

The box at the bottom is a controller. It receives messagesAl andD, and
sends messages@oandP.

20

GUI development and testing

The presentation layer describes the interactive objedtshe data presented by
them. The dialog layer gets input data and determines hovsktioeyd be treated.
The application interface describes the services available toghe us

User «—— P |e¢ » D le » Al |le«—» Application
7y
‘\ | /

Figure 3: Seeheim architecture

The Arch model adds more structure to the Seeheim model by retimng
Seeheim presentation component into interaction toolkit and preseradtpter
component, and refining the Seeheim application interface into dexpadaific
component and domain adapter component. The adaptors contribute for the
improvement of the code reusability, portability, and modifiability [51].

Presentation
adapter

Domain
adapter

Interaction
Toolkit

Figure 4: Arch model

With agent-based models, the interactive systems arewtdas a collection of
agents. These active agents, also called interactors beiteryseommunicate
directly with the user, are capable of producing and reacting to events.

Application
objects

Figure 5: MVC model

The MVC (Model-View-Controller) model splits the system intmadel () of

the objects of the domain, a vieW) (for making instances of the objects visible to
the user, and a controlle€C) to deal with the dada received from the user. The
view is notified whenever the information kept by the model changes.

21

Chapter I

The PAC (Presentation-Abstraction-Controller) model splits tlezantive system
[51] into presentation for implementing the perceivable behaviouhefagent
(interactor appearance), abstraction for the competence gt (functional
core), and control for linking the abstraction part of the agenits foresentation
and maintenance of the relationship of the agent with other agents.

A

aeeaéo

Figure 6: PAC model

The main differences between MVC and PAC models are theimvayhich
synchronisation of related interactors is achieved, and ttaidacof input and
output responsibilities [96].

These architectures split the interactive software sysiato the application and
the user interface. Although this separation has its merisdtleads to serious
adaptability problems when functionality of the software systesms both
application and user interface aspects that cross the applicagdiace boundary
[63].

2.4. GUI development processes and tools

Myers and Rosson [141] estimate that an average of 48% apfiieation code
and 50% of the time spent with implementation are dedicated to thenteséade.
To increase the productivity of user interface (Ul) developmeamige some tools
have been developed to aid the construction of user interfacese Twds can be
classified into two major groups: non model-based tools, and model-lwaded t
Interface builders with toolkits on top of window managers, |IDBEsegrated
Development Environments), and markup languages are included forther
case. In the latter group, it is possible to include tools ttanhaatically generate
the final GUI from the model (MB-UIDE - Model-based User Irdeé
Development Environments, Pattern-based, and CASE - Computer-aided
Software Engineering tools), tools that generate automatidadlymodel of an
existing GUI by a reverse engineering process, and prototyping tools.

2.4.1. Non model-based tools

These tools are widespread in industrial environments. Theyharaaterized by
not requiring an explicit GUI model and for being used to buildriteface itself

22

GUI development and testing

and nothing else. Examples of these tools are interfaceesildDEs (Integrated
Development Environments), and scripting languages like Tcl/tk, XMLX&81id

User interface builders

User interface builders provide Ul components or widgets fracokit that the
developer can use as building blocks in the construction of newicghpiser
interfaces. The developer can manipulate those widgets in aractie
environment to graphically construct the layout of the screensatothatically
generate part of the interface code. These tools work on tomdbwimanagers
and are WYSIWYG \Vhat You See Is What You Getiented. Whenever GUIs
change dynamically, these tools are useless. Dynamic changes bmaust
programmed manually. Even so, there are studies saying tlsat thels can
reduce to half the time spent with GUI development [140]. Exesnof these
tools are Nextstep [122], and Visual Basic [132].

One of the problems with interface builders is that they dsupport modelling
and verification phases. In addition, they entail an early comemitnto the
concrete interaction objects (CIO), physical properties and detdiis display.

IDEs

An Integrated Development Environment (IDE) seems like aesitogll where all
the development is done. Typically these environments integrateirae code
editor, a compiler and/or interpreter, build-automation tool, and a dehug
Examples are: Microsoft Visual Studio [133] and Eclips@nfv.eclipse.orj On
behalf of using interface builders, these tools are alseetinto handle only the
static parts of the interface. The dynamic behaviour has to dagragonmed
manually.

Visual programming environments are a special case of IDEewthe software
application is constructed graphically as building blocks of code.

Although IDEs are widespread over industries, they lack on skejport for the
Ul development process. They also have a weak support for thdlingdad
verification phases.

Markup languages

Nowadays, the growing diversity of devices makes it more and cwnmon to
find the development of software applications for multiple-ptatk. However, it
is difficult to construct those applications without duplicgtithe development
effort.

XML (eXtensible Markup Language) technology makes a good separati
between content and presentation aspects of a user inteiifaeg. import
concepts from conceptual architectures described in sectioKZL3(eXtensible
Stylesheet Language) is concerned with the style and layout WMle is
concerned with data. The same XML file can be associated wigreatif XSL

23

Chapter I

producing different web Uls or HTML files for different dewsgcdanguages, or
connections. Even so, XML and XSL do not capture the essence ofhtestaces
like user interface description languages try to do [8,178,187]. Tlhegaages
describe the user interface at different levels of abstm trying to address
different purposes such as device, platform, modality, and consgpeéndency.
Examples are AAIML (Alternate Abstract Interface Markumgaage), AUIML
(Abstract User Interface Markup Language), XIML (eXtenslbterface Markup
Language), XUL (eXtensible User Interface Language), XAMLic(bbkoft
eXtensible Application Markup Language), UIML (OASIS Usatelface Markup
Language), UsiXML (USer Interface eXtensible Markup Languaege) Most of
them can be found ixnl.coverpages.org/userinterface XML.Html

2.4.2. Model-based tools

Different from the previous tools, these are characterizedeyiring a GUI
model in which aspects of the user interface design are rapgdsdhe aim of
these tools is to support the systematic and efficient develuprof user
interfaces providing the developer with better methods for constructsig Ul

MB-UIDE — M odel-Based_Lser Interface Development Eivironment

MB-UIDE (Model-Based User Interface Development Environmeapipeared as
an improvement of the user interface management systemsSjlidien by the
goal of executing Uls from declarative models [171]. The focugshef first

model-based generation tools was on automatic generatiorelahipary user
interfaces from declarative models while the second generatitools focused
on supporting user interface design by the involvement of the uisetise

development process [186].

Typically, the kind of models used by the first generation ofsteas based on
domain models with weak expressive power. From these models, fiossible
to generate form-based user interfaces with a simple menukimbisf Ul could
work for restricted situations, like data driven applicatiarsform-based user
interfaces, where tasks are mainly related to data mainteramh as create,
retrieve, update, and delete (CRUD), but not for the wide speabfutdis.
Examples of this kind of tools are: UIDE [17]; MECANO [161]dgdecessor of
MOBI-D [163]); AME [118]; and JANUS [13]. Other systems inaeathe
expressive power of their models which allow them to generaterriuser
interfaces, e.g., ITS [195,196], and generate additional featuresdilke and
redo/undo sub-systems, as it is the case of the HUMANOID tool [182].

The second generation of model-based tools was targettingtiaggeput from
the users in order to improve the usability and usefulnefiseo$ystems. This is
called the user-centred design paradigm (UCD) which plheegser at the centre
of the Ul development process. The design is driven by an iternatoatotyping
process based on a "trial-and-error" evolution [50]. The fasusn cognitive
issues such as perception, memory, learning, problem-solvingineacldition,

24

GUI development and testing

some of these tools, such as TRIDENT [25] and DON [110], aldoaeamodels
for various qualities. Other examples of tools from the secondrag@re are:
ADEPT [117]; MASTERMIND [183] (which is a continuation of theepious
work on HUMANOID and UIDE); TADEUS; GENIUS [100]; FUSE [113];
MOBI-D [163] (successor of MECANO); Teallach [80,81]; and DRIVE [134].

Typically, the interface model used by the second generatitwols is structured

into many declarative models, like domain, user, task, dialad),pagsentation
models [167]. The most crucial model in supporting a user-cerdesin
philosophy is the user-task model [162]. The user model describes the
characteristics and abilities of the users. The task nuesribes the significant
tasks that the users have to accomplish. These descriptienthear used to
determine which tasks the system should support.

There are different notations in the literature to descials& models [193]. In
particular, most of the grammar-based models are descrigtidhe user's tasks.
UAN (User Action Notation) [90] and ETAG (Extended TaskidstGrammar)

[84] are examples of these notations. Other examples are @INErTaskTrees)
[154] and TKS (Task Knowledge Structures) [104].

Pattern-based

A pattern can be defined as a reusable solution for a negyrdblem that occurs
in a certain context of use [172]. Patterns enclose a significaotint of reusable
knowledge and can be an effective way to transmit experience edmurent

problems in Ul development domain [172]. Sinnig et al. describe a rhadel

framework with models constructed from a generic notation oénpattand tools
to integrate those patterns into the development framework [172riaare

defined dynamically with variables that are replaced by camoratues for a
particular context of use during the pattern adaptation pr¢té3k Tasks can be
grouped in dialog views. Dialog views and transitions from thembeasaved in
XIML. A first abstract prototype can be generated from the dialog qéiscri

Molina, in [135,136,137], describes a set of conceptual patterns for &sisine
applications' user interfaces. The concepts and patternsereusied to model
object-oriented user interfaces in a graphical notation winéeeaction units are
represented as boxes and navigation between units as dingoted. & he pattern
language (which is independent from implementation technologyespr;, and
non-ambiguous. The models built in this language can be read by codatgener
for several different target implementation languages.

CASE — Computer-Aided Software Engineering

The aim of Computer-Aided Software Engineering (CASE) toots isutomate,
manage, and simplify the software development process. Examplesseftools
are Oracle Designerwvw.oracle.com and Rational Roseww.ibm.com
However, these tools present a very long learning curve.

25

Chapter I

Considering only the domain of applications supported by CASE tools,ftend a
overcoming the initial learning effort to work with them, ttanstruction of new
applications can be very fast. These tools can also be usefabnstruct
prototypes. The problem is that many users do not overcome the initial abstacle

Reverse engineering

The world is full of legacy systems. The technology is instamt change and
some companies need to update their old systems. Reverseeeingirteols can

be used to build the model of existing applications that can be udgtMSs to
generate new GUIs with the same functionality of the older ones, but impleimente
in more recent technologies, or to be accessed from other comiatitemps with
specific characteristics.

One common example is the migration of legacy user intertacgeb-accessible
platforms in order to support e-commerce activities. Saoell al. describe the
CelLEST system within which a new process for migratégaty systems for the
Web was developed [180,181].

Vanderdonckt et al. describe a reverse engineering prot&geb user interfaces
[190]. The goal is to extract models of Web applications that wet constructed
using a model-based approach and then use those models to gendiatetter
computer platforms, like palms, pocket computers, and mobile phaitbsut
losing the effort deployed in the construction of the initial application.

Prototyping tools

Prototypes are visual representations which may or mayedanimated. The
animated prototype must be capable of generating an interagtivironment
which accurately emulates the intended system operation.

Prototypes can be discarded after implementation of thedioduct (throwaway
prototype) or used in an evolutionary scenario where it suffeamges until it
becomes a final product (evolutionary prototype).

Throwaway prototypes can be developed manually using paper andgemnith
the help of a tool (like HyperCard and Director [157]). Prototypimgjs, like
HyperCard and SuperCarsupercard.u provide an interface builder with which
it is possible to drag and drop widgets (abstracted as camtis)a black window
where the author can manipulate them. However, to do somethingytiners
must leave the interface builder shell and write codesamaple script language,
like Hypertalk.

Evolutionary prototypes can be constructed using tools suchsaal\Basic [132]
from Microsoft and PowerBuilderwivw.retrosoftware.com/12016.hjmfrom
PowerSoft www.powersoft.)t

Another approach in rapid prototyping is the so called Abstracbtypat from
Larry Constantine [49]. Abstract prototypes can representdh&ents of a user
interface without showing how it looks like. The goal is to aus$trfrom

26

GUI development and testing

implementation details and detect usability problems duriagrbdelling phase.
This approach is based on usage-centred design. Usage-centredigiésigised

on the "usage" as opposed to "user" on which user-centred defignsed. It is

based on three abstract models: a role model (describesetiserotes in relation
to the system), a task model (describes the structure afsérs' work), and a
content model (describes the content and organization of thenteséace needed
to support the identified tasks).

Problems with GUI development processes and tools

The tools described so far were very useful to increase the piroguof Ul
development teams. However, they have some problems due tathieatathey
do not support all the activities of the Ul development process, namely:

— Interface development tools were developed to reduce the time spent
with Ul development but they have no concerns with systematizati
of the process. They do not support modelling, verification, and
maintenance phases.

— Model-based tools make Ul development more systematic butthey a
also subject of critics:

o0 Poor Uls generated based on standardized interface
elements.

0 Suited for specific Uls but useless for not directly
supported interfaces.

0 Most of them do not take dynamic semantics of the
application under consideration.

0 The developers are not given enough control over
interface details.

o It is difficult to relate characteristics of the modeltwi
final Uls generated from the model and there is little
control over the look and feel of the final Uls.

o Developers have to learn one more language: the specific
language of the tool.

o Verification and evaluation phases are not supported.

2.5. GUI V&V

The verification and validation (V&V) phase of the softwdife cycle may
consume around 50% of the total time of the project [20,26,164]. It can be
performed by static or dynamic analysis. In the former casieaith®f executing
the application under test, methods like code review and formatsandike
model checking and formal proofs are used. In the latter casentigsis is

27

Chapter I

performed by executing the application under test, e.g., spedfidadised testing
and beta-testing.

Although there have been improvements in static V&V techniqueb as model
checking and theorem proving, testing is still the most widsbd technique to
evaluate the quality and increase the confidence on softystenss. It can be a
very effective way to show the presence of bugs, but it is esglglinadequate
for showing their absence [56].

One of the problems with testing is the lack of systematizatlost often, tests
are performed manually without coverage criteria, based onthegood sense
and sensibility of the tester. However, the complexity of soBwsystems is
growing and having to deal with several different input valued different

possible outcomes manually is becoming an unmanageable activigdition,

without defining coverage criteria, determining when to stopinggsand

evaluating the tests performed is almost ad hoc, once agaim, balseon the

experience and sensibility of the tester.

Every time the software suffers changes, tests have toumeagain. Tests
performed in the software after being changed are refesred tegression tests.
The goal of these tests is to assure that:

— the source code added or modified didn't introduce new errors;
— the program still acts in accordance with requirements; and
- the unchanged code was not affected by the modification.

Another problem with these tests is that they are delayed taghphases of the
software development process. This happens with so-called hitdesting
techniques which need knowledge of the programming code to sdediata. At
this point in time, when the code is already constructed, thesaetetected are the
most costly to correct which can have impact on the estintatecusion date of
the project.

There is another kind of testing techniques in which the softisargarded as a
black-box. The only thing needed by these techniques to constitucases is the
specification of the program describing the expected outputs feratif inputs.
In this case, the test cases can be constructed soonexithamhite-box testing
techniques. When the specification is formal, the construction and exeofithe
test cases can be automated and the overall process becomes taoratiys

In general, testing strategies applicable to API testargalso be applied to GUI
testing. However, GUIs testing raises specific challemigesto time constraints,
test case explosion problems, the need to combine testing techragdetest

automation difficulties. This will be explained in more detater on in section
3.1

Very few tools and techniques are available to aid the Gafinte process. By
contrast, GUIs are getting more and more established in olyr Id@s which
make us more dependent on their correct functioning. GUIs are becamiry
and more complex, which makes manual GUI testing unpractida. ih API

28

GUI development and testing

testing, the GUI testing process can be automated althougbnpractices in
GUI testing is still a manual activity.

2.5.1. Manual GUI testing

Manual GUI tests are useful in exploratory/initial testiAtso, manual tests are
especially well adapted for being performed by real users.rBietases are tested
by real users for a couple of weeks in order to find erfbings approach, also
known as random human testing, lacks systematization and offgtsaranties of
covering all the functionalities of the application.

There are other kinds of manual tests, more systematic, in twdénd GUI
problems. Whenever they are performed by trained specialistsassible to find
more bugs per test case executed and bugs found can provide Hiintsdther
bugs, i.e., the tests can be adapted to look for bugs similar tongw found
(adaptability). These can be classified into inspection, inquiry, and ibys&dsts.

Inspection

A group of specialists examines the user interface regardseg af guidelines.
Those guidelines can vary from detailed characteristics gibgugical properties
of the Ul to board principles based on usability studies foiimgdkterfaces more
intuitive, learnable, and consistent, e.g., how to organize theagiaptd the menu
structure. Examples of inspection methods are heuristic amghitive
walkthrough [74].

Heuristic Methods

A group of specialists studies the interface in order to find lityabi
problems. These problems are detected when the elements ofethe us
interface do not follow the usability heuristics used to guidestraluator
through the inspection process. Whenever problems are deteetedreh
written down and classified in order of severity.

Cognitive walkthrough

The developers walk through the interface in the context raf @sks a
typical user (not an expert) will need to accomplish. The actodsthe
feedback of the interface are compared to the user’s goals and
knowledge, and discrepancies between user’s expectations asie ke
required by the interface are noted.

Inquiry

The users have opportunity to experiment the software systdnthan answer
guestionnaires about their experience. Questions can vary frojactbud to

29

Chapter I

objective, for instance, "do you think the system is nice?"wirat would you
change in the system?" or questions about screen featuressterd gyformation
provided, like error messages.

Usability tests

The interface is studied under real-world or controlled conditions (red)uséth
evaluators gathering data on problems that rise during its[18H. The
interaction characteristics are measured and weaknessesdeantfied for
correction. The data gathered has information about time (theatuser takes to
complete a task), accuracy (the number of mistakes thanadess), recollection
(how much the user needs to recall when redoing a task), andeatogsponse
(how does the user feel after completing a task).

Manual test disadvantages

The results/errors found by manual tests are very dependent ocapthlalities of

the tester. Manual testing is monotonous, frustrating, and affdxgtelduman

errors. Too much effort is required to construct, execute, and arnlatysesults of
the test cases. Manual tests may be difficult to reproducetrepel when
software is updated the test cases need to be run again Qatetheére is no
support for regression testing. The errors found by manual testependent on
the expertise of the specialists, who are difficult to fintkoAmanual testing is
based on weak coverage criteria.

Manual tests are appropriate for finding usability problend making general
assessments about usability but not for predicting usability nesa$2®]. For
that, software engineering practices like model-based develo@meérgimulation
are more appropriate. Examples of models used to predictitysabd ETIT

(external/internal task mapping), TAG (task-action grammar), GOMBA, CLG

(command language grammar), ETAG (extended task-action gramrhas) are
classified according to the different aspects they are fblpredict in [99].

Simulation methods simulate the user's interaction withiritexface reporting
performance measures and interface operations [99].

2.5.2. Static analysis

Static methods analyse the code or specification of a seftsyemtem in order to
find constructs that break certain correctness critéfleese methods do not
involve the execution of the software under test.

Static analysis performed on code, code inspection, can praedbdck to the
developer, for instance, when common errors are found, when guidalenest
followed, and when Ul components are not used appropriately, e.g., & butto
without a Click event handler.

30

GUI development and testing

Static analysis performed on a formal specification is ddtéemal static analysis.
Model checking and theorem proving are the basic types of forendication.
They both have advantages and drawbacks as we will see next.

Model checking

Model Checking is a formal verification technique that hasnbsgccessfully
applied to hardware, communication protocols, and also reactive systems.

The system is modelled as a finite state machine (F$id)paoperties that the
model should obey are written in temporal logic (see Figure 7). Mitsmlkers
are then used to prove automatically by exhaustive analydiseoéntire state
space of the system that those properties hold in the mothed sfstem. This can
be expressed mathematically &= P, meaning that properti? holds in the
systemS (specified as a finite state machine).

The result obtained by a model checker can be either truerfiperties hold) or
false in which case a counter-example may be provided. The cexatmple is a
path, sequence of states, within the transition system that shewgroperty
failing.

System model

(FSM) Property: G(x- Fy)

L
Model
:> Cr?e(?ker
N5/ \Ves
=1

Figure 7: Model Checking

Examples of model checking tools are: Sp#pirfroot.com/spiy SMV -
Symbolic Model Verifier www.cs.cmu.edu/~modelcheck/smv htrilyTech —
The Hybrid TECHnology Tool gmbedded.eecs.berkeley.edu/research/hytech/
Kronos (www-verimag.imag.frf TEMPORISE/kronps/ and UPPAAL
(www.uppaal.com

Temporal logic is a class of modal logic. It extends propositidogic to
incorporate time operators, in the sense that formulas caloate to different
truth values over time.

31

Chapter I

The use of temporal logic to model systems is straightforwBeth state
corresponds to a possible state of the program and moving from one state on to the
next corresponds to the execution of one step of the program. Tresartation

of the system corresponds to a transition system in which tenfporallas can

be tested.

There are different types of temporal logic that corresportifferent views of
time (branching vs. linear, discrete vs. continuous, past wgejuiwith a linear
time model (Figure 8a), each instant has only one succesdbrb¥dnching time
(Figure 8b), each instant can have one or more instants as sucdesaogles of
temporal logic formal languages are Linear Temporal LogidL}L and
Computational Tree Logic (CTL) [7].

a)
—_ > —>

-
DN
.

—

\

Figure 8: a) linear time; b) branching time.

—

In linear temporal logic (LTL) it is possible to express prapsrabout one state,
about a sequence of states (path), about the past, and about the Theure
standard LTL set of operators is{always in the futurem (always in the pasty;
(eventually in the futurep (eventually in the past);4g (p until q); &g (p since
q); o (next time); and (previous time).

In branching-time logic the temporal operators quantify overptiths that are
possible from a given state. It adds two operators to ther Isetaof operators
which areE (for some path) and (for all paths).

Temporal logic can be a powerful tool to express safety, liversass fairness
properties about a system. Safety properties state that Tésoméad does never
happen". Liveness and fairness properties state that "somegoiod will
eventually happen”. Fairness can be seen as a speciafaasigeness property
and can be used to express, for instance, that a scheduler doesgnere a
process.

While a violation of a safety property can be detected byite fsequence of
executions steps in the system, a violation of a livenes®yomay be detected
only by an infinite execution of the system.

32

GUI development and testing

The main drawback of Model Checking has to do with skete explosion
problem. The size of the finite state machine needed to spedfyen system

may be so huge that analyzing the entire state space becomesicalpréhere
are some techniques available to diminish this problem:

— Abstraction — The model of the system is replaced by a simpler one in
which irrelevant low level details are removed [198].

— Bounding the state space- the domains of the state variables are
bound to a certain number of possible values [39].

— Partial Order Reduction (POR) — POR is based on the fact that the
order in which concurrent transitions are executed does not inluenc
the result, so just one of the possible execution sequences is
considered and the other ones ignored [47].

— Symbolic model checking— use of symbols implicit representations

of potentially infinite states and transitions that model thetesy
[198].

- Binary Decision Diagrams (BDD)- A special case of symbolic
model checking techniques where the implicit representatioheof t
states and transitions is based on Boolean formulas [198].

There are some examples in the literature of applying méeeking techniques
to the verification of properties of interactive systems.

Theinteractor concept [60] is the basis for the specification of intéractystems
used by Campos [41]. Thateractor model was developed at York and applies
general purpose specification languages to interactive systems.

Interactors describe the interactive system as a conmositi independent
entities. These unitary abstractions can be thought of as aassfarchitectural
abstraction similar to objects in object-oriented programmit@ch interactor
consists of an internal state which is reflected through a regdeslation (ho)
onto some perceivable representatien(Figure 9).

N

events «—— State

rho

Figure 9: York Interactor

Campos, in [41], adapts (deontic) modal logic to specify interaetbish are
composed of state, behaviour, and rendering. Modal logic is a branobiofr

which sentences are quantified by modalities. He adds two deap#iands to
reason about permissiopef) and obligationdbl):

33

Chapter I

— per(ac)means that actioac can happen next, and
— obl(ac)means that actioac is obliged to happen in the future.

These operands work as quantifiers over the actions in a gitege. An
interactor's specification has attributes to model the stateacetions and axioms
to model the behaviour. Attributes and actions can be prefixedquéhtifiervis
meaning that they are visibly perceivable.

The i2smv tool [41] translates interactor's specificationsh® $MV input
language. The properties are described by computation treg@Hig formulas
and checked automatically by the SMV model checker.

Paternd at al. [155] use ConcurTaskTrees (CTT) specificatiofamalize task
models structured in a hierarchical way where the loweldeedine the upper
ones. These specifications use a semantic extension to LOTQ# [@der to
define temporal relations between tasks:

- T1]||| T2 — interleaving tasks;

— T1][l] —synchronized tasks;

- T1>>T2-the end of task T1 enables task T2;

- T1[]>> T2 -task T1 enables task T2 and passes information on to it;
- T1[>T2-task T2 deactivates task T1;

- T1*—iteration of task T1;

- T1(n) — finite iteration of task T1 (n steps);

— [T1] — optional task.

CTT specifications are translated to LOTOS which can dee@ed as input
language by model checking tools, e.g., CADP [155].

Berstel [21] translates his VEG (Visual Event Grammiarfmalism into the
Promela language of the Spin model checgpinfoot.com/spin

Abowd et al. [3] use Propositional Production Systems for specifysey
interfaces. The specification is then translated into the SihwuJt language and
analysed using CTL (Computation Tree Logic) formulas.

Dwyer at al. [61] describes several abstractions that can be used totrexlstze
space of GUI models in order to make the application of mobetking
techniques feasible to verifying system requirements expresseroperties in
computation tree logic. The model checker used is SMV. The probldnthis
technique is the lack of guidance in choosing which abstraaiarsé¢ and the
possibility of obtaining false results due to the abstractiolseRa@sults can be
obtained when abstraction is weakly preserved for model checldngwhen
every property that holds on the concrete system also holds on trectbse but
properties that hold on the abstracted system may not hold on the condmste sys
This may be due to three different reasons: a fault inytsier®; a mistake in the
specification; an imprecision due to abstraction (e.g., excessivediostya

34

GUI development and testing

The main advantage of model checking is automation. Even so, it texhibi
problems when applied to HCI mainly due to the construction of thaehand
the formalization of the properties to check. The model mustdaamimgful while
abstracting from many low level details as possible. Propextesften difficult

to formalize in modal logic. In addition, the kind of errors/fauliat model
checking is adapted to check are somehow related to sequerstatesflike the
ones mentioned by Palanque in [152]: absence of deadlocks; praitictzba
command; reinitiability; availability of a command; successodncommands;
exclusion of commands. Other kinds of problems/errors may neabfleeent
technique to be detected.

Model checking techniques can also support the generation of test caaesv[9]
be explained in the following chapter.

Theorem proving

Theorem proving is a well established formal verification tepmiapplicable to
verifying if a given implementation) conforms to its specificatior§(. This can

be expressed mathematically either by an implication § or by an equivalence
relation (=9 betweenl and S as a theorem that has to be proved. Both
specification § and implementationl) are expressed in the same formal
language. The formal proof is rigorously constructed as a sequéstaps based
on a set of axioms and inference rules, like simplification,riteny, and
induction.

Unlike model checking, theorem proving can deal with infinitdestpaces.
Induction proof techniques apply to proving properties about infinite d@mnai
The structure of the proof is split in two sub-proofs: the propengiified for the
initial state (=1) first, followed by the induction step, which verifies the propert
for every subsequent state-{).

There are also other proof techniques like deductive proof and proof b
contradiction. A deductive proof is straightforward. Given tlatcertain
hypothesis is true, a sequence of steps based on axioms and infetescés ru
constructed in order to a conclusion. In a proof by contradiction, thigtpoint

is the negation of the hypothesisPjto be proved. Then, a deductive proof is
constructed. If the conclusion contradicts) the starting point then the original
hypothesisi) is proven to be true.

There has been research in applying theorem proving techniguésUl
verification [33,34,35,36]. Bellow we stress on experiments based abstect
models PiE and RED-PIE (Figure 10).

35

Chapter I

Figure 10: Models PiE and RED-PiE.

The PiE model and its successor RED-PIE [57] are absapiesentations of user
interfaces. The goal of abstract models is not to lead directly implementation
of an application but rather to provide guidelines for future émeantation
attempts. An interactive system receives a sequence of ¢gopunandsp, that
produce an effeck, by applying the interpretation function from P to E. With
this abstract model, it is possible to express general prepeitithe systems like
monotony or predictability

Y p.ar € P:i(p)=i(q) = i(p.r) =i(g.r)
and reachability
Vpg €P:(dr €P:ipr)=iQ)

Essentially, the predictability property states that tfeceproduced by sending a
commandr to two systems with an equivalent current effect is the same
Reachability means that it is possible to reach any state fromtlaey

However, the PiIE model has some limitations when one wants tessxfne
effects produced in terms of rendering and output values. Trigation is
overcome by the RED-PIiE model by adding a projection function froraftbet
into representations of the resulR) @nd display D). Other extensions to these
models can be found in [57]. They are used to express exceptioni@undind
undoing errors.

Bumbulies et al. [34] use HOL (Higher Order Logic Theorem Rjotee verify
properties about user interface specifications.

Butterword et al. [35] provides proof of usability properties aliotgractive
systems. They discover a problem with their system that cdsddb® detected
using model checking techniques. However, they claim that with nobeéeking
techniques they would not understand why the problem existed witlietive
construction of the proof they can understand it.

Butterworth and Cooke [37] use the Temporal Logic of Actions (TloA3pecify
reactive and interactive systems. TLA is an extensiotewiporal logic in the
sense that assertions about a single s&tare generalized to assertions about

36

GUI development and testing

actions (assertions about pairs of stat®sy. Actions specify allowed state
transitions. An actio allows a transitions — t from states tot iff [A] (s,)
equals true. A state transition allowed/is called arA-transition.

Figure 11: Relation between windowed data and scroll bar (takendm
[37])

The case study of Butterword and Cooke [37] is the scroll baraiction object
and the related data structure within a window (Figure 11)aéh énstant, there

is a relationyep, between the position of the scroll bar button and the windowed
data shown to the user. This can be expressed in temporal logic by

StrictReq 2 O(rep(win, sbar)

The user can perform two actions on the system, eithernglténe scroll bar
(alterBar) or altering the window positioralferWindow).

alterBar A enable: true
shar # sbar' ObarAltered'

alterWindow A enable: true
win Z win' OwindowAltered'

Each action has an enabling condition identifying the systemsstdiere the
action can occur. Variable names without dash refer to the start state detion,
while variable names with dash refer to the end state of the action.

After describing the user actions, the behaviour of the useadtiteg with the
system can be described by

user £ alterBar O alterWindow

37

Chapter I

meaning that the user can perform either of these actions.

Similarly, the kernel actions reacting to the user actions are

updateBar £ enabl e: wi ndowAl t er ed
rep(win,sbar") O —windowAltered'

updateWindow 2 enabl e: barAltered
rep(win', sbar) O -barAltered'

The overall kernel actions are

kernel 4 updateBar [JupdateWindow

The specification of the entire system is described by

speclnit 2 rep(win,sbar) O
- barAltered O —windowAltered

spec £ speclnit O Olkernel] 0 user)

where (ac) mean that actiorac is permitted andgc] mean that actiorac is
obligatory.

Doherty [58] provides another example of applying theorem proeittgniques to
analyse properties about interactive systems. He statts aviVDM [158]
specification which is translated into PVvs.csl.sri.co notation for that
purpose.

Atif-Ameur [6] uses B to specify and prove properties about interactiversgs

Disadvantages of static analysis

The application of theorem proving techniques to an entire saftaystem may
involve so much work and resources that it may be unfeasibleply #pem
within software resource limits. Usually, this verificatitathnique is performed
on a small part of the entire system. The parts of the systpnove formally are
selected either because they are critical parts ofy$tera or because they are an
implementation of a non trivial algorithm.

Theorem proving requires a formal model of the system atttdPgeofs can be
carried out with the help of a theorem prover. These tools can help in ensuring that
the steps of the proof are correct but give no support focdheeption of the
proof.

With model checking it is possible to reach a higher degreaitofmation than
with the other two static analysis techniques but some propertie® chifidult to
express in modal logic and therefore remain unverified.

38

GUI development and testing

Although static techniques can help in finding errors, thexeemors that will be
very difficult to detect with these techniques. This is ¢hee of errors that rise
only when the system is executed.

To verify GUIs with static analysis performed on specifmadi one must build a
formal model of the GUI on appropriate formal language. Sormaidanguages
can be better adapted than others for that purpose. This wiiebsubject of
Chapter Il

Another problem related with static analysis techniquebasthey are far from
current techniques used in industrial environments. Specification-bateg ies

way to reduce this gap. It combines formal models with testaagling to more
systematic testing processes while automating most of skiageactivities. This
will be the subject of the following Chapter Il

2.5.3. Automated GUI testing approaches

Although many tools are available for developing GUI applicatiasisally (e.g.,
user interface builders), they provide support neither for spegifyr modelling
GUIs including their functional behaviour at a higher abstackevel, nor for
testing them in an effective way. Yet, testing GUIs regmesa significant amount
of the overall testing efforts at industrial level. To overeothis discrepancy,
several kinds of testing tools have been developed. Thesevaogldrom those
that only support the automatic execution of test cases, to thaissupport test
case execution, test case generation, and construction of then@¢l by a
reverse engineering process.

Capture/Replay tools

In this kind of tools, test scripts are constructed by testersatileg with the GUI
that records their actions, like mouse motions and keyboard inputsder to
replay them later. These tools provide a record mode, in which every userigcti
saved in a test script, and a replay mode, in which test scripts atteskec

These tools often provide a scripting language that enginssmsuse for
maintaining test scripts. They can, for instance, record & lbest script and
modify it later manually to make it more effective. Testi® execution is
automatic and can be repeated several times. Test saiptsecconstructed by
interacting with the application under test (AUT) but captaepéy tools give no
support for their design and coverage criteria analysis.

The problem with test scripts is their lack of structure twhinakes their
maintenance difficult. This problem is softened by adoption of metbgids that
entail more structure to the test scripts [105,107,199].

Thedata-driven automated testing methodology adds more structure to scripts by
keeping separate input data and results from the testing precebhis is
accomplished by including variables in the test script withtget actual values
from an external data source, file or database. This increagsability, makes

39

Chapter I

the script more modular and easier to manage. New test@asd® constructed
by adding new data to the data file without any changes to the originadtigs.

Keyword-driven testing increases reusability even further. The dagaufied in
data-driven testing is expanded with an additional keyword descnidiag the
test case does but not how it does it. The file constructed #yiscamprises the
test script. It is more abstract than the one used in the-ddiaen testing
approach. The detailed behaviour is described in an additionaldageripts or
library function. At run time, a test driver interprets theyword and calls the
corresponding detailed script/function in the function library.

Test scripts present a level of abstraction that does not aripusvledge about

the scripting language used by the tool, so they can be developed by experts on the
application domain who do not necessarily have knowledge about particular
details of the tool.

These tools can vary as to the way they identify GUI objéttsy can identify a
GUI object by its position on screen or by capturing the objesIfit
(object-aware). The first ones run into synchronization prohldarsinstance,
clicking on buttons before they have appeared. Nevertheless, atesituations
where there is not really an object on screen, just a bitmapararadteraction
based on screen point may be useful.

Advantages of Capture-Replay tools

These tools may have good observability capabilities, like aptic
character recognition (OCR) and image processing techniquesnand

be helpful for regression testing and in other contexts such a
demonstrations; remote support; analysis of user behaviour; macro
functionality; and educational scenarios. However, for testinggses,

they are still subject to severe critics [92].

Disadvantages of Capture-Replay tools

Tools of this kind defer testing to the final phases of tHevaoe
development process because they can only be used when the GUI, or
part of it, is already available.

- If during test scripts construction, the tester makes dakas for
instance, giving a wrong input field value, the test scripttnines
constructed right from the beginning. The same happens if the tool
gives an error. All that is being tested are things thatadly work
[199].

— These tools don't provide any support to design test casesoand t
evaluate them according to coverage criteria.

— Changes to the implementation usually require the re-capturiayj of
affected test scripts.

40

GUI development and testing

— Scripts may contain hard-coded values, e.g., some of thesestioi@s
information at a low level of abstraction, capturing mouse poSiti
Representing the information at such a low level of absbractiakes
these tools very dependent on the physical properties of #re us
interface. A small change on the layout of the user interfaghtm
invalidate all test cases.

Examples of these tools are WinRunn&w{v.mercury.coiand Rational Robot
(www.ibm.com

Random input testing

Random input testing is also referred to as stochastic testingonkey testing
[143]. The latter designation is used to give the idea of "someoti@wvia brain,
or without knowing what he's doing, seated in front of a computerma@ccting
randomly with the keyboard or mouse.

Microsoft reported that 10-20% of the bugs in their softwareeptsjare found by
monkey test tool [142].

Monkeys can vary in smartness. Ignorant or dumb monkeys don't krydiaren
about the current state of the software application nor degat or illegal input
values. They generate test cases randomly and ignore any uraxakeptitputs
of the system. The main problem with such monkeys is that daegot even
recognize a software error, which is not very useful.

The goal of dumb monkeys is to crash the system under testc3teigory of
monkeys is not well suited to find defects related to incolsebaviour, but it is
the most cost-effective for finding defects that crash thetesy. Rational's
TestFactory detects application crashes without user imgowe using dumb
monkey method.

There is other another kind of semi-smart monkeys which slltvem to
recognize a bug when they see one.

Smart monkeys have some knowledge about the application thegtarg.t€hey
have knowledge about states and know the legal steps to mowrdarweach
state. They can also check if the reached state is the one expected.

Smart monkeys are more costly to develop because they need aanctaie

table. Dumb monkeys are easier to construct. For being "stupithout
particular knowledge about applications, dumb monkeys can be used to test a wide
range of application types and they are independent of screen changes.

Smart monkeys can find more bugs but are more expensive to devedypcarh
be useful for load and stress testing, particularly at sy$eel, for instance,
using several monkeys interacting simultaneously with a msér- software
system.

One of the problems with random input testing is their weak cogerage. In
every interaction, the tool has to choose an input value amongliiesalues in
the domain. For a domain ranging from 1 to 100, each value has a 1/100

41

Chapter I

probability of being chosen. If somewhere in the code therefibrarich like "if
(n#£50) ... else...", the else branch has 1/100 probability of being exercised.

Random human testing is performed by real users playing with software
which is made available by their owners for a couple of weeits,the goal of
catching errors. Although some errors can be found by this appib&chather
arbitrary and does not provide reliable coverage criteria [52].

Unit testing frameworks

Another possible approach is to program the test cases. Foakselike JUnit
(www.junit.org and NUnit www.nunit.org are of great help in organizing and
executing test cases, particularly for API testing, but ngeimerating those tests.
The test cases have to be constructed/programmed manually gités a high
level of flexibility to the tester.

A popular approach in GUI testing is to code the test caseasuatig' in which
unit testing frameworks can be helpful. Even so, the téstera hard work to
adequately test the GUI behaviour. In the case of GUI testiagy bugs can only
be uncovered through particular sequences of actions, which msghtnrithe
daily use of the GUI. Unit tests, however, are usually a fewdHaitten
sequences of actions, which tend to be very short. Thus, theregis probability
to miss these kinds of errors.

With these tools, GUI testing is treated like API testifilge tester has to write
code to simulate the user interacting with the GUI undervésle observing the
output, and to check if the result obtained is the one expected.usiry a GUI
library, like, for instance, Abbot abbot.sourceforge.ngt/ or Jemmy
(lemmy.netbeans.oydghat provides methods to simulate user actions and observe
the state of interaction objects, GUI testing using these teqisres a lot of extra
programming effort to be effective.

Model-based testing

The model-based tools discussed in section 2.4.2 were genecmadlgrned with
automatic generation of user interfaces. Unless there isusb @an the code
generators, it is expected that the set of user interfae¢<an be generated by
them is correct, so they do not provide support for the testinge ptfathe Ul
development process. However, these tools present some limitasidas as the
type of user interfaces they are able to construct is concerned.

Model-based testing tools focus on the test automation prodesg.afe used to
test the conformity between an implementation and its model. iAl&ig| of test
automation can be achieved with model-based testing tools givéacthtbat test
case generation, test case execution, and the comparison ofpdtted results
with actual results can all be automated.

A model-based testing process starts with the constructioneombdel of the
application under test (AUT) (Figure 12). The model is then usedpas to

42

GUI development and testing

generate test cases according to given coverage &rile¥st cases are executed
over the AUT (application under test) and the results obtainedtates seached
are compared with the expected results and expected states describedoidethe m

test

Ma -
Modelling GUIL model | - [GUT under

A 4

Test case
generation

Y \ 4
Test suite Test case
execution

y

Conformity check
and bugs' report

Figure 12: Model-based testing process.

The kind of model notations used can range from textual to graplotations,
can either be or not be executable, and can vary in theieeled formalization.
Depending on the kind of the notation, different test case genesdtjorithms
and different coverage criteria can be used.

Conformity between actual and expected states can be checlezdeatth
execution step in a "lock-step" mode, or at the end of thauB®adn which case
intermediate results must be saved for comparison.

The model captures the requirements of the AUT. When thegrsuifinges, the
model changes and the application must be tested to check if the new regtareme
are fulfiled. Some model-based testing tools provide support €gression
testing by calculating the subset of the test suit that is affegtéte requirements
modification and calculating the modifications that it musfesuih order to test

the new/changed functionality [123,177].

There are several examples of model-based testing tools forgtesftware
applications through their APIl. Examples of these tools are: TGV
(www-verimag.imag.fr/~async/TGVAGEDIS [89] (vww.agedis.de Autofocus
(autofocus.informatik.tu-muenchen\.de QuickCheck [46]
(www.md.chalmers.se/~rjmh/QuickChgck and Spec Explorer
(research.microsoft.com/SpecExpldreiThe literature, however, is scarce in
model-based testing tools that test software applications through Gh#
[18,125,147]. Unfortunately, only one of them is freely available.elbeless,

43

Chapter I

the characteristics of these tools are described next andrtheirpros and cons
are pointed out.

Visual Test Development Environment

The work of Ostrand [147] combines capture/replay tools with muaedd
testing concepts. The capture functionality is used to constrycelaminary
model of the GUI under test, which is converted automatically atvisual
notation model for generalization. This generalization is obdab@sed on two
main concepts: path variations and data variations. The formeset to model
alternative sequences of actions and iterations. The |afpsices fixed values
with variables that can take different values within arndef domain. The test
scenarios constructed using these concepts may represemt sestescripts. An
independent test generation engine builds the set of testssmjgresented by
scenarios and translates them into the scripting language usedheby
capture/replay component of the test environment for being rephnedested
over the GUI under test.

Systemn under Capture/Replay
?St?l'esi tool

Figure 13: Visual test development environment (taken from [14Y

Although this test development environment (Figure 13) overcomes abthe

capture/replay problems, it does not generate test cases tcatignarhis is still

done manually. The only help is the capture feature that erthleleonstruction
of a preliminary test case.

IDATG - I ntegrating Design and_Aitomated Test Case @neration

IDATG is an integrated design and automated test case genesatironment
[18]. Test cases are generated from a model with thredsle¥ abstraction: a
requirements specification, a task flow model, and a low-Ispetification. The
requirements specification is described in plain text. Theask model is drawn
as a task flow graph which describes typical usage scenatesthird level

44

GUI development and testing

captures information about the real GUI objects and detailst @aoh task step
like the expected result. Each task step is mapped to aldabfct with a point
and click.

This system does not require a complete specification of thecafpmph to
generate test cases. They can be generated from part wfotted covering all
edges in the task flow graphs and can be regenerated when tlfecatjpmc
changes. The test cases generated are stored in XML fanuhatre displayed as
flow diagrams which can be edited graphically. The XML fitas be converted
into other formats, like, for instance, WinRunner scripts, for replay.

The task flow graph can be structured into a hierarchy. Siks @an be reused
which reduces the effort for test maintenance.

IDATG
Requirements Task Task-oriented
Specification Modeling Tast Casze
Ganaration
Formal GUI GUI Coverage
Specification Test Case
Generation
Test
ity o ! Execution
| G Infarmation recorded [
s e oL Ted o Test Execution Tool
L : (2.a., WinEunner)
Gul | Implemean-
Prototyping tation
GUI Builder

(oo M5 Developer Sludio)

Figure 14: IDATG test process (taken from
www.qualityscope.com/28.html)

The advantage of this tool (Figure 14), when compared with théopesene, is
the support for test case generation. Even so, this environmenhadboegglude
features for test case execution, which requires a changevobnment for that
purpose, for instance, using WinRunner. It is also not clear whétkeetool
integrates test input data or whether it leaves thathirtést running tool used
[23].

GUITAR — A GUI Testing framewaork

GUITAR (Figure 15) is another example of a GUI model-baseth¢ettol. The
GUI model from which test cases are generated is an ewentgilaph and an
integration tree [129]. The first one captures the flow of evemithin a

component. It represents all possible interactions among events GUI

component. The second identifies interactions between components.

45

46

Chapter I

APPLICATION

GUI COMPOHENTS
GUI EVENTS
— —
UNDER TEST GUI RIPPER

GUI PROPERTIES p— TESTCASE
EVENT FLOW GRAPH GENERATOR
‘ INTEGRATIOH TREE
ORACLE TEST
pritoneR

ORACLE

MODIFIED
------ "» | APPLICATIO

INSTRUMENTED
EONE APPLICATION
— -
1l UNDER INSTRUMENTOR
TEST
b
.
"

UNDER TEST

TESTSUITE
.
.
¥ ‘__J
[
.
. ho ,+*" | BUG REPORT | xmuus E,f?lﬁ?f}ﬁ
VES TESTING ©&
r— ADEQUATE :
g ¥
i TESTCASE
DEVELOPMENT . EXECUTOR
COMPLETE] : [] GUTARARTIFACTS ~ ssmsuas > GUITARCYCLE
A L
L)
e COVERAGE GUITAR FLOW
rraanga, RERORT I:l GUITAR PROCESS —

Figure 15: GUITAR process (taken from
www.cs.umd.edu/~atif/GUITARWeb/guitar_process.htm)

The event-flow graph for a GUI component has a set of vert¢esnd a set of
directed edges between vertices. An edge fvdrto v2 means that the eveup
may occur immediately aftarl. This usually gives rise to a strongly connected
graph as illustrated in Figure 16.

ey

|Evant

&Expand by Defaut_0 LEFTCLICK
LEFTCLICK,
Figure 16: Event-Flow Graph for WordPad --> Connect to Printer (fken
from www.cs.umd.edu/~atif GUITARWeb)

The integration tree describes how GUI components are put togetlfem a

complete GUI. The model has a set of components represented asunddeset
of directed edges. An edge framto ¢, means the; invokesc, (Figure 17).

GUI development and testing

D&TE and Time_0

New Cpen_0
Fart_0 \
Print D

Document WordPad _0 E
E Paste Special_0
Ef_
Insert Ohject_0
Change lcon_0 E
/ Optionz_1 E ﬂ
E E Open_1 Page Setup_0
Open_4 Open_3 E E \
Open_2 Tahs_0 E
. .
E proe Setp ! \
Paragraph_0 —————- / E
: A
1 E : Connect to Prirter_0

pEd on mulder s .umd edlr DoEnment Properties_0

Figure 17: Integration Tree for WordPad (taken from
www.cs.umd.edu/~atif/ GUITARWeDb)

Memon [129] defines intra- and inter-component coverage criteredlms these
two models and planning techniques from Artificial Intelligencautomatically
generate GUI test cases. He also proposes a solutiongfessen testing. The
original GUI test suite is partitioned into valid and invakgdt cases. Invalid test
cases are repaired for reuse.

Memon claims that constructing a GUI model that can be usete$b case
generation is difficult, so he develops an approach to reverseeenga model
directly from an executable GUI [124]. This model represdm@sQUI's structure
as a GUI forest, and its execution behaviour as event-floyghgrand an
integration tree. The GUI ripping process opens automaticéligeawindows of
the GUI under test and extracts their widgets, properties, and values.

A problem may occur with the GUI ripping process when a subtdhe
application functionality is protected by a key. In this casetdbkecannot guess
the key and consequently cannot construct the model for the pdofeateof the
GUI application. One solution to this problem could be to mix eafilan with
interaction. In this case, the tester could manually drigeagplication until some
particularly state and automatically explore the applicati@neupon. However,
this feature is not supported by the tool.

Moreover, to reverse engineer a model from an untested GUlhanduse that
model to test the same GUI seems useless. The model vatltmethe behaviour
of the GUI as it is, so it will also incorporate GUI esloln his academic
experiences, Memon uses this ripping process on a correct Gihemdests an
incorrect GUI based on the model extracted from the first one.

a7

Chapter I

Nevertheless, GUI ripping can be useful. It can be used tacexrpreliminary
model of the structure of the GUI and part of its behaviour armd ¢hmplete it
manually with more behaviour and details. Also, some errors caleteeted if
the algorithm used to construct the test cases from thelmeds a traversal
algorithm different from the one used by the exploration. This pratrdsss the
application through non-explored paths, which can find errors.

A problem with Memon's approach is lack of explanation aboutttbetsre and
the meaning of the models extracted by the ripping tool. So, d@niplicated to
refine them. In [127], a model constructed by operators with pre{gomsliand
effects is mentioned, but it seems there is no relationgest these models and
the one extracted by the ripping tool. In particular, it is neairchow the models
automatically constructed deal with message boxes, neither homoto Which
menu option opens a dialog, nor how to describe that an interaciel can
enable another.

In summary, the current versions of the tool developed by Mer@m $0t yet
sufficiently mature for being used outside academic environments.

2.6. Conclusions

Tools used in industry to build GUIs lack support for modellingifigation, and
maintenance phases of the GUI development process.

Model-based tools cut across the GUI development process [hastgy are
still uncommon in industrial environments. In addition, the first geiveratf
model-based tools focused on GUI automatic generation but wasdiastfar as
the type of GUI they were able to generate is concerned. Smiseof the second
generation were able to evaluate the quality of the models andrsgpuser
centred design. Even so, they impose a complete divorce with the currelcepract
for GUI development. Developers have to learn new modelling laeguagd
new practices, which explains why these tools haven't gaingusaideindustrial
environments.

GUI testing can be performed manually or with the help of tdddsual tests are
good for exploratory or initial tests, and for those tests perfbtmgehe end user.
They can find more bugs per test cases executed when performed by experts. Bugs
found can provide hints to find other bugs. Manual tests are ydartic well
suited for usability tests performed by real users. One gbribldems with some
approaches for manual testing is their lack in systematization. idbem can be
reduced by using checklists of standard tests and applicatispeaific tests.
Even so, manual tests require too much effort while providing weakrage
criteria. Test cases are difficult to reproduce and theesgaaf test case execution
(number of errors found) is very dependent on the capabilities dester. In
addition, experienced test specialists are hard to find.

48

GUI development and testing

Automated testing is faster than the manual one. The increaseaition speed
makes it possible to run more tests in less time, more ddtehcovering more
functionality. One example is the testing of a strange sequ#neeents where
bugs can be found and that are usually not covered by manual iestilition,

automated tests may be reused and repeated every time afbugdsAlthough

automated tests are more efficient in terms of time needddbatter use of
resources, they may be a source of false sense of sectrigy.khown that
"program testing can be used to show the presence of bugs, buttmekaw

their absence" [56].

Testing approaches can vary with respect to their suppothdotesting phases.
Some of them do not provide automatic support for any of the testinggphad
others provide automatic support for every test phase. This isatdee of some
random testing tools. In between, one finds several degrees ofagigi@niools
that only provide support for test execution (unit testing fraonks); tools that
also assist the construction of test cases (capture/répdds); and tools that
provide automatic support for test case generation and executmieltbased
testing tools).

Unit testing frameworks only provide support for executing thedases which
must be programmed manually by the testers. In the case de6&iitig, a manual
test case construction can leave several parts of the applicatioredntes

Capture/replay tools also do not provide support for designingasss but they
provide a capture functionality that allows the constructiorheftest cases by
interacting with the GUI under test (assisted test casestauction). The user
actions are saved in a test script that can be made monécgan@rogramming
and replayed later. Whenever the tester makes a mistakibeoisoftware
application gives an error, the test case must be redone Megmning.
Maintenance of test cases remains a huge problem. Thistéead®ain criticism
to these tools, which points out that they can only be usead wiee software
application is working correctly. So, what is it being tested Faf? GUI testing,
Capture/replay tools are not sufficient.

Model-based testing tools lead to a higher degree of automatiaddition to the
automatically generation of test cases, these tools alsddera®upport for
automatically executing those tests. This requires a modeéafgplication under
test. More time is spent with this activity when compareith vihe other
automated approaches but no time is spent on the generation cédes since
they are calculated automatically. Some of these tools retiecénme spent in
constructing the model by reverse engineering existing applicatizms of the
problems of these tools is test case explosion. Test casgatjen has to be
controlled appropriately to generate test cases of manageable size.

Random-input tools can vary from those that do not require a moded Gitdhto

those that require a state table to generate test casefitsThand of tools is the

one that requires the less effort for testing GUIs. Howetlgrse tools cannot
identify a bug so they are only adapted to find bugs that make the system to crash.

49

Chapter I

Although current testing approaches are still not satisfactbey have points in
favour which deserve to be noted:

— Separation of logical names from physical properties of GUIctdbje
can be found in some capture/replay tools but could also be used in
other approaches. This is a positive aspect since both leveksallogi
and physical, remain independent which makes it possible to change
one of the levels without changing the other.

— GUI test libraries can reduce the time spent in programnhiagest
cases manually like what is done with unit testing framewdrkey
can also be reused by model-based testing tools.

- Recording techniques are available in capture/replay toolss Th
capability could also be useful to tell how high-level useroasti
described in a model are mapped to concrete actions in the
application.

— Manual tests can be combined with automatic tests to drive the
application to a specific state from which other kinds of testsd be
run. This could be wuseful in regression testing when some
functionality remains unchanged while others are modified.

As will be seen in the remainder of this dissertation, somth@de points in
favour will be taken into account by the testing approach proposetiis
dissertation, while others will be left for future work.

50

Chapter III

Specification-based GUI Testing

This chapter starts by presenting the main challenges of
Graphical User Interface (GUI) testing either when comptoed
Application Programming Interface (API) testing or when one
wishes to automate the test process. Then it presents a sarvey
the work related with GUI specification-based testing. Htstay
describing different ways of modelling GUIs using different
kinds of formal specification languages and then presents
different techniques used to generate test cases fromediffer
formal specifications. At the end, different strategies of
performing automatically verification of the test results
(conformity check) influenced by the kind or style of the
specification used are presented.

The goal of specification-based testing is to check dynamicdllyan
implementation of a software system conforms to the spedaificér model) of
that system. The specification captures the requirementtharmbnformity tests
check if those requirements are fulfiled by the implememnatiGiven an
executable implementation and a specification of a softwasters, the generic
activities involved in specification-based testing aredase generation (from the
specification), test case execution, and comparison of the aetudis obtained
from the implementation with the expected results derived fraspecification
(which plays the role of a test oracle). Test inputs and é&gbemsults are
generated from the specification.

Formal specifications (or models), in particular the executaiss, can be used
to automate the testing of software applications. In fattexecutable formal

51

Chapter Il

specification can be used both as a test oracle and as ddvatsis automatic
generation of test cases.

Although it is possible to achieve high levels of automation with
specification-based testing, it may be difficult to automh&édntire process. In
particular, the specification of the system under test @stnof the times
constructed manually. However, there are techniques to reveggeeer legacy
systems constructing a preliminary model in which details caradsked to
perform specification-based testing. These techniques reducefaherefuired

for constructing the specification of system under test.

The same applies to Graphical User Interface specifichsed testing, but in
this case, the techniques should be specialized to deal with itisulzer
characteristics.

3.1. GUI test automation challenges

With GUI test automation it is possible to run more tests, roftem, and explore
uncommon sequences of events where sometimes errors can be fouhdtand t
would be difficult to cover with manual tests. However, testingraphical user
interfaces poses well-known challenges either when compared ttestitig or
when one wishes to automate the test process.

Time

— GUIs respond slower than APIs. They have a time overhead due to the
rendering of the output to the user.

Test case explosion

- "Many ways in": GUIs may provide multiple ways to achievedame
goal — e.g., mouse, keyboard, and different navigation paths to reac
the same state. Sometimes errors can only be detected in uogomm
sequences of events that are usually not covered by manual tests.

— GUIs are very different from command-based interfaceds@bither
impose a particular order for performing the available tasks a
fixed order for providing the inputs. The number of different
permutations of inputs and events increase the input spacarsize
makes even worse the state explosion problem and consequently the
test case explosion problem.

Controllability

— Controlling GUI actions can be difficult and involve severalabm
steps, for instance, drag and drop is split into three stepss phe

52

Specification-based GUI Testing

mouse button in the origin point; drag the mouse to the destination
point; release the mouse button.

- In automated testing, find the proper way to simulate the inpons fr
the user (mouse, keyboard and other higher-level events that are
generated by the user) may be difficult.

Observability

- How to check the outputs to the user without excessive sensitivit
formatting and rendering details? Sometimes, to observe Gilevi

state, image processing techniques like character recognitigroen
needed.

— Observe GUI state may be tricky or almost impossible. Ftairce, to
observe a huge text through a small window a scroll bar is dedde
there is no scroll bar it may be impossible to observe the entire text.

Testing techniques

- "Many ways out": Graphical characteristics make it mofécdit to
determine the expected results of an operation (colours, fonts.9gize,
[115].

— GUIs have unique properties and errors that may require afitfer
testing techniques to find all of them — e.g., display progertie
navigation properties, and usability properties.

Documentation

— The lack of appropriate documentation makes more difficult the
construction of GUI models as a basis for test automation. @tdls
constructed by reusing interactive components. The documentation
supplied with those interactive components is usually scarca@nd
rigorous enough for more advanced uses, such as advanced
customization and thorough testing. This usually leads to a
"trial-and-error" style of application programming and poor
application quality, and also complicates the design of tessc&®sr
example, from the documentation, it is difficult to know precisely:

o0 when are events signalled and by what order;

o0 what is the internal state of a component when it signals
an event;

o what is safe for an event handler to do;
0 what interactions exist among events.

Some of the issues and challenges described in this sectidmevatidressed by
our testing approach and discussed in the next sections.

This chapter will describe different approaches to spdoaifgnally GUIs, then
how to generate test cases from those models, and at the ementiffays of

53

Chapter Il

checking conformity automatically between a specification aad
implementation.

3.2. Formal GUI Specification

Formal methods are becoming more accepted in the developmeaftwéars
systems but their applicability to the specification of useéerfaces is not so
common. The user interface model is most of the times givenmstotype or
through other non-formal techniques. This can give rise to amleiguénd
misunderstandings that can lead to different interpretation®@ngmthe
stakeholders and to the construction of a final useless Ul. Aafapecification
can help finding inconsistencies and problems before the implementagjos be
which can result in time and resources savings.

Over the years, a number of formal models have been used fofyspeciser
interfaces. The kind of specification used depends on theatkastics of the
target user interface and the characteristics considel®eant from the modeller
perspective. Also, the set of tools available to support ttmeaiomethod can be a
relevant point for the decision. Like other systems, userfat®es can be
sequential or concurrent, synchronous or asynchronous, and timed, timeésds or r
time (see section 2.1).

The command-based interfaces were the subject of the fiesh@s to apply

formal methods to user interfaces development. The synchronous aedt&dqu
characteristics of these interfaces allow the applicaifoformal languages like

context-free grammars and state transition diagrams. péefisation of these

interfaces can be constructed as an enumeration of the avaiebieands and

the definition of its syntax.

GUIs are very different from command-based interfaces. hegent a much
more complex structure and more complex event-driven behaviour.

We will go through each formal method describing, based on thatlite, how it
can be used to specify user interfaces and more concretdly, @t which
techniques are available to generate test cases autaligaticom the

specification. At the end, different ways of checking the aanity between the
specification and the implementation are presented.

3.2.1. Grammars

A formal grammar can define precisely a formal language $8t &f rules which
can be used to generate all possible strings in the language yngesteps from
a starting symbol (generative grammar), or to analysenifnaut string is a
member of the language (analytic grammar).

54

Specification-based GUI Testing

A generative grammar can be defined formally by a quad-tdples(P, S,
where,

— Nis afinite set of non-terminals;

— Jlis afinite set of terminal symbols, disjoint frd¥n
— Pis afinite set of production rules;

— Sis the start symbol (a non-terminal fro

Generically, a production rule is of the fosm- w, wherev andw are strings of
terminals and non-terminals, formally w [0 (2 O N)*. Non-terminals are
symbols representing language constructs. When the left-hand 6iddl o
production rules of a grammar is a string formed only by a eingh-terminal
symbol, that grammar is called Context-Free Grammar (CFG).

Backus-Naur Form (BNF) is an example of a notation used to ibescr
Context-Free Grammars. Each rule is composed of a more abstract nioitetm
the left-hand side that is defined (:=) as a more specific term agttiehand side.
Alternatives, succession and options are indicated by an "c&h(fand" (+), and
enclosed brackets ([...]) respectively. Several of the wgpams that will be
described next are based on the BNF notation.

Ul modelling with grammars

Context-Free Grammars were fairly common for command-basadkices. They
specify textual commands or expressions that a program would wamderghe
terminals in the grammar are input tokens generated by thsergation
component. These tokens represent the user's actions. The Ieamneneombined
by the productions in the grammar to form higher level strustwalled
non-terminals. The collection of productions in a grammar defimedanhguage
employed by the user in his interaction with the computer.

GUIs present a more complex structure than command-base@deterEven so,
grammars can also be used to specify form-based inteddwse typically there
are several possible tasks available for the userchtteae. To take that fact into
account, grammars can define different productions rules witkrnative
sequences of the same symbols at the right-hand side. Another pggsibaiuse
A|B notation at the right side of the production rule to inditiaée the input order
of A and B is irrelevant.

Hanau et al., in [86], use BNF to describe the dialog control dhtanactive
picture drawing system. They also developed a set of prototgpitigimulating
tools that are capable of generating snapshots of the systptaydior different
selected stages of the user/system dialog.

The Reisner's Action Language, presented in [165], extends Bachud-biaar

(BNF) to include cognitive actions, written in angle brackets), and physical

observable actions, written in capital characters. Evdigrats associated with a
grammar rule. Whenever the rule applies to the input language streaive(lesz

far) the associated action occurs.

55

Chapter Il

Shneiderman's multiparty grammars are another example ofingmabased
specifications (referred in [43]). They are an extension of thienBes Action
Language (the "psychological® BNF). The evolution is to add egpersess for
representing the interaction decomposition regarding both elenmyoised in
human-computer interaction. They divide non-terminals into user-input, computer,
and mixed. Multiparty grammars allow direct association afrfate feedback to
user inputs but they are not well adapted to model the variety of usersgound

in a direct manipulation interface.

Task-Action Grammar's (TAG) [78] goal is to describe theesgstasks in the
closest way possible to the meaning they may have for thesadee can learn
easily how to use the system. TAG is a feature gramitndoes consider neither
the screen, nor the meaning of the features. The tasks arébe@soy their
structure, which was not possible in the original versiorBNf¥. For example, to
represent character movements of a cursor, BNF represestatiautd need four
rules (up, down, left, and right) whereas TAG would need only onettiggsthe
value of the parameter accordingly:

Move_Cursor[Direction] ::= Cursor_Key|[Direction]

TAG specifications can be used as input to measure the congistietiee user
interfaces. The description of the task structureswvatlte measurement of the
degree to which the methods used to achieve goals share thetsasnee, and is
one of the factors that influence the learnability of the system.

Scott and Yap, in [169], extend Context-Free Grammars with two cortoegsl

with multi-threaded dialogs: fork productions and context attributes farmer is

used to cope with concurrency and interleaved conversations. It is implemented by
two new operators between productions: "parallel and" (&& — used wine

order of input is not important), and "parallel or" (|| — used when taugption is
complete when one of the sub-productions succeeds). The lattexdigausope

with multi-window application. Two attributes are added to all tokeatue is

used for the type of the token; and context is used to distinguish inpuéessafrtte

type but from a different source i.e., originated by a different window.

lizuka et al., in [98], use Constraint Multiset Grammars (QMM&h actions to
describe a simple drawing editor. Chok and Marriott, in [44], udsGC
description for automatic construction of user interfaces. Anatirample of
automatic generation of a user interface from a grammatiarotzan be found in
[146]. In this case, Olsen and Dempsey describe a system caGFAPH
(SYNtax directed GRAPHics) that uses an extended versiorN&f B generate
automatically GUIs.

More recently, Campi developed the VEG (Visual Event Gramneatation and a
tool for supporting the formal specification, verification, desigmd

implementation of graphical user interfaces [40]. The Via€&cHication abstracts
away presentation aspects of the GUI. It is only concerned k@tddscription of
the dialog control of the GUIs by means of modular, communicatiagmars

56

Specification-based GUI Testing

with a visual notation supported by a visual editor calleddgi&ontrol Editor
(DCE).

Ul analysis with grammars

Grammars provide a way to describe formally the aspectsydtam in a level of
abstraction in which it is possible to reason about general pepesithout
concerns about implementation particular details. The formal iggsaor of the

system can be verified for completeness and consistency. Alsonmgr-based
specifications of user interactions were commonly used fdrilitgaevaluation

[83] based on cognitive and psychological theories: task environmeiyses;

analysis of user knowledge; user performance prediction; eyed®n for
design.

Task environment analysismodels the tasks in the real world environment and
the related task provided by a computer system. The complexitiieofules
mapping the two environments determines the difficulty of transferring lecige
between them or the knowledge necessary for task reformulatgn Egternal
Task — Internal Task mapping (ETIT) [138].

Analysis of user knowledgeaims to give an indication of how much the user has
to learn in order to perform his tasks through actions requirexpérate a new
system. The complexity of the formal rules describing theraation language
between man and computer (or tasks and actions) is used as suctorindica
complexity is measured by counting the number of rules, the deptheof th
derivation of rules and the number of exceptional rules [85]. Ré&isAetion
Language, Shneiderman's multiparty grammars, and Task-ActiomgnafiAG)

are examples of specifications that can be used for that purpose.

In [95], Howes et al. show how consistency evaluators, writtemdlog, can be
used to predict the learnability of a system described b¥@ Jpecification and
Brown, in [32], presents a method to identify learnability probléased on a
TAG specification of an interface.

User performance predictionmodels aim to predict user performance aspects at
an earlier stage in the development process. Examples @MSGEGoals,
Operators, Methods and Selection Rules) firstly developed by CardnMuord
Newell, and CCT (Cognitive Complexity Theory).

A GOMS model contains goals and sub-goals, methods and operators, and
selection rules. To achieve one goal, the corresponding sub-gestidencarried

out. Operators or actions are structured into sequences, naetkdds) which
accomplish a goal. There can be more than one method for each geetfioSel
rules are used to select one of those methods. For example, tordetet¢han

eight characters two methods are possible [102]: firstcséhose characters and
then delete themm{ark-and-deletenethod); or delete one character at each time
(delete-charactersnethod).

GOMS techniques are used to predict the execution time needelid¢geaone
goal, the sequence of operators or actions to achieve thategmhlthe time

57

Chapter Il

needed to learn the methods. There are different kinds of GOddiels for user
performance prediction [102]: Keystroke-Level model (KLM), Cardyrdh, &
Newell GOMS (CMN-GOMS), Natural GOMS language (NGOMSL)
Cognitive-Perceptual-Motor GOMS (CPM-GOMS).

Cognitive Complexity Theory (CCT) models the complexity of theteay from
the user perspective to predict the usability of thatesystt uses two different
models: one to describe how the user understands one task, anthehdoo
describe the system task from a technical point of vidw.relation between both
can be used for many purposes such as modelling errors [78].

The models used inrépresentation for design” describe the knowledge a user
must have about it in order to be able to perform tasks. Exawipleese models

are ETAG (Extended Task Action Grammar) [84], and CLG (Command Language
Grammar) [138].

Disadvantages

Grammar based techniques are difficult to use for describinge modern
windowed and mouse driven interfaces, like direct manipulatiorfacts, where
rigid sequences of required actions are almost always undesirable

Grammars do not scale well, are not good at representing camoyrasd do not
support an explicit representation of state. In addition, gramararslifficult to
write and read.

Another problem with grammars is that the order in which progucules are
used depends on the kind of algorithm used by the parser. In theofcase
bottom-up parse, a production is used when all symbols on its right-hdad si
have been recognized. In the case of a top-down parse, a productioth ¢hese
the first terminal that could be generated by the right-hand sidedseeced.

That's why the use of grammars to model user interfaces temhdsrather scarce
recently.

3.2.2. Finite state machines

Finite State Machines (FSMs) (or Finite State Automate)very widely used in
modelling system behaviour. The model is composed of states, actidns a
transitions and can be represented using a state diagram.aféaliéferent kinds

of state machines: Deterministic Finite State AutomatoRAJD where for each
pair of state and input symbol there is a deterministic nexe,stand
Nondeterministic Finite State Automaton (NFA), where thereg ima several
possible next states for each pair of state and input symbalditiom, FSMs can
have outputs determined only by the current state, in whidch tbay are called
Moore machine, or they can have outputs determined by the currerdrsiatiee
inputs, in which case they are called Mealy machines.

58

Specification-based GUI Testing

Ul modelling with state machines

State machines are well suited to model reactive systeftdts &e reactive
systems in the sense that they respond/react to user actiutes State Machines
can be used to model interactive systems. Typically, when aadtite system is
modelled by a deterministic Mealy Finite State Machinesiexpressed by a
sextuple § X, YV, 4, 4, s>, where

— Sis afinite set of possible states;

- Xis afinite set of inputs;

- Yis afinite set of outputs;

- Jis the state transition functi@®x X- S
— A isthe output functio®s x X- Y; and

- & [JSis the initial state.

Each transition is triggered by a user input. In response to tmeiryse, the
system performs an action that can change the state and prodtpets to the
user.

Parnas was the first using State Transition Diagram$eécify user interfaces
[153].

One of the problems about modelling interactive systems watie stachines is
the state explosion problem. This is due to the huge number of pogs#e
actions and input values. There are several extensions todiatee machines in
order to deal with that problem. In general, these approadbessiinplifying the
trasition state diagram and focus the attention on morgargleaspects of the
state. One of those examples is the Variable Finite StathiMe (VFSM) [170].
VFSMs are FSMs with an added condition associated to eachtitnand he
transition can be expressed by:

name <state> <input> <next state> <output>

VFSM allows modelling systems with fewer states than anvabgrnt FSM.
VFSM augments FSM with global variables which can assufmét@ number of
values. These global state variables are used to build Boolpegssions that are
associated with transitions:

@req <variable> <value_required>

This expression or pre-condition determines when the relatesitivancan occur
and is written as a prefix of the transition name. Transiticess have also
associated post-conditions to update the value of the global variables:

@set <variable> <new_value>

59

Chapter Il

In [170], it is possible to find an example of a user interfaceletbed with a
VFSM and modelled with a correspondent FSM. The former model hast@® sta
while the latter requires 580 states to model the same interface.

Andrews, in [11], uses HFSMs (Hierarchical Finite State Machioeasjodel Web
applications and uses constraints to reduce the set of inpus\ahgeto help
solving the state explosion problem.

Harel, in [87], describes the semantics of the Statectwamialism and how it can
be used to describe reactive systems like a Multi-Alartechvéstatecharts extend
state-transition diagrams with hierarchy, concurrency and congationi. These

extensions allow the description of complex behaviour in a compannher at

different levels of abstraction which makes specificationsnagaable and

comprehensive.

Besides the approaches described above to reduce the stagoexproblem,
there are also generic techniques for the same purpose. {Elobsiues were
mentioned in section 2.5.2.

FSM and their variations are often used in specification-bastohg as will be
described in section 3.3.5.

3.2.3. Model-based specifications

In model-based specifications, the state of a system is laddekplicitly by
mathematical constructions like sets, maps, functions, antiorsa System
operations are specified by defining how they affect the sihtihe system.
Axiomatic set theory, lambda calculus, and first order preglit@gic are the
standard mathematical notations used in this kind of specificationdgag.

Typically, model-based specification languages have stateoardtions that
change state. Invariants are Boolean expressions that résdrggttof valid states.
Operations can have pre- and post-conditions associated. Pre-conditgnsrae
the set of states where the operation can occur and post-condii@nsine the
state reached after executing the operation (as well asthe returned by the
operation) or just restrict the set of states in which ystemn ends after executing
the operation.

There are different kinds and styles of model-based spedafisatiThey can be
executable vs. non-executable, and explicit vs. implicit. An eabtutabstract
specification eases validation against informal customguirements since tests
suggested by him can be quickly checked [68]. An implicit sppatibn describes
functionality by means of operations/methods with pre- and (@pli
post-conditions. An implicit post-condition allows checking the validifythe
result obtained from the specification method but does not all@mulatihg it. An
explicit specification describes functionality by means of eitpgliost-conditions
or algorithmic method bodies from which it is possible to caleutae result
expected.

60

Specification-based GUI Testing

The most widely used notations for developing model-based speoifisadire
VDM-SL (Vienna Development Method Specification Language) [6]179],
and their object-orientation extensions VDM++ [67], and Object-Z [176]
respectively.

The VDM-SL language has its origins in the IBM Laborataryienna. An ISO
Standard for the language was released in 1996 (ISO/IEC JTZANEG19)
[158]. Z was developed by the Programming Research Group at Oxford
University in the late 1970s. The ISO completed a Z stand#iatizeffort in 2002
(ISO/IEC JTC1/SC22/WG19).

Ul modelling with model-based specification languages

It is possible to find in the literature several exampleapplying model-based
techniques to specify user interfaces. These specificatienscaras abstract as
property-based specifications because the state is modelled explicitly.

Bowen, in [29], is one of the first to specify user interfag®e a model-based
formal notation. He provides an abstract model of a smallgbahte X windows
system with operations to create, destroy, and manipulate windogree@, in
[48], specify a window interface using VDM.

Abowd et al., in [1], present the PIE model (described in section 2.5.2) rendered in
the Z specification notation and then describes the modelagedfrom it which
offers a bridge between the very abstract models, like thenBttel, and methods
such as formal grammars and state transition diagrams.

VDM and Z [59] have also been used to express the behaviour odicitotes
(described in section 2.5.2).

Gieskens and Foley claim that attaching pre- and post-conditiomsterface
objects can be useful because it provides a mechanism uiivadje enable
controls, can be used for rapid prototyping, and can be used asta gaserate
automatically explanations and help text [75]. They describe amtenture
supporting pre- and post-conditions which can be integrated in afiffer
environments.

Hussey et al. use Object-Z specifications for usabilityysmalof user interfaces
[97]. They model two different user interfaces, A and B, in @kfeand then
analyse those specifications formally to access usahiityperties as task
efficiency, consistency, and flexibility, in order to seleleé thest suited user
interface.

Model-based notations are good at representing the state bub rgmod at
representing behaviour. There are several examples in treurte that extend
model-based notations to overcome their limitations. Generally, ¢hmpine
behavioural notations, like CSP, with model-based notations. The rfameeis
used to describe the behaviour, and the latter to represent®tatinconvenient
of hybrid languages is the necessity to develop tools for suppottiag t

61

Chapter Il

verification of the result obtained by the combination of theetbffit languages.
These hybrid approaches will be subject of the section 3.2.6.

3.2.4. Property-based

With property-based specifications, systems are specified nmstef properties
that must be satisfied. It does not contain the model of tlstery like
model-based specifications do. Property-based systems can beietlasgib
axiomatic (where the operations on the system are definedgimal assertions)
or algebraic (where operations on the system are defined bgctomiis of
equivalence relations).

An algebraic specification consists of a syntactic part, asenaantic part. The
syntactic part defines the syntax of the operations that isbfms$s perform on
the system. It is described by a signature

>=(5,C,F)

with a set of sort symbol§, a set of constructor symbo(S, and a set of function
symbols, F. The semantic part characterises the behaviour of the system
defining the semantic of its operations. This semantic is ithescby a set of
axioms,Ax, of the formt = r, wheret andr are terms. Larch [82], and OBJ [76]
are examples of sequential algebraic specifications, whilosL [27] is an
example of a concurrent one. Anna is an example of an axiomagerpy based
methods avg.stanford.edu/previous_research/index.html#anna

Ul modelling with property-based notations

Cabrera et al., in [38], use GRAPLA which is an algebraic fipaton language,

to specify graphical user interfaces with windows, buttons, andusneThe

language is later enriched with such concepts as intexacbjects, and user
actions [114].

Bernhard Bauer also uses an algebraic specification to modehteséaces [17].
He extends the notion of algebraic specifications distinguishisgbset of the
sortsS as observable sortsl{s-sorty and a subset of the functions iaterface
functions The former set corresponds to conceptual objects which arevaiblee
to the user. The latter set corresponds to the function sympplieable to the
conceptual objects. The user interface algebraic speaiicétiused to generate
the dynamic behaviour of the Ul which in turn is the input for =istiag Ul
generator called BOSS (BedienOberflachenSpezifikationsSystteen German
translation of "user interface specification system"). B@Sa component of the
formal Ul development environment, called FUSE (Formal Usderflace
Specification Environment) [113]. This environment also gets amédbr
specification of the user and tasks as input to generate the us@cmte

Besides the mathematical properties of algebraic spdaificaand the implicit
definition of behaviour in the form of axioms without a comndirn with a

62

Specification-based GUI Testing

particularly representation, the algebraic specificatian isgather cumbersome.
In particularly, it is difficult to find a minimal set ofxims for a given
component and to evaluate when an algebraic specification is complete.

Algebraic specifications force a specific style of thmgkthat does not match well
with the imperative paradigm in which most programmers think and implement.

3.2.5. Behaviour-based

The main advantage of behaviour-based notations is that tlwy applying
model checking techniques for verifying properties of user fates
automatically. This kind of specifications is well suited todel concurrent and
asynchronous systems. They specify software systems as possijulences of
states. Examples of these notations are Petri nets, pralgebras, and temporal
logic.

Petri nets

A Petri net consists of places (circles), transitions, ancctdidearcs (arrows)
(Figure 18). At each moment during its execution, places cahzswb or more
tokens (dots inside circles). A transition consumes tokens from thesiapes and
outputs tokens to output places. A transition occurs when its inpcegpontain
the required number of tokens.

Toker Place

O

Transition

O

Figure 18: Petri net

Petri nets have a strong mathematical foundation on top chveeiveral analysis
techniques have been developed to carry out general validatibes.main
problem with Petri nets is that the "assembly line way of thgik that
characterises Petri nets is not the normal way of thinkimgn dealing with user
interfaces. In addition, modelling complex systems using Petricaatgjive rise
to models of unmanageable size.

63

Chapter Il

Ul modelling with Petri nets

There are variations of Petri net notations aiming to rechecsize of the models.
High level Petri nets like coloured Petri nets and annotaté riets are some of
those examples.

Keh and Lewis, in [109], use annotated Petri nets to modetteinanipulation

user interfaces. The annotations permit the specification ofitmorad flow and
execution order of concurrently activated objects and do not violate the underlying
Petri net theory. The model serves as the basis for the UU48r (Interface
Management System) of OSU (Oregon Speedcode Universe) and can be translate
into the implementation language. The method described integnat@hases of
specification, simulation, verification, and rapid prototyping dhe
direct-manipulation user interfaces.

Palanque, in [152], presents an object-oriented formalism spedidigned for
the modelling of event-driven interfaces (Figure 19). This fasmal called
Interactive Cooperative Objects (ICO), is based on Petts. Each object is
composed of four components: data structure, operations, presentatibn,
behaviour. ICO is used to describe the structural and statéctaspf systems
while their dynamic or behavioural aspects are modelled by aldwghPetri net
with objects called Object Control Structure (ObCS). Tramsstiare labelled with
variable names that are bound to objects when the transitiorsoéctnansition
may occur when the input places are populated with required tokgastgpbAt
that time, the related transition action is executed. Actioms gemerate new
objects, delete objects, and update objects. The modified and thebjemis are
output to the output places. The places are typed, which mearnhehimtkens
inside them should be of the same type.

_——1 Input places, each of
type <int>
AN /
<

x> <y>

ﬁ Pre-condition
X>y

— . _——1 Action
cout << "Firing T1 with x == "<<

x<<"andy =="<<y<<"\n;

T1

Figure 19: ObCS notation (taken from [16])

64

Specification-based GUI Testing

Process algebras

Process algebras are an algebraic approach to describe th@beb&gbncurrent
systems. The behaviour is described through processes definedmm o
synchronous events and atomic communications between them and their
environment. The interaction is described through discrete pointenofection
called channels. Parallel composition of two processes involves atomgnéheir
interaction point by links, whenever they share the same nameradtion
happens along linked channels by handshaking or synchronisation between a
sender and a receiver. The formal language also includegipesrior describing
sequential composition, nondeterministic choice, concealment, and ioacurs
Examples of process algebras are Communicating Sequential (G&R) [94],
Algebra for Communicating Processes (ACP), and Calculus dann@inicating
Systems (CCS).

Ul modelling with process algebras

Process algebras are good for modelling behaviour but are noadegited for
state modelling. This is the reason why process algebrasoammonly used in
combination with model-based specification languages to model imteract
systems. Even so, it is possible to find at least two exampflea modelling
technique based on the process algebra CSP.

One of the examples uses CSP to model virtual environments teatdracurrent
characteristics, for which process algebras are well adapted [168].

Abowd and Dix use extension of CSP, integrating status and event plmenome
formal specifications of interactive systems [2]. The g@alta construct a
specification language that supports input and output events atgbs sta
overcoming the limitations of the other specification languageswége object of
analysis in their work.

Temporal Logic

Modal logic is an extension of propositional logic with opemattor express
different modes of truth. Temporal logic is a special kind of mamac. It adds
operators to express time which allow expressions to getaiff@oolean values
over time:

- OQPorFP- Finally P, means that P will happen in the future;
- LIP orG P — Globally P, means that P is always true;

- OP orX P — Next P, means that P will happen in the next time
instance;

- PUQ-Puntil Q, means that P happens until Q happens.

65

Chapter Il

There are different kinds of time models: Linear Temporal ¢o@iTL),
Computation Tree Logic (CTL), and Timed CTL (TCTL). In Lineampmral

Logic, each time instance can have only one successor, while in Computation Tree
Logic each instance time can have more than one successor. In addition, CTL adds
two more operators to express properties about all possiblessacsed -
Always), and to express properties about one path within allefgtossible paths

(E — Exists).

A specification in temporal logic can describe safety, livenassl fairness
properties. Safety properties express the things that should pperhan the
system. Liveness properties describe things that should happie system.
Fairness properties are used to solve indeterminism.

Ul modelling with temporal logic

Johnson and Harrison use temporal logic to specify interactiveot@ystems
and as a means of analysing usability requirements [103]. descome the
previous weaknesses of the abstract specifications by capttemgoral
properties identified as crucial to the success or failuréntefactive control
systems. They developed a tool called Prelog (Presentation andriRgnale
LOGic specifications) which combines a temporal logic inttgr with a
structured graphic system and high level device abgirectito support
prototyping of an executable subset of the formalism as a noéatsessing the
gualitative "look and feel" of potential implementations.

Mezzanotte and Paternd, in [131], use Action Computation Tree (AGIEL),
which is a branching-time temporal logic, to express high lexmdgties of user
interfaces like the possibility of performing a task at any state

AGEF <task_performance> true
and visibility
AG([user_actionx] EF<User interface appearance>true)

meaning that each user action will give feedback to the usendujfying the
presentation.

Butterworth and Cooke, in [37], use a notation based on Temporal Logic of
Actions (TLA) to model a window with a scroll bar. At eddstant, there is a
relation,rep, between the position of the scroll bar button and the windowed data
shown to the user (section 2.5.2).

Although Temporal Logic allows reasoning about generic propestiggeractive
systems and verifying properties automatically through moletking, it also
rises problems when someone wants to express more specifictipgopaated to
particular aspects of some systems. Also, expressing properfiemporal Logic
is not easy and programmers may resist doing so.

66

Specification-based GUI Testing

3.2.6. Hybrid approaches

The goal of hybrid languages is to combine characteristicavof dr more
specification languages to construct a richer final languagehwcombines the
better of the original ones. Like was already mentioned inigus\sections, one
popular approach is to combine model-based specification languages with
behaviour-based.

MacColl and Carrington use a hybrid specification language coredrimom
Object-Z and CSP to specify interactive systems [116].

Galloway and Stoddart present a new language called ZCCS ctetonctop of
the Z and CCS specification languages [71].

Martins, in [120], presents a new formalism, called InteracBoripts, to model
dialogue controllers. The formalism is compositional and powenfidugh to
express both sequential and concurrent dialogs. Interaction SerptsUI
presentational descriptions are the input language of a proteygbem, called
GAMA-X [42], for the automatic generation of Assisted Usatetfaces able to
communicate with the application prototype. Later, the developeiGAMA
studied the possibility of extending the system with Ulpgalaility characteristics.
The GAIA system was developed for that purpose [119].

There are three different types of interaction scripecision(when a selection
among several options needs to be takBginth(to synthesize a command; these
scripts are used to update the state of the application)a®ynth(scripts used
to call operations that query the state of the applicationer@ihds of scripts do
not have an explicit type defined.

A script has a static blocks{Decls) to introduce all the identifiers used by the
script and a dynamic blockG(Behav) to describe the interactive behaviour
controlled by it according to the following syntax:

GlDecls:: [ValT: ValType]
Symbol: SYM-set
Type: GIType
Args: IdVar -> IdType
Var-Ul: IdVar -> |dType
Var-Apl: Ldecl: IdVar -> IdType
Atribs: IdVar -> IdVar
Extern: GIName-set
SubGi: GIName-set

GIBehav:: Init: IdVar -> ExpValue
Context: [BoolExp]
EvSeq: ExprComp
Trans: TrDescr
Exec: [ExecDescr]

Interaction Scripts use CSP (or CCS) operators ("." — &muence; "||" —
parallelism synchronous; "|" — parallelism asynchronous; "+"erfradtive; "*" —
repetition) to model the order in which the arguments of an operat®mead
(EvSeq clause within behaviour block).

67

Chapter Il

The behaviour composition of different Scripts is describeddhelled Petri nets
with added expressive power:

— it is possible to associate a condition to a transition tha&rméates
when the transition can occur;

— itis possible to interrupt the execution of a Petrifsb as to execute
completely another Petri nBtat which timeA execution can go on.

Although the most commonly examples are the ones that combine meddl-ba
with behaviour-based specification languages, there are alamptes that
combine other kinds of specification languages.

Bramwell combines behaviour-based with action systems. He@SBsand an
action system [30].

The RAISE (Rigorous Approach to Industrial Software Engineering) uses the RS
(RAISE Specification Language) which is another example of Aaridhy
specification languagesgd-web.terma.com/Projects/RA)SE has characteristics

of the model-based languages, like VDM, algebraic methods, KE @NE and
OBJ, and process algebras, like CSP and CCS.

These new languages constructed from the combination of otheesahdch
description power but require an additional effort to combine ¢h@astic of the
sublanguages that were used to construct them.

Another drawback of these hybrid languages is that the new semmeayticequire
the development of new tools to support them.

3.3. Specification-based test case generation

Specification-based testing allows higher degrees of tesimatibn. After
constructing the model, it can be used as input to a test easzatpr. The
technique used by the generator depends on the characteristics of the model. There
are several approaches to automate the generation of sest fram models.
However, there are some problems and challenges that craaedsls: how to
determine when to stop the generation; and how to evaluate tligy ghihe test

suite generatedCoverage criteria can be used for both purposes. They can
determine when to stop the generation and can also be used to assess the quality of
the generated test suite. A good test suite should combine a goodosedage

with a good requirements (or specification) coverage.

When the source code of the software application is alailahite-box testing

can be applied by analysing the source code and applying coveitaga on the
implementation to measure the quality of tests. However, oftexesgode is not
available, andblack-box testing must be performed. In these cases, using
model-based testing allows to apply coverage metrics on the rasdelquality
measurement. Although model-based testing can have many advaikagbe |
automatic generation of test cases, it also often suffens fihe gap between the

68

Specification-based GUI Testing

modelling paradigm and the programming paradigm. In addition to abserde
code, often the access to the actual functionality of the saftapplication is
barred by a GUI that represents the only interface to theaaf. Anyway, even
when GUI code is available, it may be interesting to tessyiséem through the
same interface that is used by final users (as additidhe other test methods
used).

Besides the characteristics of the models, the test straseglyalso influences the
test generation method used. The so cd#lsts-to-passare usually used as a first
iteration and check if the fundamental parts of the softwar& wsing valid input
values.Tests-to-fail are used in subsequent test iterations and try to break the
system using invalid inputs or valid inputs at the operatitindts. Random

input generation algorithms ardult-based methodsare examples of test-to-fail
methods. The random input generation goal is to drive the systenash (see
section 2.5.3). Fault-based methods attempt to ensure that tvarsoftoes not
contain certain types of faults (e.g., mutation testing).

3.3.1. Test data generation

An important issue related to the generation of test cagbe igeneration of test
data, that is to say, the input values of the test casesavailable methods for
this purpose can be implemented either statically or dynamiatlyclassified as
random, goal-oriented (generate test data for an unspecific patid),

path-oriented (generate test data for a specific path) [62].

Random methods

Randomly test data generation is a relatively easy techniimapiement but
results in weak coverage. It generates random values fimmput domain of the
program.

Goal-oriented methods

Goal-oriented methods try to drive the system into a given lgoalvo different
methods [62]: the chaining approach and assertion-oriented approacfkirsThe
one tries to find a path to the execution of a given goal taded on data
dependence analysis [65]. The second tries to find any path desertion that
does not hold.

Several goal-oriented methods use Al planning techniques. Mayhetuakr in

[121], use an Al planner assisted approach to generate testhzsssd on high
level test objectives for testing a robot controlled tape Niwmon et al., in [126],
also use Al planning techniques for generating automatically testfoasgdls.

69

Chapter Il

Path-oriented methods

Symbolic testing is an example of a path-oriented test data generagitroan It
replaces program variables by symbols and calculates corstiaattrepresent
possible symbolic execution paths. When a program variableaisged during
execution, the new value is expressed as a constraint oveyntimlic variables.

A constraint solver system can be used to find, when possible, concrete katues t
cause the execution of the path described by each constraint (Figure 20).

int x, y; | x=X.y=Y |

i (x>) {

X=X +Y; | IX<=YIEND | | IX>YIx=X+Y |
yEX-V: | [X>Y]V:X++Y Y=X |
X=x_y: |[X>Y]x=X-EY X=Y |

i (—y>0) IESE -\xi?o |
assert(false) | IX>Y,Y -X<=01END | | IX>Y,Y -X>01END |

Figure 20: Symbolic execution tree example

Nikolai, in [185], describes a prototype tool for unit testingeblasn symbolic
execution and constraint solving. The tool can automaticaily test cases that
cover all statements. Pretschner [159] translates an AUBDIOspecification
into Constraint Logic Programming and symbolically executes rédseilting
system. Meudec, in [130], presents an automatic test data wenkased on
constraint logic programming (CLP) and symbolic execution.

Other approaches combisgmbolic execution with model-checkind12]. The
main idea is to use the model-checker to traverse the symba@aution paths.
The test coverage criterion is encoded in the property the mbdeker should
check for.

3.3.2. Generation of expected test results

Test cases are sequences of methods with input parameteesaltsl expected.
Formal specifications can be used to generate test data (impmgtar values)
and also as a test oracle (to calculate the expectedsjestitis is the main
advantage of specification-based testing when compared with qeesnthat

70

Specification-based GUI Testing

generate test cases (sequence of methods and input parartetarsoftware
code but cannot calculate expected results.

However, there are different kinds of formal specificatiqfand different
specification styles) and it is not possible to calculateetpected results from all
of them.

Formal specification can be explicit or implicit. A sg@gtion is explicit if it has

the behaviour fully described allowing the exactly determinatibthe result
expected for each method call with input parameters as wtikeasext state. A
specification is implicit if it describes the behaviour of thetesn in a higher level
of abstraction, for example, as contracts with pre- and post-momlifwithout

specifying the body of the methods), that allow checking if the teegahd next
state) obtained from the implementation under test are validdasg not allow
calculating the expected results (and next state). For example:

Seg<int> Sort (Seqg<int> arg)

ensures Forall {i,j in result.Indices, i<j;
resultfil<=result[j]};

{

The Sort method defined implicitly above does not describe how to sort
sequence of integers. However, the post-conditiensyres clause) allows
checking if the sequence of integers provided as ressdiried, i.e., if it is a valid
result.

3.3.3. Coverage analysis

Coverage analysis aims to measure the extent to which em gigrification
activity has achieved its objectives and can be used to éxaheaquality of the
test suite used and also determine when to stop the verifigatomess. It is
usually expressed as a percentage referring to the accomplished parttofitgn ac

Coverage measures can be generally classified into rewgnte coverage and
structural software coverage. Requirements coverage anatgsisures the extent
to which requirements have been verified while structural cgeernalysis
measures the extent to which code structure has been executed [91].

Although in the literature coverage analysis is usuallyiagpb code, it can also
be applied to the specification. For instance, requirementsragm/eof the
specification can be used to verify if higher level requeets are met in the
specification, and structural coverage on the specification earsdd as a quality
evaluation of the test suit and as a stop criterion.

Requirements coverage

Requirements coverage analysis precedes structural isreahgbsis less systematic
because it usually does not contain a complete specification dietreviour of
the system. One example could be a coverage criterion meatheimtggree in

71

Chapter Il

which use cases or scenarios were verified. Scenarios describe heystém and
the user should interact to achieve a specific goal. They yseédr to common
usages of the system and may not be a full description dfghaviour of the
system. Scenarios are not designed to cover the entire prograstenarios
coverage is not a sufficient test coverage criterion [106].

Structural coverage

Structural coverage analysis is used to measure the dagnebich code (or
specification) has been exercised. There are differens typstructural coverage
criteria [91]:

— Statement coverage- every executable statement in the program is
invoked at least once during testing;

— Decision coverage- requires testing the expressions' outcome for true
and false evaluation. For instance, the Boolean expression (A or B)
must be tested for true, e.g., TF, and for false, e.g., FF. But, this
criterion does not guarantee testing the effect of allsela within an
expression, e.g., the effect of B is not tested, it is always False.

— Condition coverage — requires that each condition within an
expression takes all possible outcomes, overcoming the problem of the
previous criterion. But, it drops the requirement that each expness
takes all possible outcomes. So, to test (A or B) two tebtant FT,
are enough.

— Condition/decision coverage— combines requirements of the two
previous criteria. The tests should be constructed in a wayatha
possible outcomes of both decisions and conditions must be tested. So,
to test (A or B) two test cases are needed: TT and FF.

— Modified condition / decision coverage (MC/DC)- increases the
condition/decision coverage with an additional requirement ghad i
show that each condition affects independently the outcome of the
decision. A condition is shown to independently affect a decision's
outcome by varying just that condition while holding fixed all othe
possible conditions. Usually MC/DC requires n+1 test cases for
decision with n inputs. To test (A or B) three test casesnaeded:

TF, FT, and FF. This type of coverage criterion is considered
necessary for adequate testing of critical software.

- Multiple condition coverage — it requires that each possible
combination of inputs to a decision is executed at least once
(exhaustive testing). That is to say, t2sts for a decision with n
inputs. This criterion is most of the times unpractical.

Although there are some general testing strategies (test and test data
generation, and coverage analysis), there are also some testingjues that are
closer to the characteristics of the specification from whie$t cases are
generated. We will go through each type of formal spedificaliustrating based

72

Specification-based GUI Testing

on the scientific literature the techniques available to rg¢é@dest cases form
them.

3.3.4. Test generation from grammars

Grammars are often used for usability evaluation but thaeyatso be used to
generate test cases by applying rewriting techniques. The idea is taeyprpting
rules to generate valid sentences within the described lamguggh can then be
used as a test case.

Sirer and Bershad, in [174], describe an experiment using productiomgram
for generating test cases for testing the Java vinaahine.Production rules are
described in a domain specific language cédhwed.

3.3.5. Test generation from FSMs

Most of the test case generation techniques from FSMs aedl loas traversal

algorithms that calculate paths within the FSM to acheedefined test coverage
criteria like transition coverage, transition-pair coveragenplete sequence, and
full predicate coverage (described by Offutt in [144]). Thexdition coverage

criterion is satisfied by a test case capable of testimgyetransition in the

state-based specification. The transition-pair coverageiorités satisfied by a

test case that traverses all possible pairs of adjaarditions. The goal of the
complete transition coverage criterion is to traverse patishave some special
meaning to the tester based on his knowledge and experienbe.dase of FSM

variants like VFSM (with guard conditions), the full predecabverage criteria

ensures that every clause in a predicate are tested independently.

The size of the test suite is influenced by the coverageionitesed. In particular,
a test case that satisfies full predicate coverageriaritdso satisfies transition
coverage criteria.

Model-checking

Model checking is a static analysis verification method queréd on the
specification (see section 2.5.2). It is a technique for vagfyproperties
expressed in temporal logic, which is a kind of behaviour-based isp&oifi,
over a system described as a finite state machine andlsarba used as a
technique to generate test cases. Whenever a property, sediiestemporal
logic, does not hold in a system described as a finite gtaehine,
model-checking tries to generate a counter-example. When a cewataple is
produced, it can be used as a test case. It is a sequencesitibtranor trace, in
the state machine with inputs and expected outputs. To be effastavdest-case
generation technique, the properties about the system should héetbgtisuch
a way that counter-examples produced by them can be used as test cases.

73

Chapter Il

Model-checking and mutation testing

Model-checking in combination with mutation can be used as a fault-besting
technique [10,24]. Mutation techniques introduce small changestsjfaby
applying mutation operators into the original specification. Thangéd
specifications are called mutants. The goal is to constrigit dases that
distinguish each mutant from the original by producing differeniltses|f that
happens, it is said that the test case has killed the mut@aod\test case should
be capable of kiling the mutants because if it is able toctldtee small
differences generated by the mutation operators it is expectabiewiiabe good
at finding real faults. One of the problems of mutation igsis the incapacity of
the technique to generate test data.

Black et al., in [24], use mutation analysis and model checteéognique to
generate automatically tests from formal specifications. Gkual., in [145],
describe two specification-based mutation testing methods thata usedel
checker to guarantee propagation of faults to the visibtputs. Ammann, in
[10], is another example of applying model-checking and mutatimigues to
generate test cases (Figure 21).

b fini enerate
System__: finite ' SMV |generate| mutant | model | counter- E,‘ﬁ ts &
specs i modeling [SPeCS | mutants| SPeCS | checker [examples | o

i i drivers

test harness
& drivers
' test 1 Pass/fail &
execute €5t analyie | . coverage
System | results tests T
source

Figure 21: Testing flow (taken from [10])

Mutation operators can be applied to the finite state machine thhe temporal
logic constraints. The former case is a failing test i@ $ense that a good
implementation should produce different result values from theegmonding
tests since the FSM is not a good description of the system amyitisrmutated.
The latter case is a passing test because test caggarated from a FSM that
models correctly the system so a good implementation should prdiucsarne
results for the same inputs.

The main problem with FSMs is the state explosion problem. MateoFSM
variations try to diminish that problem.

74

Specification-based GUI Testing

3.3.6. Test generation from model-based specifications

An approach to generate test cases from model-based spigrifces called
equivalence class partitioning Assuming that the program behaves analogously
for inputs in the same class, one test with a representadiivie from a class is
sufficient. A partition of some se§ is a set of non-empty subs&s, ...,SS,
such that eacls$$ and S$ are disjoint, and the union of &Ss equalsS If a
defect is detected by one member of a class, it is expdaedht same defect
would be detected by any other element of the same class. So, the tesamcdses ¢
significantly reduced depending on the granularity of the classasidered.
There are different techniques to split the input domain intesela Dick and
Faivre, in [55], developed one technique to partition the domain bytireyvthe
pre- and post-conditions of the specification into disjunctive abform (DNF).
Each disjunction is used as an equivalence class. Hierons, in {83&nps an
algorithm that starts by rewriting the specification into fibien |:| (P, O0Q), in
which P; represents a pre-condition a@drepresents a post-condition, to divide
the input domain into classes.

The problem that comes after the domain has been partitionediffécent
classes is to generate input values for each differeas.clastead of selecting
arbitrary/random values within a clag®undary value analysistests boundary
conditions of equivalence classes choosing input boundary valuesediisque
is based on the knowledge that input values at the boundaries beyaosd the
boundaries of the input domain tend to cause errors in the system.

A variation of equivalence class partitioningype-based selectiofi189]. In this
case, the type of each input variable is used as suggestimuighlence classes.
For example, for an input variable of the type set, the spaidn should be
tested with the empty set, one set with a single element, sedvath more than
one element. After having a partitioning of the domain, one test case for esch cla
should be constructed.

Aichernig [5] uses fault injection on the modelling level to gatetest cases and
to validate executable models. The test case generatiaritlaly gets a

specification with pre and post-conditioﬁz(Pre|-Poso and its faulty design

D' (Pre' } Post) as inputs.

In other approaches, the user defines manually the input valdelhen test cases
are generated based on those defined domains.

Additional care must be taken so as to check if the input pagesrediculated do
not forbid calling all the methods specified. This can happen whennput
parameters do not generate states where a pre-condition of one of the rgetbods
the true value.

After defining (or generating) the input domains, test caspiences may be
constructed by essentially two different methods. One of thosigod®is called
test "on-the-fly" that evaluates after each method cals¢h®f available methods
(i.e., the pre-condition is true) and calls one of those method&ddhp selected)
with appropriate input values [192]. The other method explores cahplbie

75

Chapter Il

specification, i.e., after each method call, it calls allat&ilable methods with all
possible input parameter values. This process constructs ahasian be saved
and used later to produce test sequences that fulfil defined coveraga.criese
two methods are supported by the Spec Explorer tool [39] whicmadal-based
testing tool built by Microsoft Research. Besides supportst) ton-the-fly", it
also provides a way to translate AsmL or Spec# speddicaito a FSM [79] that
is subsequently used as a base to generate test casesfithéefinéd coverage
criteria.

3.3.7. Test generation from property-based specifications

Property-based specifications describe systems by a sebmdrpes or axioms
that they must satisfy. Rewriting and constraint solvingtachniques used to
generate test cases from these specifications. Givehadd egpressions (logical
assertions or equivalence relations) and the set of vasiablthin those

expressions, constraint solving techniques try to find an ntiateon of the

variables which reduce the expressions to true.

Gannon et al., in [73], describe a system, DAISTS, where test e written as
axioms that are used to exercise the implementation. Btensyuses the axioms
to write the test drivers. After providing the values forribguired inputs, the test
process is automated.

Dan at al. [53] propose an approach to derive test cases flRRBLaRAISE

Specification Language) specification using a combination of ipartinalysis
(used by model-based languages) and rewriting (used by algelmguadges) test
case generation techniques. This is particularly wekkdditr a RSL specification
due to its hybrid characteristics that combine features of both rhadetl and
algebraic specification languages.

DeMillo, in [54], combines the mutation technique and algebraictonts that
describe how to find particularly types of faults to generate test dataatitally.

3.3.8. Test generation from behaviour-based specifications

There are different examples of behaviour-based specificatmguages.
Temporal logic is one of those examples and can be used by modkinghec
techniques for test case generation, as described in the abovsastdesection.

There are also approaches which analyse the execution tcagemerate test
cases. A trace in CSP is a finite sequence of events. Aretheple of test case
generation from CSP specifications is illustrated in [31]e oal is to test
Universal Mobile Telecommunications Systems (UMTS). Thewgrts by
constructing a transition graph with all possible interleaving arallel tasks.
Then, a test driver computes all paths through this graph teatsad as test
sequences.

76

Specification-based GUI Testing

3.3.9. Test case generation from GUI models

There are several examples in the literature of genersggtgcases from formal
specifications of GUIs. In particular, FSMs and their \aie are frequently
used to model GUIs and to generate test cases.

FSMs

Shehady, in [170], uses Variable Finite State Machines (VRSNWodel GUIs
and to cope with FSM scaling problems (see section 3.2.2). The VIBSM
converted into a FSM to generate test cases using thal pafrtalgorithm [70].
The test cases are applied to the GUI and the results obtame@dmpared with
the results expected. The comparison is performed at the er ¢égt case
execution so that, even if the inconsistencies are found aetfiening of the test
cases, the execution of an entire case is required.

Belli, in [19], presents an approach to model the legal and tigalilehaviour of
GUIs using FSA, Finite State Automata, and regular expresdiatis starts by
identifying all legal sequences of user system intevacéind then expands the
model with illegal behaviour. The final model is used to gendestecases that
can bring the system into legal states, producing the desistem response, or
into a faulty situation, producing an error message.

Andrews, in [11], uses hierarchies of FSMs to model Web applitaand uses
constraints to reduce the set of input values and to help sothérgjate explosion
problem. The Web application is divided into clusters and eadiosétclusters is
described as a FSM. These clusters are structured migyaachy with different

levels of abstraction. The bottom level of clusters correspadnd software

modules and Web pages. The top level of abstraction is theatmpliéinite state

machine where detailed clusters are represented as a single node. irethisds

represent possible transitions between lower level FSMsg Gdue be annotated
with input constraints and propagated information. Test casegeasrated from
detailed FSMs by applying transition coverage criteria whiehtlzen substituted
into the aggregate sequences for the aggregate FSM (the uppger level

White and Husain [194] identify complete interaction sequencés) (@f GUI
objects and selections needed for invoking responsibilities which argiestihat
produce an observable effect. Each CIS is described as ah&bhs tsubject to
several transformations to deal with the state explosion gerobOne of the
transformations is an abstraction technique based on strongly teshnec
components and the other is a merging technique of the CIS stateardha
structurally symmetric. Each identified component is substitlily a super-state.
Test cases are generated from the reduced FSM by traversing all phthE$M.
Every time a super-state is found, the test path of the corresporminponent is
inserted into the test at that point. Each test path of a compsheuld be
included at least once in the overall test suite. One of thblgms of this
approach is the difficulty to identify strongly connected componerdsauctural
symmetry.

77

Chapter Il

Planning

Memon uses a model with a hierarchical structure in his W8] to model
GUIs and to guide the generation of test cases, but not to reduce the sizegf the te
suite. He defines a set of operators organized in hierantlsesorrespond to user
actions. The operators at upper levels are constructed fngphes ones at lower
levels. These simpler operators correspond to user actions. Eaeloopas a
pre-condition that must be true before executing the operator, andfeah e
Memon uses planning from Atrtificial Intelligence to genetatt cases. Given a
set of operators, an initial state, and a goal state, a plarotkrggs a sequence of
operators that will change the initial state to the goad sté& generates test cases
from the upper hierarchical levels of abstraction and theraé@stocations to the
planner during abstract operator decomposition. Alternativie ci@ses can be
obtained by substituting the different test cases obtainedhddotver levels into
the high-level plan.

3.4. Conformity Check

The purpose of specification-based testing is to verify ifithglementation is
conforming to the specification. This activity of the speation-based testing
process can be performed manually, which involves too much work, or
automatically. Conceptually, to compare the expected value withnthebtained,

an abstraction function from the implementation to the speciitatevel
comprising one or two maps need to be defined:

- A mapping R) from the state variables of the implementation to the
state variables of the specification, which describes how libtaat
states of the specification are represented in the implatr@nt4].

One implementation is adequate if it can represent all #tessthat
could be represented by the abstract specification. Since the
implementation is more detailed, multiple concrete statesth@t
implementation level) may correspond to the same abstract(atate
the specification level).

- A mapping T) from operations at the implementation level to
operations at the specification level (including input and output
parameters), so related operations can be run on both levels and results
obtained compared.

With these two maps it is possible to run related operationbgatpecification
and implementation levels, comparing the results and also itied and final
states. However, the map between state variali®escdn be dispensable if
additional methods are defined to observe the state (or some part eteheTdtis
is the approach followed by the Spec Explorer tool [39] that gesvobservable
methods to read state without performing any updates.

Let's assume the following execution model (both at the spatidinc and
implementation levels) [148] to describe conformity tests:

78

Specification-based GUI Testing

— The system behaviour is described by transitions between states caused
by operations executed in response to user actions or events.

— The operations' effect may be described as a funé&ifmom initial
stateS;, and possible input argumerfrgs, to final stateS,, and
possible outputBOut (assuming deterministic behaviour).

— The outputs produced can be a message or sequence of messages s
to the user.

— The system state may be or not observable by the user. Al
can describe behaviour of the user interface, from the user perspective,
by making internal state observable (with observable gtatables or
by providing methods to read the state) or by sending appropriate

output messages to the user.
VI :

VIiI

Figure 22: Conformity tests model

Assume that we start at a concrete steéewhen we apply concrete functi@f.
In consequence, at the specification level, we stéSathat corresponds 6S

(SS=R(CS)), over which it is applied the specification functi®hr (equivalent of
CF, i.e.,SE=T(CF)).

Figure 22 summarizes the several elementary tests, Illt@aM I' to VIII', that

may be performed to check the conformity between the specificatidnthe
implementation.

Chapter Il

The characteristics of the specification that serves sisotacle determine the
subset of elementary tests shown in Figure 22 to perform. With eacbhased
specification (followed, for instance, in [75]), with implicit opéoatdefinition in

the form of post-conditions (see section 3.3.2), there are two possible situations:

— The post-condition is verified on the specification level afteppiray
the state obtained from the implementation level onto the spaixfic
level (test IV). Additionally, initial state invariant (Ipre-condition
(In, and final state invariant (V1) may be tested.

— The specified post-condition goes through a code generation process
for being tested at the implementation level (test IIThis approach
can be found in [4]. It is supported by VDMTools. Additionally, initial
state invariant (I'), pre-condition (II'), and final state mamat (VIIIY),
all at the implementation level, may be tested.

With an executable specification with explicit operation d&éins (called model
programs in Spec# and algorithmic bodies in VDM++) it is possibleompare
outputs obtained from both levels (V). When the internal stateectpecification
is visible, it is possible to perform additionally testsitiaéh invariant (1),
pre-condition (1), and final states (VII).

Another issue related to conformity check is the execution modhel. rélated
operations of both levels can be run in a "lock-step” mode in whihitseare
compared after each step, or in a batch-oriented way, in which case theadst suit
run as a whole in the specification level, and expected reseltisept in memory
for later comparison with the results obtained from the executirthe
implementation (which is performed in a different executioretimstant). One
advantage of the batch-oriented way is the need to execute the anbdehce
and not every time test cases are executed. The main dravgbidek additional
need of memory to keep the results expected.

In particularly, the so called "on-the fly testing” combinesisingle algorithm
the test case generation and execution and executes eacioomsa lock-step
in each level comparing results after each of those execution steps.

3.5. Conclusions

In this chapter it was described the specification-basedndegtrocess. In
particular, different ways of modelling GUIs, different tecjudés available to
generate test cases from different formal specificationd, different ways of
conformity evaluation regarding the characteristics of threndb specification
used.

Grammars were very common to specify command-based uséadete but they
are so not well adapted to model direct-manipulation and concurntye
modern windowed and mouse driven interfaces.

80

Specification-based GUI Testing

A grammar-based specification does not represent state ittxplihe state is
represented by an expression built as a sequence of operations/ad/ithout an
explicit representation of state, it is difficult to represine state observed by the
user.

One of the problems about modelling interactive systems watie shachines is
the state explosion problem. This problem can be even worse whenlingodel
GUIs and the techniques available to diminish this problemmoape sufficient.
Even so, state-based specifications are well adapted to @odgland there are
several techniques to generate test cases from thesécsgiens. Since state is
explicit in these specifications, a map between statestbflbeels, specification
and implementation, can be easily established to perform conformity tests

Model-based notations are good at representing state but not so good a
representing behaviour. In particular, some model-based notationstduave
support for events which can be a major drawback when modelling. GUds

so, the fact of modelling state explicitly by mathemati@aistructions like sets,
maps, sequences, tuples, and so on, facilitates establishing aetapen
specification and implementation states which may be hefpfulperforming
specification-based testing or conformity testing automayicdlh addition,
model-based specification languages are closer to the impepatiadigm of the
programming languages commonly used by programmers. This chaticteris
makes them one of the best positioned candidates for being acoeptdustrial
environments.

Furthermore, there are several test case generation geelnion top of
model-based specification languages (see section 3.2.3) that padsble to
implement algorithms to generate test cases automatically from them

A model-based notation can be conceptually seen as a sequestegesf and
transitions between those states that correspond to the mekbsxiibed in the
model and that are responsible to evaluate the system from statetd bere are
algorithms that convert model-based specification languages iate-tmsed
specification language representation, like FSM, which makesibp®to apply
techniques and traversal algorithms developed of top of thegadges for test
case generation (see section 3.3.5) and also apply staticatgsifi techniques
like model-checking that prove properties expressed in tempagic |
automatically.

Property-based specification languages do not represent stateitlgxplihese
specifications are good for modelling behaviour but not so wielpted for state
modelling. That's why they are commonly used in combination with modeldba
notations to model interactive systems.

Algebraic specifications force a specific style of tlimgkthat does not match well
the imperative paradigm in which most programmers think and implement.

Properties about interactive systems expressed in tempoialcig be verified
automatically by using model-checking techniques. Even so, iiffisutt to

81

Chapter Il

express properties in temporal logic and to express morefisppooperties
related to particular aspects of the systems.

Besides verifying properties automatically, model-checking techniqueslsa be
used to generate test cases. The properties in temporahiogtcbe constructed
in such a way that counter-examples produced can be used as test cases.

Considering that one of the goals of this research work is togbeothe use of
formal methods in industrial environments, the specification larguaguse
should not force a complete divorce with the normal way of thiplof the
programmers. This requirement excludes grammars, and prdyjeestyg
specification languages. The specification languages thabesaim our point of
view, more easily accepted by programmers are the ones clom@ly to the
imperative programming implementation languages commonly used by
programmers which are the model-based and state-based notations.

Another criterion followed to guide the decision of which spedificalanguage
to use in this research work was the expressive power of the tgduavould be
desirable to use a language with

- explicit state — to model the state of the GUI, for instance, the content
of a textbox, and to facilitate establishing a map betweers stathe
specification and implementation to perform conformity tests
automatically;

— support for scenarios — to model some user visible function or
high-level requirement that achieves a user goal and nigpieial
ways of using the GUI,

The primary goal of this research work is to improve the otr@&U| testing
methods and tools. So, the specification language tool supposbisrglortant to
enable the experimentation and validation of the ideas devkldpee tools
available were studied according to:

- facility to extend functionalities — the tool should have an API or
some other mechanism to facilitate extending its functiorslitie
order to automate the activities involved in specification-based testing,
such as, test case generation, test case execution, and ctynformi
evaluation;

— test automation — the set of testing activities already supported and
automated by the tool.

A more detailed studied was carried out comparing two diffetteols,

VDMTools (www.csk.com/support_e/vdm/index.htmiand Spec Explorer
(research.microsoft.com/SpecExplojer/ supporting VDM++ and Spec#
specification languages respectively.

The VDM Toolbox provides a Corba compliant API, which allows other programs
to access a running Toolbox. Thus, any code such as a graphicatricoor
existing legacy code may control any Toolbox component. So, it is fossib
program extensions to the tool to run a GUI, simulating useoragtiand the
model of that GUI written in VDM++ and compare the resultsiobthfrom both

82

Specification-based GUI Testing

to evaluate conformity between the model and its implementatibis. ool
enables the manual definition of a set of tests and checkraffiieing those tests,
the degree of specification coverage achieved by those tests.

Spec Explorer has support for test case generation, facildieestablish maps
between specification actions and implementation methods, suppogsfarases
execution, and conformity evaluation. It is well adapted forfopeiing
specification-based testing of software applications through ¢bde or API but
requires extensions for testing software applications throughGh#8irlt provides
an API that allows extending easily the tool functionalities.

After analysing all these aspects, the choice was the Spec#ication language,
developed by Microsoft Research in Redmond, and the model-based testjng
Spec Explorer. They will be presented in more detail in the next chapter.

Nevertheless, the aim is that the main ideas developed in thiscieseak can be
applied in other environments following similar paradigms.

83

Chapter IV

Specification-based GUI Test
Automation

This chapter presents a new approach to model and test GUIs.
Models are written in Spec# and possibly structured in different
levels of abstraction, whether modelling atomic user actions,
scenarios, or high level properties. A FSM is extracted fitzam
model and validated according to standard test adequacyacriter
Test cases are generated from the extracted FSM baseceon a n
test coverage criterion that ensures coverage of a partieutd

of abstraction obtained from a navigation map view and other
views for each dialog within the GUI application under test. A
tool prototype supporting this kind of specification-based GUI
testing is described. This tool is an extension of the
specification-based testing tool, Spec Explorer, developed at
Microsoft Research, which already supports the automatic
generation and execution of test cases for API testing, but
requires too much work when testing software applications
through their GUL.

GUI testing is laborious, boring, and time and resource consuming. The
approaches and tools available to aid the testing processtasatisfactory (see
section 2.5). The goal of this research is to improve currentt€sting methods

and tools, taking advantage of formal behavioural models to erebbutomatic
generation of test cases and the automatic conformity cheosinghe
implementation with respect to the specification. On the whoke,want to
contribute to the construction of higher quality graphical user inesfac

85

Chapter IV

The contributions of this research spread over modellindigsed.2), test case
generation (section 4.3), and test case execution (section 4.4htadtype tool
was developed to support the overall testing process of sofygucations
through their GUIs based on a formal specification written in &pkcis an
extension to Spec Explorer, a model-based testing tool developditrasoft
Research, that already supports automatic generation and eregltest cases
for API testing, but requires that the actions described imibael are bound to
methods in a .NET assembly.

The Notepad application that is shipped with the Microsoft Windperating
system is used along this chapter as a running example toaiéuthe approach.
It is a basic text editor that can be used to edit, view, egatecor update simple
text files. This software application is also used as a stagly to validate and
evaluate the specification-based testing approach proposed ohisestation in
Chapter V.

4.1. GUI Testing Process

Specification-based testing checks if an implementation offavese system
conforms to its specification. The main activities of thel Gliddel-based testing
process proposed in this dissertation are presented in Figure 23.

The starting activity is the construction of the GUI speaiion/model. The
model may be constructed from the requirements, in a forwagiheering
process, or from an existing application, by a reverse engiggmocess. The set
of modelling techniques proposed in this approach is suited for testipgsest
and promote modularity and reusability (see section 4.2). The sp#oific
captures the requirements and enables checking if those ragnieeare fulfilled
by an implementation. The model may be constructed at differgatslef
abstraction whether modelling atomic user actions, high levelsos, or high
level properties of the system. There is one module or cladgdtribe each
window within the GUI under test.

Generically, there are two different kinds of actions ia thodel: actions to
observe the state of the system (e.g., actions that modedydw of the user
reading the text shown by a textbox); and actions to control thensystg.,

actions that describe the user events sending text to a texitbeije Spec
Explorer [39], the former actions are annotategrdbe while the latter actions
are annotated a®ntrollable

The model is written in Spec# and converted into a FSM thattsefsam the
bounded exploration of the model. The exploration process, supported by the Spec
Explorer tool, infers the set of methods available in eath §vae-condition true)

and calls them with appropriate parameter values. Domains of surhgiars are
defined manually by the tester and have a deep influence on thetgdre®. If

the FSM does not have the desired properties it may be ragghavith new

86

Specification-based GUI Test Automation

defined bounds (input domains). The quality of the generated F3dsessed
according to adequate and coverage criteria based on the defamedias, high
level properties, and testing goals. The way to access tlityqighe FSM will
be explained in section 4.3.3.

After generating the adequate FSM it is possible to tkethe test cases from it
based on FSM coverage criteria. However, executing all postabtecases
generated from this FSM may be not realistic due to the hugeokithe FSM
generated and consequently the huge number of test cases.

For\{vard_ Test
Requirements | TOT=T coverage —»| Bounds |q--,
A goals
(5R Scenarios
: and high :
level | :
properties
- s
i i A 4 H
Application Full model =y :
under test of the system It e
Reverse
engineering
A FSM
; coverage
V| Modified O;R Test cases / criteria
A| application v
L | with injected
| | errors
D A
A Errors
T detected
I List of
e) typical
N errors Y
Report

Figure 23: Overview of the GUI modelling and testing process

A new algorithm will be presented in section 4.3.4 to reduceF&ig while
guaranteeing coverage of the intermediate level of absimadéfined by the high
level GUI properties described by the navigation map and didédwegs. Once this
pruning technigue reduces the size of the initial FSM, tessaasy be generated
based on the full transition coverage criterion and then executed.

87

Chapter IV

However, the generation process of the initial FSM itself maynfeasible due to
memory space or time restrictions. In this case, differgmircaches (not
necessarily disjoint) can be followed:

— stop the generation of the FSM when all the identified scenands
test boundary conditions are covered by it, or

— build scenarios to drive the software application into test baynda

states if it is not possible to obtain a FSM that covers them within time
and resource limits, or

- split the software application into different sets of functiibiea and
test them independently, or

— build scenarios to shortcut some functionalities where a extausti
testing is not needed, e.g., build a scenario to open a file kepkin d
avoiding exhaustive testing of the complete Open dialog.

Test cases are generated from the FSM model after sglde8M coverage
criteria. Once generated, test cases are executed on tlificapec and on the
implementation (constructed software application or modified twsoé
application with injected errors) and the results obtainedcarapared. The
specification plays the role of a test oracle describinge#pected results. Every
time there is an inconsistency between results obtaineddatimlevels they are
reported. Reasons for such inconsistencies are three-fold:

— test cases are tying to trigger events in a window thabf reachable
or is not opened (e.g., when a modal dialog is open and the window
we want to reach is behind the modal dialog);

— test cases are trying to interact with a control that cannot be found;

- the expected result was not displayed (e.g., a text box doessplatydi
the expected content).

To execute test cases automatically over the GUI uredtrsbme intermediate
code to simulate the user actions is needed. This code isumtedtautomatically
by a tool (GUI Mapping Tool) developed on purpose and presented in section 4.4.

The GUI Mapping Tool extends Spec Explorer to automate the GUI testing:

— it adds the capability of gathering information about the physital
objects that are the target of the user actions described in the model;

— it automatically generates a .NET assembly with methodsitmatate
the user actions upon the GUI application under test;

- it automatically maps the methods in the generated .NESmdndg to
the model of such methods described in the specification.

The capacity of detecting errors of the overall testing ajpgpris evaluated by

using a modified application with a list of known injected exras a GUI under
test.

The Spec# system and the automated model-based testing protedsevBpec
Explorer tool are described in next sub-sections.

88

Specification-based GUI Test Automation

4.1.1. Spec# System

The Spec# programming system (Figure 24) developed at MiciResétarch lab
in Redmond, USA, consists of the object-oriented Spec# programnniggalge,
the Spec# compiler, and the Boogie static program verifigu(€ 25) [15]. It is
an attempt to support more cost effective production of hightyusdftware and
is fully integrated into the Microsoft Visual Studio.

Spec# supports literate programming in allowing a Spec# progpaappear
spread over several separate sections in a document along documedikiatiext,
tables, and diagrams. It uses a special style for thegmo¢Bpec# style) different
from the style/styles used for the documentation. The compileothed tools can
extract the code from the document.

The programming language, Spec#, extends the existing object-orid\iEdd
programming language C# with specification constructs like @nelitons,
post-conditions, invariants, and non-null types; the compiler emitsimen-t
checks to enforce these specifications; and the veriiercbeck the consistency
between a program and its specifications [15].

Run time Compile-time
exceptions error messages
Spec# Boogie
compiler
Static program
verifier
Code +
contracts
in Spec#

Figure 24: Spec# system

Besides producing executable code from a program written inp&#$anguage,
the Spec# compiler also serializes all specifications inengulage-independent
format and attaches these serialized specifications to theapragpmponents in
which they were defined. Instead of working on source code, the Betadie
program verifier works on top of the compiled code and can, for eaused to
verify code written in other languages than Spec# as londeys grovide a
process to attach contracts/specifications to the code.

The Boogie static verifier (Figure 25) translates the imgeliate language, MSIL,

and metadata into its own intermediate language, BoogiePL. dménference
mechanism obtains properties such as loop invariants from thigyid3el
language [14]. The BoogiePL program and properties derived go through the

89

Chapter IV

weakest-precondition generator which performs a sequence dbtraagons till
ending as a verification condition that is then used by the atiortheorem
prover (Simplify).

Theorem prover
(Simplify)

Boogie
i Inference i
i Translator engine i
i BoogiePL) i
E Weakest-precondition i
| generator i
i Verification i
! condition !

Error messages

Figure 25: Boogie static verifier

4.1.2. Automated model-based testing with Spec Explorer

Spec Explorer [39] is a software modelling and testing tool fidiorosoft
Research. A formal executable model can be written in theaabstate machine
language (AsmL)résearch.microsoft.com/fse/Asymir Spec# [15]. AsmL is an
executable specification language based on the theory of AbStedetMachines
(ASMs) [28].

A model written in Spec# describes a possibly infinite statesition system.

States are modelled by state variables. Some of the methdds specification

are annotated as actions that represent the possibleidransif a transition

system. These actions can have pre-conditions, written asragfulauses that
define the states in which they are enabled. Thus, actions caeebeas the
guarded update rules of an ASM. It is important to note that éesstan have a
very rich structure. In the case of GUIs, this allowsatithfully model the GUI's

state from a user perspective. For example, a state vacablbold the textual
content of a field. Methods annotated as actions can be usaddel complex

user actions (e.g., enter a string into a field, issue a comnmaticbntents from
files, etc.) and describe its effect on the state of the system.

90

Specification-based GUI Test Automation

There are four different kinds of actionsbservable controllable probe and
scenario Observableactions are asynchronous and describe the spontaneous
execution of an action in the AUT (application under test) possialised by
some internal threadControllable actions describe actions that are controlled by
the user of the modelled systelrobeactions describe actions that do not update
internal state of the modelled system but only read the dtaibe gystem. Probe
actions are invoked by the test harness in every state \heyreare enabled to
check whether the model and the implementation have the sanaetehiatics in

a given stateScenarioactions describe sequences of sub-actions. A scenario can
be used to drive the system into a desired initial state.

From a Spec# model, it is possible to extract a Finite $tathine (FSM) by an
exploration process. This process will execute the actions oftuel and, at
each action call, it will use values for the parametaken from domain sets
defined manually by the tester. Besides some default valueeddiin specific
types like Booleans (true, and false), Spec Explorer does notipramiy support
for the definition of parameters' domains. Even so, the chditeese domains
has profound impact in the characteristics of the generated R8Nt @ crucial
point of the whole process. There are different ways to contbs@arameters'
values so as to use them in each action call: Cartesian prguRicwise
combination, and an enumeration of tuples.

Besides the domains' definition, one of the main difficultieB3M extraction is
due to the fact that an ASM specification can have a huge, possibiite,

number of states, so a good pruning technique is needed to deal evitath
explosion problem. Griskamp [79] uses hyper-states as a forrstfetion to
extract a FSM from an ASM. In addition, Spec Explorer allovesuser to limit
the exploration of the model in various ways [191]: definition déligonal

pre-conditions; restrict the parameters' domains; definitionstate filters;
definition of state groups; and definition of stop conditions. Thislvelexplained
in more detail in section 4.3.1.

A state group is a set of expressioBss g, ...,gk, Over one or more states. Two
different statess andt, are in the same group, or are G-equivalent, if they evaluate
the expressions in the same mann@i€ i <k -g°=g'). A group is a maximal

set of G-equivalent states.

The FSM and the expected results of each execution step thhtfres the

exploration of a given Spec#/Asml model are kept in memory. @re&SM is

built, a test suite with a set of test segments (sequencastiohs with input

parameters and results expected) is generated. Spec Exploreteprdifferent

algorithms to generate test suites: full transition coweratportest path; and
random walk. This will be explained in more detail in section 4.3.1.

After constructing the test suite, test conformance betweespigfication and

the implementation can be performed. Conformance between model and an
implementation can be established by binding model actions to impuiatios
methods, executing the test suites on the implementation, and compaing
results obtained with the expected ones kept in memory. Spec &xplovides a

91

Chapter IV

mechanism that binds the action methods in the model with matching signatures in
the AUT. Whenever the map needs to be established between metilods w
different signatures, the user must relate those methods onenday The
implementation can be written in any language supported by the .NET framework.

To track observable actions, Spec Explorer instruments the @tUfe binary
(MSIL) level [191]. During execution, the instrumented AUT calégk into the
conformance engine, notifying it about occurrences of observatiteodealls.
These occurrences are buffered which allows them to occur dweng the
execution of a controllable method in the implementation.

All inconsistencies detected are reported to the testércin select any of the
reported errors and check the FSM path which gave rigeterror. This path can
then be analysed in order to correct the implementation or the sptigific

Spec Explorer also supports "on-the-fly" testing. In this casefdst generation
and test execution are connected into a single algorithm [192].

Another functionality of Spec Explorer is the graphical visaaign of the FSM
obtained by the exploration of the Spec# or AsmL models. SometineeESi
obtained is so huge that viewing it graphically can not be vezfuliBesides
being used for pruning the exploration of the model, state groupdstabeaused
to define different views of the model. This feature can be Wetof define
different levels of abstraction of the same model and alsed¢osome specific
features of a huge model that otherwise could not be analysedddels with
scenario actions, graph visualization includes a property dmatots whether the
graph will show scenarios in collapsed (sub-actions are hiddenthe graph) or
expanded form (sub-actions are visible in the graph).

Spec Explorer is well adapted to test software systems thrdugh API.
However, when the source code of an application is not availabl¢hanahly
way of interacting with it is through the GUI it require® much work [149].
This happens for two main reasons:

- As explained above, it is necessary to define a map between
specification and implementation actions so as to compare results
obtained at each execution step. When the only way to interdcawi
software application is through its GUI, this map cannot be
established (the same happens when the source code of the esigtwar
not available and it does not provide an API). To overcome this
limitation, it is necessary to build intermediate code touate the
user actions, for instance, clicking on a button, sending text to a
textbox, observing the text shown in a textbox that is the result of
some operation. The methods inside this code will be mapped to
specification methods and the related methods will be run stepy-st
and results obtained compared.

— The manual construction of the intermediate code is laborious and
takes so much time that may compromise the whole process.

92

Specification-based GUI Test Automation

The prototype tool developed in this research work is intendedetc@we such
limitations of GUI black-box testing by automatically genemtihe mapping
code that allows interacting with a software application.

4.2. GUI modelling with Spec# and Spec
Explorer

State machines are well suited to model reactive sgsta@ratate machine defines
a set of states and transitions between states causetidnsaGUIs are reactive
systems in the sense that they can respond to user actaesnfachines can be
very useful to guide the testing of software applications [112].

A specification written in Spec# is executable. Besides iants, pre-conditions
(written asrequiresclauses), and post-conditions (writteneasure<lauses), one
can write executable method bodies (also called model programg)igh-&evel
action language, with primitives to change the value of stat@bles, and even
call external methods defined in .NET assemblies. (The epecuiddel of Spec#
is based on the formalism of abstract state machines [28[3. dllows the
specification to be used as a test oracle: the expected @ffewiser action can be
computed by executing the specification, and compared with the affect| &
the same user action on the application under test. This praeassrently
automated by the tool developed during this research work with theohéhe
Spec Explorer tool and using an intermediate library to sieulser actions over
the implemented application.

In order to be effectively used as a test oracle, the ggE®h should be written
for testability. That is, it should describe user requiremeittsemough detail and
rigor to allow a person or a machine to decide whether an implatientas
perceived through its GUI, obeys the specification. In particular, namestimmsa
and state variables in the specification should be chosen ay aweh that their
counterparts in the user interface of the implemented apiplic can be found
straightforwardly (and automatically).

Another advantage of an executable specification is that ibedesteger se to
validate it and check its internal consistency (check miethod bodies do not
violate pre-conditions, pos-conditions and invariants, check explgsertions,
etc.). However, this possibility will not be exploited here.

Besides being used as test oracles, formal specificationfither be exploited
to automatically generate test sequences (sequences cAdatieers and action
parameters). A common two-step approach, currently supportedhebyspec
Explorer tool, is as follows: first, a finite state mach{R&M) is generated from
the specification, by exploring all the states that can beheshfrom a given
initial state or set of initial states (each state gossible combination of values of
the state variables, and each transition corresponds to a user\aith actual

93

Chapter IV

parameters); secondly, a test suite, comprising one or morsegsénces, is
generated from the FSM, so that all states and transitions are covered.

Unfortunately, there are also common problems with this approachstabe
explosion and, ultimately, the test case explosion problem.eEhedse explosion
problem is particularly important in presence of interactiglieations, because
of the slow response of GUI's to user actions, when comparéa-remory

operations.

The challenge we address in the sequel is that of modellingiGdl&ay such as
to deal with the state explosion problem and automaticaligrgge test suites of
manageable size that still guarantee adequate testing.

4.2.1. Modelling GUI structure and behaviour

The models used by Spec Explorer find their inspiration in theraddisState
Machines (ASMs) formalism [28]. ASMs provide a way to model aystem at
any level of abstraction. This is adequate for GUI modellingabse, depending
on the context, one may want to model user actions at diffeemeis| of
abstraction: at operating system level (where a click eigetihe sequence of
pressing and releasing the mouse button), at API level (whdick @&eent is seen
as an atomic action), at user task level, etc.

Independently of the level of abstraction considered (lowesl lmessages, or

higher level messages that correspond to sequences of lowkimessages), a

GUI implementation places the messages in a queue and processes those messages
in order. This behaviour can also be adequately modelled as an ASM with guarded
actions which fire only when appropriate messages are fetched from the que

Using Spec#, one can build a formal specification of an ictigeaapplication,
describing the actions a user can perform at each momens gptastton, fill a
text box, etc.), and the expected effect of each user actiternis of changes to
the state of the application (according to a model of the cgtigh state as
perceived by the user) and possible effects to the environmentwgtg a file to
disk). The effect of user actions may depend not only on the cutadéetod the
application, but also on environment conditions (e.g., existing files in disk).

The state of the application is described by means of g#aigbles (static or
instance variables). Without restrictions, the state siga# an application
manipulating a set of variablés = {vl,... ,V|V|} will be the Cartesian product of
the domain values of the variables in the se¥, i.e.,

S=dom(vy) x---xdom(vy|) -

4.2.1.1. Modelling windows' controls

Typically, windows are composed of several interactive contviskswhich users
interact. There are different kinds of interactive contralg.,, duttons, text boxes,
check boxes, list/combo boxes, etc. The state of controls is nubdsflestate
variables. One or more variables are used for that purposeegpmhd on the

94

Specification-based GUI Test Automation

characteristics that are considered relevant from the neodedirspective. For
instance, the state of a textbox can be modelled by severalatatoles (Figure

26):

/I a string keeping the text
string text = "";

/lan integer keeping the position of the cursor
int posCursor = 0;

/I a string keeping the text selected
string selText ="

/I a Boolean variable that tells whether the text
/I has been changed
bool dirty = false;

/I etc...

Figure 26: State variables of a textbox

In addition, the user actions interacting with each control racglelled by
methods. Methods have pre-conditions that determine the states wheere t
modelled actions are possible. Typically, pre-conditions includeaasel that
checks when the window where the control is placed is enabled andlgossib
others that select among the first set of states the ones wheontta is enabled
(Figure 27). For instance, the "Find Next" button inside the firadogdiof the
Notepad application (Figure 28) is enabled whenever thegdialenabled and the
text inside the "Find what" textbox of the same dialog isedill Each
dialog/window is uniquely identified by a name, e.g., the find digdadentified

by "Find".

namespace FindDialog;

/...

[Action] FindNext()

requires IsEnabled("Find") and FindWhat!="",

(..}

Figure 27: Find Next pre-condition

Find what: ||

Direction Cancel

[Match case O Up (& Down

Figure 28: Find dialog inside Notepad software application

95

Chapter IV

To enable conformance testing of the outputs displayed to the msénods
annotated as actions should also be provided to observe the stat&ui tthat is

exposed to the users' eyes. A query method can be provided for eacrables
state variable, with the name of the variable and a suipbfex. Spec Explorer
refers to such actions probes(Figure 29).

namespace Notepad;

//'i{eeps the state of the text inside the main wind ow
string text;

[Action(Kind=ActionAttributeKind.Probe)]
string GetText()
requires isEnabled("Notepad"); {
return text;
}

Figure 29: Probe action example extracted from the Notepad's GUhodel

A probe only observes the current state and does not change its Breliecated
differently from ordinary actions during test case generation, as weewilager.

4.2.1.2. Modelling windows

For modularity reasons, except for trivial applications, thelegpl windows of
the application are better modelled in separate namespaces or classes.

Inside each module (namespace or class) corresponding to a eébpvladow,

state variables are used to model the abstract stdtatoindow and the controls
inside the window, and methods annotated as actions are used to nedel th
possible user actions on that window and on the controls of the wirklbthe
actions inside each module, except the one that launches the applibatre at
least one pre-condition: that the corresponding window is enabled.

Windows can be modal or modeless. When a modal window is open (e.g., the
Save and Open windows in the Notepad application), the other windothe of
application are disabled. Since this is a common feature dé,Glseparate
reusable module a window manager was created to handle it (see Appendix
A.3.). The window manager is part of the model, and its state i®fpdre model

state.

The window manager provides the following self-explanatory helper methods:

namepace WindowManager;

void AddWindow(wndName, parentWndName, isModal)
void RemoveWindow(wndName)

bool IsEnabled(wndName)

void SetFocus(wndName)

bool HasFocus(wndName)

96

Specification-based GUI Test Automation

bool IsOpen(wndName)
string GetWindowWithFocus()
Set<string> GetEnabledWindows()

Figure 30: Window manager

When a method opens/closes a window it should add/remove that windanto/f
the window manager. When a window is removed, all its child windoesalso
removed. Message boxes are also registered in the window mdnagee not
modelled as separate modules because of their simple struktessage boxes
have a set of buttons (typically two or three) that gpoad to different possible
answers to a question. Acknowledge messages are a speciaf kiiedsage box
with only one button. Such button is pressed by the user as @waaknowledge
the information displayed in it.

There is only one window with input focus, at each time, witlhie same
application. This is the window to which user actions are rddieto. The
window with the input focus must be in the set of the enablediows. A
window is enabled when it is open and does not have a child maa#bw on
top. Typically, two modeless windows belonging to the same applicegiorbe
opened at the same time and it is possible to switch input focus betvese.

The model of the GUIs can abstract the focus property oivihéows. In each
moment, only the set of window&€tEnabledWindows()) with which is
possible to interact with is relevant. This modelling technigile abstract all
"switch focus" transitions between modeless windows. Wherothesfproperty is
modelled, the pre-condition of each method inside a window (module)dshoul
have a clause checking if that window has fod¢dssFocus(windowName));
otherwise, the pre-condition should include a clause checking Wvithdow is
enabled IsEnabled(windowName)).

4.2.1.3. Modelling message boxes

As already mentioned above, message boxes are not modelled as separate modules
(namespace or class). Message boxes have a simple structure thatjoingsrthe

user to press one of the shown buttons. This can easily be modededethod

with a parameter carrying the user's answer.

There are two different kinds of message boxes: the ones iv@tsgme
information to the user and that ask the user to press arblwdn. These are
called acknowledge messages boxes (see Figure 31 noting the "MsgAod; pre

[Action] void MsgAckCannotFindWord()
requires IsEnabled("MsgAckCannotFindWord"); {
RemoveWindow("MsgAckCannotFindwWord");

Figure 31: Message box of acknowledge

97

Chapter IV

and the ones that ask for input from the user and wait until theeamswhosen
from a set of available options (buttons) (see Figure 32 noting the "Msg)pref

[Action] void MsgSaveChanges (string option)
requires IsEnabled("MsgSaveChanges");

RemoveWindow("MsgSaveChanges");
...
switch (option){

case "y /l...;

case "n": /l...;

case "c": /..;

default: //...;

}
Il...

}

Figure 32: Message box with different possible answers

4.2.1.5. Modelling communication between windows

Windows are modelled as separate modules (namespaces or)classes

modularity reasons and to promote reuse. The designer of a eeusablle
(window) defines its state and methods but does not know in advancie kil
of application will make use of them. Method calls betwdenreusable module
and an application that reuses it occur in both directions:

— The application (or test driver) may call methods of the reused module.
From the testing perspective, inputs are methods invoked with
parameters while outputs are the values returned by those methods.

This is the traditional situation in unit testing.

— The reusable module may generate events (originated frooséner

internally generated) that cause the invocation of methods in the

application (or test stub), by some kind of callback mechaf(esent

handlers, or sub-classing and method overriding, or interface

implementation). Again, from the testing perspective, the ougmets

the events and parameters passed to the application, while inputs ar

returned parameters.

Testing the second kind of interaction (callbacks) poses gspdssues and
challenges, as already noted in [184]:

— An application method invoked in a callback may, in turn, invoke
methods of the reusable module (reentrancy situation) and havs acces

or change its intermediate state. Hence, the internal sfathe
reusable module when it issues a callback is not irrelevaoredwer,

some restrictions may have to be posed on the state changes that

application may request when processing a callback.

— During testing, one has to check that: (1) the appropriate cadllzaek
being issued; (2) when a callback is issued, the reusable nmsgule

98

Specification-based GUI Test Automation

in the appropriate internal state; (3) during the processin@ of
callback, the application doesn't try to change the state oétisalrle
module in ways that are not allowed.

Buttons are common in GUIs and are a good example to illustatsmgnication
between a reusable module and an application. Buttons usually $soaated
methods that are called when users press them. These methadsnrannicate
with the other elements of the application where the module is beinglreuse

Another example are dialog windows that can be reused acrossalsev
applications such as Open and Save dialog windows that can be found, fo
instance, in Microsoft Notepad, Microsoft Word and Microsoft Exdal.
Appendix A.1 it is possible to see one solution to model these windowsingm
reusability. Callbacks from the dialog window to the application dkes it (e.g.,
Notapad) are modelled by applying the Observer design pattern [72].

4.2.2. Modelling scenarios

It is also useful to model high-level scenarios that cepgsome user visible
function (or high level requirement) that achieves a user @yuh model typical

ways of using the GUI. Scenarios are constructed on top of atactiions.

Usually, independent scenarios are used to model normal and ereepiser

sequences of interactions. Parameterized scenarios modedteéneat behaviour
of a specific user visible GUI functionality for all possiljarameters' values
(Figure 33).

Scenarios can be used as a mechanism for structuring the GUIimddéerent
levels of abstraction; for testing purposes as a way toifigéest conditions that
would be covered by manual tests and that can be seen asntheumiset of
conditions to automatically test; as a technique to drive thécappn into a
desirable specific state; as a technique to prune the expiogaibcess; and to
guide the process to determine the parameters' domains of theaobades that
will be used by the exploration process to generate the FSM.

Spec Explorer has a mechanism that supports modelling scenarioati@care a
special kind of actions that are capable of invoking other maxt&ins. Scenario
actions are enabled by their pre-conditions. However, unlike other kifids
actions, when a scenario calls other actions, Spec Explor@rdsedhe
intermediate states. When test cases are generatedceih@ris sub-steps (or
sub-actions) are used.

Let us first see which scenarios will have to be modeltedour Notepad
illustration:

OpenScenario:lt is possible to load (open) data from a file in diskh# text in
the main window was updated give an opportunity to save the contzmext file
before opening the new file. Inform the user if the name ofilbéd open does
not exist. This can be modelled in Spec# as shown in Figure 33.

99

Chapter IV

[Action(Kind=ActionAttributeKind.Scenario)]
void OpenScenario(string fileToOpen,
string saveChanges,
string fileToSave,
bool overwrite)
requires IsEnabled("Notepad") &&
saveChanges in Set{"y","n","c"}; {
Open();
if (IsEnabled("MsgSaveChanges")) // if dirty

MsgSvBfrOpen(saveChanges);
if (IsEnabled("Save")) // saveChanges == true

SaveDialog.SetFileName(fileToSave);
SaveDialog.Save();

/I file exists

if (IsEnabled("MsgOverwriteFile"))

SaveDialog.MsgOverwriteFile(overwrite);
if (IsEnabled("Save")) // overwrite=false,
/I so get out of
Il the cycle
SaveDialog.Cancel(); // scenario end
}
}

}

/l(saveChanges != c || !dirty)

if (IsEnabled("Open™)) {
OpenDialog.SetFileName(fileToOpen);
OpenDialog.Open();
if (IsEnabled("MsgAckFileNotFound"))

OpenDialog.MsgAckFileNotFound();
OpenDialog.Cancel(); // end of the scenario

Figure 33: Open file scenario within the Notepad application

SaveScenariolt is possible to save text (new or updated) to a text(fiew or
existing). If the text file already exists, ask the useitsfcontent should be
updated.

FindScenaria It is possible to search a string within a text:
- In a case sensitive or case insensitive way;

— By looking for the string backwards or forwards the current mous
position.

EditScenario: It is possible to type, select, cut, copy, paste, and debdteTtee
occurrences of a given string in a text can be replaced by another anenak ar
step-by-step. Inform the user whenever the string does not occur in the text.

100

Specification-based GUI Test Automation

4.2.3.State machine views

The Spec# specification can be viewed graphically as a FSM bypunded
exploration process. The graphical view gives a more perceivedy} to validate
the model and serves also as a basis for test case gameidtiwever, for
non-trivial systems, the FSM obtained can be so huge thatsargit as a whole
may be unfeasible. To overcome this problem, it is possildenstruct different
views of the same FSM by abstracting some properties. Thess &re smaller
FSMs which allow for validating the model and also defining diffiertesting
objectives and test coverage criteria.

Without restrictions, the state space of a software aiit, S manipulating a
set of variablesy

\/ Z{Vl,...,VM}. 1)

is the Cartesian product of the sets of values which can hgnedsto the
variables in the séal.

S =dom(vy) x--- x dom(vpy|) - 2)

Consider a FSM described as a set of st&e@s, above, an initial statg,; in S

and transitiond = {(s, a, §}, where s ands' are states if5, anda is an action.
Each action triggers transitions which drive the system fooigin states to

destination stats'.

State machine views are slices of the original FSM kwhiffect different state
variable subsets (techniques for automatically identifyinggsieof a program
which affect a selected subset of its variables are knowpragam slicing
[22,88]). State machine views are obtained by projecting the etate the
variable withinv;, PFSM,, wherev; is set of variables that are relevant to the
view/property to analyse. By using operators of relatiotgeglad [188], these
projections (views/slices) are expressed by

PFSM; ={(s a,75,s")|(s,a,s) 0T} 3)

12
1 - projeCtion, e_g_n'BT: (2’5),1'[21- = (2,5),T|:ABT = |:4 5:| ;

o - selection e.g.0 a=1 T = (1,2,3)

T= A B C
2 3
4 5 6

101

Chapter IV

State machine views can also be obtained by projecting dke @tito a set of
expressions over state variables.

There are some typical views that result directly frova structure of the GUIs.
One of them is the navigation map that describes how to opss/slimdows of

the application and also how to switch between the windows ofsanee

application. Other views are the ones that describe the behafieach dialog of
the application abstracting away from the behaviour of the other dialogs.

Although the size of the FSMs that describe each dialog indepgndentuch
smaller than the original FSM, it may remain unmanagealble.challenge is to
determine views with a manageable size (to analyse andhatsstill describe the
relevant behaviour of the system. So, other views for other hig\xgrproperties
can be defined as will be explained later on.

4.2.3.1. Navigation map view

The navigation map of an interactive software system mabielte explained
above, using the window manager and the focus property, can heosined
from the GetWindowWithFocus() method defined within the window
manager (Figure 30). This view can be expressed mathematisdtyg projection
of the FSM states onto the variable that keeps the nanfe afihdow with the
focus (Figure 34).

Navigation map(FSM) = (4)
{(TGetwindowVithFocug) S & 7TGetWindowVithFocus() S*) |
(s,a,s)0T}.

The navigation map view can be obtained in Spec# by

string NavigationMap { get {
return GetWindowWithFocus();

1

102

Specification-based GUI Test Automation

£ T bgA CatFindWord” 2
= "FindHe.. MszAk Ut Find Words) mz“‘o'
. '
" M . g _ ext(2, 2|

Mgk Cant Find Word()

Clasel)

Figure 34: Navigation map obtained from focus property of the windws

The transitions visible at this level of abstractare the switch focus transitions
between modeless windows opened at the same tirge f@nd dialog and
Notepad main window) and transitions that openg&logindows of the
application. All transitions that occur inside tendows/dialogs are abstracted as
one transition from the state group, representiegdialog, to itself.

When the model of the application abstracts theidgoroperty, the navigation
map can be obtained from the metl@etEnabledWindows() defined inside
the window manager module (Figure 30).

Navigation map(FSM) = (5)
{("GetEnabledvindows) S: & 7TGetEnabledVindows)S')
|(s,a,s)OT}.

In the presence of modeless windows, there may bee rithan one window
enabled at the same time, in which case, the me#taths a set of more than one
window name. This is the case of the Find and Repliialogs that appear in
states paired with the Notepad main window in FegRB.

Set<string> NavigationMap { get{
return GetEnabledWindows();

1}

103

Chapter IV

Set{" Msg OmermriteFile"

‘-—M

V P e
&

Sy

]
Figure 35: Navigation map obtained from the enabled windows' propey

Message boxes are a special kind of windows. Shpwhem at this level of
abstraction may introduce too many details. It @sgible to construct another
navigation map abstracting from those message l{&xgsre 36).

string NavigationMap { get{
if (NIsOpen("Notepad™)) return "NotOpen";
else if (IsOpen("Open")) return "Open";
else if (IsOpen("Save")) return "Save";
else if (IsOpen("Find")) return "Notepad/Find";

else if (IsOpen("Replace™) return "Notepad/Repla ce";
else return "Notepad"; }}

Carucel | Samedel)

Closel)
NegSvBECL.

M
4N
. Openf
e I =

Tl T 5

Figure 36: Navigation map obtained from opened windows abstracting
away the message boxes

104

Samei)

Camecel()

Specification-based GUI Test Automation

Test cases generated from these views can be aigest tall possible navigation
paths allowed by the modelled system.

4.2.3.2. How to obtain one view for each dialog/window

The state machine view describing the behavioueawth dialogi, PFSMy;, is
constructed by abstracting the states where thegdi@loes not have input focus.
If the focus property of the windows is not mode|lehe PFSM,; is constructed
by abstracting the states where the dialisgnot open.

Additionally, it is also possible to model the fecproperty of the interactive
objects inside each window. In that case, the \oéthe dialog behaviour can be
obtained by projecting the state of the dialog dhtostate variable that points out
the interactive object with the input focus at easdbment. ThePFSMppenpiaiog IS
given by the 3 groups of states inside the roun@ethngle with dashed line
(excluding the groups that enclose the states wther©®pen dialog is closed and
the states where the Notapd is closed). (Figure 37)

giCtrlFocus("FileNa..

SetCtrlFocus("FileNa.. SetCtrlFocus("Open')

Open()|
MsgOverwrit..

SelText(2, 2)|
Swit..

"OpenDlgClosed"

LaunchNotepad()

MsgSvBfrCL.

Figure 37: Open dialog view obtained from the projection onto th
interactive object with the focus in each moment

When the focus property of the interactive objés@bstracted from the model, it
is possible to obtain the view of the dialog bebawiby projecting the global state
of the modelled system onto the variables thatramipulated (read or written) by
the dialog (Figure 38). The concept of manipulatadable will be explained and
formalized in the sequel.

As an example, the second level of the hierarclsicatture of the Notepad model
for the Open dialogPFSMypenpiaiog that is to say, the projection BEMypenpiaiog
onto the variables manipulated by thpendialog, which ardileNameO (keeps
the name of the file to open), addO (keeps the directory of the file to open),
can be given by the expression:

105

Chapter IV

PFSMopenbialog ={(7TManipulatedVariables(*Opert) (S) a, (6)
TManipulatedvariables(*Opert’) ()
|(s,a,8) 0T Os,s00soper(*Opert) S} -

<string, string> OpenDialogGroup {
get {
if (IsOpen("Open™)) return
<"fileNameO="+fileNameO,"dirO="+dirO>;
else return
<"NotOpen", "NotOpen">;
1

This view will have one state group grouping alites in which th©pendialogis
closed and other state groups (3) grouping aledtstances of the dialog that
evaluate the expression in the same manner, thatsay, have the same values
for the manipulated variables and different valdes the non-manipulated
variables (Figure 38). THRFSMyuenpiaing IS given by the 3 groups of states inside
the rounded rectangle with dashed line (excludimg group that encloses the
states where the Open dialog is closed).

<'fileMameO=* bt", "dirO=E:"> 57y i

SetFileName("foo. htm..

<"fileNameC=~foo htm", "d1rO=E:”> SetFileMName("foo htm.. BetFileMarmeMfoo tat..

Bave()|
Cpen(| |
Ifs.

Cancel() SetFileMName("foo txt. SetFileMName("foo htrm,

—— o = = = =

<"fileNarmneO=foo t=t", "d1rO=E'“> SetFilelame"foo txt

kil L

<"NotOpen", "NotOpen'> Replace

Figure 38: Open dialog view obtained from the projection onto th
manipulated variables

4.2.3.3. How to obtain views showing currently enabled actions

Abstracting the behaviour outside each dialog ptedua huge reduction in the
number of states of the overall FSM. Even so, thésy be not enough. In this
case, it is possible to describe the system atghehilevel of abstraction by
distinguishing, for instance, the states where $he of available actions is
different. This is helpful to check dependenciesvieen interactive objects. In the
case of the Find dialog inside the Notepad apjtinatt is possible to see clearly

106

Specification-based GUI Test Automation

with this view that after filling the text insiddé "Find What" text box, the
"Find Next" button becomes enabled (Figure 39).

string FindCtrlsEnabledGroup { get {
if (GetWindowWithFocus()=="Find") {
if (FindDialog.findWhatF !="")
return "Find Next enabled";
else return "Find Next disabled";

else return "OutFind";

"Find Next enabled") SetMatchCase(false)..
SetFindWhat("") :e'F‘“dWhat(”A")‘

"Find Next disabled") SetMatchCase(true)|.. FPindNexi() MsgAcknCannotFind()|..

FCancel()| FindQ)|
SwitchTo.. SwitchToFin..

Figure 39: Changes in the set of enabled actions inside Find diglo

These views can also be used as test criterianiecking whether dependencies
between interactive objects are correct.

4.2.4.0btain complete models from navigation maps and
dialog views

From the navigation map (containing the transitibetveen the windows/dialogs
of the software application) and the dialog viewlstéined by the projection of the
state onto the manipulated variables of each didg@ould be possible to obtain
the complete FSM describing the software systenis Tieans that this set of
views describes completely the behaviour of théesys

These two views (navigation map and dialogs) casdem as two different levels
of abstraction of a hierarchical structure.

Recall the FSM state explosion problem. Hierardhi€iaite State Machines
(HFSM) cope with this problem. A HFSM is a FSM whovertices represent
single states or groups of states sharing a contharacteristic (and transitions
between the members of the group). These grougtatés (and transitions) are
themselves FSMs. Given a HFSM, it is possible ttaioba "flat" FSM by
recursively substituting each group of states wa#tsociated FSM

A HFSM is well suited to model the behaviour of @IGhe hierarchical structure
of the HFSM can mimic the hierarchical structureobfects and dialogs of the
GUL. For example, a GUI might have a main windowhva top menu (possibly
with sub-menus) allowing the user to open moddbdiavindows. While a modal
dialog window is opened, user interaction withailier currently open windows

107

Chapter IV

of the same application is disabled. This very comrstructure can be modelled
by a HFSM exhibiting one group of states per modialog. Whether not
considering nested modal dialogs, each modal dialag be seen as an
independent FSM.

Such two views of the HFSM and the method to olitaincomplete behaviour of
the system from them will be formalized next.

The case of the navigation map and dialog views tést coverage criteria
purposes will be explained in section 4.3.4.

4.2.4.1. Variables manipulated by each dialog

Recall that without restrictions, the state spatethe application,S is the
Cartesian product of the sets of values which caragsigned to the variables
manipulated by that application:

S =dom(vy) x--- x dom(vpy|) - (7)

Consider an application with two dialod3, andD, From the complete FSM of
the applicationFSM,, it is possible to obtain the subsetsH®M, that describe
each dialogFSM;, by state grouping according to a criteria prodidey the
developer. For exampldsSM,; could correspond to the group of states where
dialogD; is enabled (and the transitions among those jtates

Having delimited the state machiR&M, that describes the behaviour of a dialog
D, it is possible to automatically deduce which abies are manipulated (read or
written) by that dialog.

A variabley; is written by (or is affected by) a dial@yif there is a transition in
Tp (transitions oFSMy) that changes the valuewi64]. Formally,

[ds,a,s') OTp Onyis # myis]= v; is written by D . (8)
A variablev;is read by (or influences the behaviour of) a djédaif at least one of

the following conditions holds [64]:

— there are two transitiortsandt' in Tp and variables, andv in V (not
necessarily=Kk) such that:

(i) the source states ofandt' are different only in the
value ofv;;

(i) t andt' have the same triggering action (action name
and arguments);

(i) the destination states ¢ofandt' have different values
of v; and

(iv) at least one of the transitions (sgychanges the
value ofv;

108

Specification-based GUI Test Automation

— there are two statesands'in Sand a transitiohin Tp such that:
(i) sands' are different only in the value of
(i) the source of is s,

(iii) there is no transition’ with sources' and the same
action ag.

Formally,

(O, t0Tp Om(t) = sOm(t) = sO ©)
mis# misO0] 21 Omjs = 7mj8) 03 (1) = 7o (1) O
| O Dvg OV Onyy (13(1) # 1y (3(t')) O myks # 1k (773(1)).
U =
[Os,s0Sp MXOTp Or(t) =sO

~O'0Tp On(t') = s0

O (t) = o (t') O 7nyi S # 7y S'D(Dj #i0n;s = 7y s')

=vjisreadbyD.

Informally, this means that the response to uséora (and the actions available)
in the context of dialo@® depends on the value af In practice, this means that
any implementation of dialo@® must read (or query) the value waf when
responding to user actions (or when determiningtvhictions are available).

Figure 40: State machine of an application with dialogs D1 (action Al) and
D2 (actions A3 to Ab)

109

Chapter IV

For instance, consider an application with stateabéesV={v,,v,,vs}, and two
dialogsD; andD, with the behaviour described by the state macbiriégure 40.
The state machine also includes transitions (labélj andA;) that do not belong
to any of the dialogs, but allow switching betwdieem.

Dialog D, is enabled whemws=a. Dialog D, is enabled whemws;+a and v;=0.
Given the transition(0,0,a) O - (0L a) in D1, we conclude, by formuld, thatv,
is written byD,. This is the only variable manipulated By. From transition
(00,b) 0% = (00,¢) in D, and formula8, we conclude that; is written byD..
From transitions (00,b) 0% - (00,d) and (00,c) O™ - (00,f) In D, we
conclude, by formula 9, thak is also read byD,. This is the only variable
manipulated byD,.

4.2.4.2. HFSM structuring based on Variables Manipulated by each Dialog

Under certain conditions, there is a relationshggween the state variables
manipulated by each dialdg; and the structure of the FSM of the application
(FSM,), that allow us to structuféSM,into a HFSM (a sufficient condition is that
the enabling condition of each dialog restricts thmmain of each variable
independently of the other variables).

Figure 41: State machines of dialogs D1 and D2 projected from the FSM
depicted in Figure 40. Dotted lines represent test cases

Let PFSMy; be the projection oFSMy; onto the variables manipulated Dy, as
illustrated in Figure 41PFSMy; describes the behaviour Df.

110

Specification-based GUI Test Automation

First level

1
1
1
I
I
!
1
\

vo

.

K3

"
™

Figure 42: HFSM with three levels

In the opposite directior;SMy; is the union of the instances BFSM,; for all
possible combinations of values of the variableg #re not manipulated Hy;
(restricted to the enabling condition D). For exampleFSM, (Figure 40) has 2
instances oPFSMy, (Figure 41) withv;=0 Ovs=a, andv;=1 [vs=a.

Given this,FSM, can be organized into a 3-level HFSM, as illustlain Figure
42.

4.2.4.3. Obtaining the complete FSM from the projections

Consider an application witin dialogs,D = {Dg,... , Dy}, manipulating a set of
variables.

111

Chapter IV

\% :{vl,...,vwl}. (10)

Since there is a domain defined for each variabl¥,ithe state space of the
application,S, considering the restrictions imposed by the a@pfibn, is a subset
of the Cartesian product of the variables' domains:

SO dom(vy) x---x domvpy|)- (11)

Each dialog has an associated enabling condi@iprihat restricts the set of states
where the dialogis enabled:

Ci:S - Bool. (12)

For allsin S at least one enabling conditidd /4 C,,...,G,}, evaluates to true:
OsOSIG O{1,...,mH [C(S) . (13)

The states in each dialog can be obtained by salettte states of the application
whereC; is true.

S =o¢iS, (i=1.m) (14)

Also, the states of the system are obtained frawuthion of states of all dialogs.

m (15)
Usi=s
i=1

LetA ={ay, ..., a} be the set of actions which can be performedis $oftware

application andr /7 SxAxSthe set of transitions whereby. The system catvevo
from one state to another. For each dialdki<m, we can compute the set of its
internal transitiond;.

T, ={(s,as)0T(ss0S}, (i=1m) (16)

For a GUI defined as explained above, it is posdiblpartition the system so as to
obtain the navigation map that shows the transtibat switch between different
dialogs of the system, and one view describing iekaviour of each dialog

independently. The transitionE?, of the navigation map are given by:

T®O ={(s,a,s)0T [€j(9) OCj(s)Di # j}, (=1.m,j=1.,m). 7
The statesSY, of the navigation map can be obtained by:
5O = (00 7 ©). (18)

Another partition of the system isolates the betavi of each dialog
independently. The transition$;®, of each dialogj, shown in this view, are
obtained by projecting the transitions (source daestination states) of dialag
onto the variablesi, manipulated by that dialog:

112

Specification-based GUI Test Automation

Ti @ ={(mjs,a,m;s) {s,a,s)0T}, (=1m) (19)
Accordingly, the states of each dialiogre obtained by projecting the states of the
dialog onto the variables manipulated by that djalo

s@ ={mis}, @(=1m) (20)

Ti® andS® correspond to the second level of the hierarchitrakture shown in
Figure 42 PFSM;;.

From these two views, the navigation map (forniaand the dialogs (formula
19), it is possible to construct the entire systeat ttorresponds to the third level
shown in Figure 42:

o {(s, a,s)OT; Oryi(9),a, i (s)) 0T @ D} CGeim D
T8y \vi (S) = 78/ \vi (S')

T= T ® 07 ® Dthereis a path from Sinit to (T, ¥). (22)

i=1.m

In view of the fact that it is possible to constribe description of the full
behaviour of the system from the description of hebaviour of the dialogs and
the navigation map, they will be used as test @gecriteria for the generation of
test cases to test the behaviour of the GUI. Thiani interest test goal because
these views still capture the requirements of tystesn and have a much lesser
size than the complete FSM.

The following section analyses in more detail thme seduction that can be
achieved when considering the second level of atistn as a test coverage
criterion instead of the third level.

4.2.5.Independent dialogs

Let's quantify the size reduction that is possideachieve by considering the
second level of abstraction instead of the thinélleas a testing goal. There are
two different possible situations that result irotdifferent size reductions: the
case of independent dialogs and the case of depediddngs.

Independent Dialogs

Given two dialogs, if the set of variables writteyn one of the dialogs is disjoint
from the set of variables manipulated by the otdelog, then they are
independent. Informally, two dialogs are indepemndethe behaviour of any of
the dialogs is not affected by the state and iotenas that occur in the other
dialog.

For example, dialog®; andD,, in Figure 42, are independent.

113

Chapter IV

The existence of independent modal dialogs allogvsoureduce the number of
states to consider. Assume we have an applicatibh @ne main window,
described by a FSM witim states, an#t independent modal dialo@, D, ...,Dx
that can be accessed from the main window, €xdieingdescribed by a FSM
with n; states. If the dialogs were not independent (wiltichld happen if they
were modeless), the total number of states of tmeptete application would be
the producimn,-...n, (because a state of the application is a comloinati states
of the main window and the dialog windows). Sinoe assume that thg;s are
modal, only one dialog can be open at each timesude that, in the state
machine that describes each dialygthere is one distinctive state that represents
the situation where the dialog is closed, and &l othern-1 states represent
situations where the dialog is open. The possitates of the application can be
grouped as follows:

— a group representing the situation where all tladods are closed and
only the main window is active; this group will aml-...1 = m
states;

— for each dialod;, a group representing the situation where di&loig
open and all the other dialogs are closed; thmumrwill have
ml-...(n-1)- ..-1 =nr(n-1) states.

Summing up, the total number of states of the appbn ism-(n;+...+ny-k+1).

In the case of an application with modeless dialoglows, a similar reduction of
the number of states cannot be achieved, becausenaamber of modeless
windows can be open at the same time. But, if #febiour of a modeless dialog
window is not affected by the state of another nesfedialog window, they can
be considered independent. Formally, given twoods)| if the set of variables
written by one of the dialogs is disjoint from thet of variables manipulated by
the other dialog, then they are independent.

For testing purposes, it is not necessary to censitl the combinations of states
of the different dialogs, as will be explained Ie tnext section. Basically, it will
suffix to fully test the behaviour of one dialogy fonly one particular state of all
the other dialogs (an instance). Roughly speakimg,corresponds to consider a
reduced state machine similar to the one obtaimeéldel case of modal dialogs, for
testing purposes.

Dependent Dialogs

Two dialogs, B and D, are dependent of each other if they can be opantu
same time and manipulate non-disjoint sets of blrga This behaviour is
illustrated graphically by Figure 43 where the estain each dialog result from the
projection of the states onto the variables maatedl by each dialog. The
illustrated situation means that there is at leas state in dialod; that is
possible to achieve by interacting with anotherodjaD,. In other words, in
Figure 43, the user leaves dialbg, from states;, interacts with dialod,, and
when coming back to dialdD, it will be in a states,, different from the one in
which he left the dialog;.

114

Specification-based GUI Test Automation

PFSM: PFSM,
S1 p(S2

) B

Figure 43: Dependent dialogs

Reducing the state machine with dependent dialegéiawere a state machine
with independent dialogs may remove the behaviaween dependent dialogs
(actionsA; andAg, in Figure 43). This is not desirable becauseliblsaviour may
be interesting for testing purposes. One way toramrae this situation is to
consider both dialogs in one group. So, the possitdtes of the application can
be grouped as follows:

— a group representing the situation where all tladogs are closed and
only the main window is active; this group will lam1-...1 = m
states;

- for each independent dialdg;, a group representing the situation
where dialogD; is open and all the other dialogs are closed;s thi
group will havenr1-....(ni-1)- ...1 = nr(ni-1) states;

- for each set of dependent dialod3;,{.. ,0} a group representing the
situation where at least one of the dialogs ofsieis opened and all
the other dialogs that do not belong to the setchrged; this group
will havem1-...[(n ...n)-1]-1 = m[(ny- ...y)-1] states.

Summing up, the total number of states of the sofvgystem is

m-(ny+...+nN —i-1+[(np ..onp)-1]+1).

4.3. Test Case Generation

Upon structuring the model as explained aboves fgdssible to reduce the FSM
S0 as to maintain one instance of each dialogdbraesponds to a particular state
of all the other dialogs. This reduced FSM willtinn be used as input to a test
case generation algorithm.

4.3.1. Overview of test case generation with Spec Explorer

Spec Explorer automatically generates test casesy fa Spec# or AsmL

specification in two steps (Figure 44). In thetfisgep, a FSM is generated from
the given Spec# or AsmL specification. In the secstep, test cases that fulfil
some coverage criteria are generated from the FSM.

115

Chapter IV

The FSM is generated by bounded exploration ofsthée space of the model.
Some techniques available in Spec Explorer to pthiseexploration are:

—B FSM generatio
— > by bounded
exploration
GUI model Bound
(Spec# or AsmL)

state filters — Boolean expressions that determine which sthies

explore. If the state does not satisfy the givéark then the transition
to a new state is ignored;

additional pre-conditions — definition of additional pre-conditions to
limit the applicability of actions [191];

restriction of the domains — the domains of actions' parameters are
bounded to a finite set of possible values;

equivalence classes this technique partitions states into equivadéenc
classes and prevents further exploration from aate ©f such a class
once a specified number of representatives has besshed. The
exploration algorithm can be configured so as fal@e onlyn states

in each state group with states;

stop conditions— conditions over states that stop the exploratioce
true;

scenarios— allows substituting programmatically generatequgnces
of actions into the test cases produced by the §gplorer in places
where a full exploration is not needed,;

on-the-fly exploration — combines test derivation from a model and
test execution [192] into a single algorithm. Thisolves
non-determinism by getting immediate feedback frothe
implementation and avoiding the pre-computatiothefpossible huge
test case with all possible responses of the systetar test.

‘% Test suite
Spec EXxplorer

Figure 44: Test case generation

Covera Test case
criteria generation

The pruning of exploration becomes crucial wheingl about modelling and
GUI testing. This is because testing an applicatiwmaugh its GUI by simulating
user events entails a significant overhead andltsesn much slower test

116

Specification-based GUI Test Automation

execution than testing an application through iBl.AThe main challenge is to
generate a test suit of manageable size whilgugltanteeing adequate testing.

As soon as the FSM is constructed, and the coverdigeia chosen, a traversal
engine is used to unwind the resulting FSM to pecedoehavioural tests that fulfil
the coverage criteria. The coverage criteria cagebé¢o:

- Full Transition Coverage: the test suite generated covers all
transitions of the FSM. In addition, this algorittean be configured
SO as to generate test segments/paths that whemes&ible return to
the initial state, and can also be pruned so generate test segments
bound by a given number of transitions;

— Shortest Path the test suite generated is the shortest patju¢see of
transitions) that reaches a specified goal state;

- Random Walk: generates a test suite with a single sequence of
invocations. At each state, one of the outgoingsiteons is randomly
selected.

Actions known agprobesare checked in every state of the resulting testd,do
not take part in coverage considerations.

4.3.2. Domain definition

Spec Explorer does not provide support for thenitedih of the domains of the

parameter actions. This has to be done manuallthéyser and it is a crucial
point in the testing process. Domains have deemdmin the FSM generated by
exploration of the model. A random definition oétdomains may result in a FSM
that does not have relevant properties from théntgpoint of view. Generating

test cases from a FSM like this will not be vergfusbecause it will not test some
relevant properties or, in the worst case, it nit test anything useful.

The high level scenarios, described in section 24.2dentify the main
functionalities of the Notepad application. Thewa#e the requirements of the
application and can be used for requirement coecaaglysis. One way to do it is
to apply structural coverage analysis on the soesiadescriptions in order to
determine the domains' variables needed to achimrefull coverage. There are
different types of structural coverage criteriaatstnent coverage, decision
coverage, condition coverage, condition/decision vecage, modified
condition / decision coverage (MC/DC), and multiglendition coverage [91].
The scenarios identified are analysed so as torrdigte which domains to
associate to the variables to use. The criterioadus this analysis is a
generalization for non-Boolean variables of the BIC/criterion by showing that
each input variable affects independently the fonetity under test. The result of
analysing the scenario of Figure 33 with such cagercriterion, which we call
"full coverage of functional dependencies”, is slarized by Table 1.

The variable domains needed to test the open awvel sffiects described by
scenario in Figure 33 are the rows with grey shgdinTable 1. This set of rows
show that each condition affects independentlyotiteome of the decision (save

117

Chapter IV

or open). The MC/DC criterion needs a minimummel test cases for a decision
with n input variables. In this case (Table &}22 test cases are needed because
saveChangesan be set to three different valu¥sN, or C).

Domains are necessary to produce all the effeetgtifted by the scenario but are
not sufficient. The FSM generated from the atongitoms may not explore states
or intermediate states that would be needed toysmthe complete desired effect.
So, after defining the parameters' domains thatuaegl in the generation of the
FSM (without scenarios), it is necessary to chéaké FSM generated has the
properties considered relevant from the testingpesmtive. This is a process of
model validation that should precede the test gaseration activity.

Inputs Effect

dirty | Exists(fileToOpen)saveChanges Exists(fileToSav@yverwrite| Saved? | Opened?
T 4o |T A Y - T ? Tat T 4
T T Y 41 F » . A4 s T4
T|IT Y Y Yl T
T T N v |) =4 T
i) C v)) VF FV
F F - - - F F
T F N - - F F
T F Y - T T F
T|IF ¥ Y F : T FY
FYT i i i F' T

Table 1: Conditions for testing the save and open effects insideet Open
scenario

4.3.3. Test coverage and adequacy criteria on the FSM

The definition of a good test criterion is impottaior scalability purposes.
Executing all possible test cases during softweséirtg is not realistic due to the
number of test cases, meaning that we need tot $eftcases. Test coverage and
adequacy criteria are a set of rules that guide gieeration of a test suite
determining when to stop the generation, whethesugh testing has been
performed or further tests are needed, and pradabjective measure of the test
suite quality (adequacy for testing the softwarsteay). An ideal test criterion
would be capable of generating the smallest tast #siat could find (if not all)
the maximum number of errors of a software system.

Spec Explorer provides a set of test coveragerierite construct a test suite from
the generated FSM (transition coverage; shortesh; pand random walk).
However, if the FSM from which test cases are gmeer does not have the

118

Specification-based GUI Test Automation

desired properties, these criteria can comprorhisetiality of the tests. A proper
choice of the parameters' domains is crucial buhds sufficient to assure a
generation of a good FSM. For example, it coulgpbssible to have actions that
are allowed only in specific states (where pre-éod holds) that are not

possible to reach because the model does not dligmodel error), or because it
is not possible to reach them within certain tinnaits or within certain memory

limits. So, adequacy criteria must be defined @ F$SM to evaluate its quality
(model validation) in terms of relevant propertiesn the testing perspective.

There are several adequacy criteria that coulddaeel to evaluate the quality of
the generated FSM (from the previously defined dolmaariables): specification
coverage; scenarios; functional dependencies; apemse situations; and
projections of the state machine.

Some of these criteria can be easily checked Wwélctrrrent functionalities of the
Spec Explorer, others could be easily implemengedxdensions to the tool like,
for instance, adding model checking techniques.

Specification coverage

Specification coverage criteria aim to evaluat¢hd generated FSM covers the
specification. This corresponds to applying white-btechniques on the
specification that are traditionally applied on eod

It is possible to define coverage criteria to covare or less detailed aspects of
the specification. The minimum required specificatcoverage criterion would
be to assure that all the actions in the specifinare within the generated FSM.

Other coverage criteria exist which aim, for insnat covering all statements or
conditions within the specification. One way to leade these coverage criteria
with the current functionalities available in thpe8 Explorer tool would be to
change the specification so as to construct oneraftir each of the statements or
conditions, with appropriate pre-conditions, andahif those actions are within
the generated FSM.

Scenario coverage

Scenario coverage criteria aim at evaluating if gemerated FSM covers all
possible statements and branches in the specifipddvel scenarios that describe
the main functionalities of the system. One wapédorm this check is to specify
FSM views so as to describe each scenario indepnd8uch views show the
windows and dialogs with which the user interactthvalong the described
scenario. Then, each of those views are analyssgégcted visually) in order to
evaluate if all possible paths described by thampaterized scenario are present.

For instance, one way to check if the scenarioriesst in Figure 33 is present in
the FSM generated by the atomic actions is to ib#dview in Figure 45.

119

Chapter IV

string OpenScenarioGroup { get{
if (lIsOpen("Notepad")) return "NotOpen";

else if (IsEnabled("MsgSaveChanges") && svBfrOp en)
return "MsgSaveChanges";
else if (IsEnabled("Save") && svBfrOpen)return "Save";

else if (IsEnabled("MsgAckFileNotFound™))
return "MsgAckFileNotFound";

else if (IsEnabled("MsgOverwriteFile") && svBfr Open)
return "MsgOverwriteFile";

else if (IsEnabled("Open™)) return "Open";

else if (dirty) return "Dirty";

else return "NotDirty";

1

Mg CrremariteFiley" ..

Close)

Figure 45: Open scenario view

Another way to check if the scenario is presenttha generated FSM, but
currently not supported by Spec Explorer, woulddexpress all different paths
of the scenario as high level temporal logic foranaind use model checking
techniques to produce counter-examples showingthizse paths are within the
model.

~E[O(IsEnabled("SaveChanges")-> o(IsEnabled("Open™))]

~E[¢(IsEnabled("SaveChanges")-> o(IsEnabled("Save"))]
~E[IsEnabled("SaveChanges ")->
o(IsEnabled("Save")-> o(IsEnabled("Open™)]

Since the high level temporal logic properties asgated, should the model
checker find a counter-example for each of them the scenario is fully within
the generated FSM.

120

Specification-based GUI Test Automation

Functional dependencies coverage

Functional dependency coverage criteria aim touatal if the generated FSM
covers all functional dependencies needed to shHmat &ll variables affect

independently the behaviour of the system. Thisewamye criterion is a

generalization for non-Boolean variables of the BIC/criterion. The tables

constructed throughout the domain's definition hayused as a base to perform
this check.

Special cases coverage

Special case coverage criteria aim at evaluatinpefgenerated FSM covers all
the identified boundary test conditions. Boundaest tconditions correspond to
situations near limits of valid ranges where eriames most likely to occur. Some
of these situations may be covered only by huge $8M sometimes it may be
useful to define scenario actions to drive the igppbn into such states, goal
states, where those boundary situations happenvasy do reduce the required
FSM size needed to cover them.

One way to check if the special cases are presetitei FSM generated by the
atomic actions is to define different views of thedel expressing those situations
as FSMs.

An example of a boundary test condition relateth&find functionality inside the
Notepad application can be: "the cursor's posisoim the middle of the word to
look for". This can be expressed in Spec# as:

string AtTheMiddleGroup { get {
if (Exists{ i in Set{0..text.Length};
posCursor>i && posCursor<i+findWhat.Length &&
i==text.IndexOf(findWhat)})
/I IndexOf reports the index of the
/I first occurrence in this instanc e of
/I the findWhat word
return "InTheMiddle";
else return "NotInTheMiddle";

and visualized in the Figure 46.

"NotInTheMiddle" >)

SelText(0, 0))
InsT..

GetText()Maa"
Rep..

SelText(1, 1)|
Find..

"InTheMiddle"

Figure 46: Coverage analysis of a special case condition

GetText()/"AaA"|
Fi..

121

Chapter IV

State machine projection coverage

State machine projection coverage criteria evalifatee generated FSM covers
relevant projections of the system. One of thesgeptions is the one that
describes the independent behaviour of the dialtgn the application and the
navigation map. The algorithm developed to reduee complete FSM while
guaranteeing this coverage degree will be the stibfehe following section.

These views are of interest as testing goals becdlisy still capture the
requirements of the system and have a much leizesthan the complete FSM.

4.3.4. FSM reduction

A pruning technique, based on the state machirjegiions criteria, was added to
Spec Explorer to reduce the size of FSMs obtaineah 1GUI models [151]. The
FSM is organized in a hierarchical structure (hssttated by Figure 42) that is
used as input to the FSM reduction algorithm. Birdhdependent dialogs are
identified and highlighted in a HFSM built from tR&M. Then, the portion of the
FSM that describes each dialog is reduced. Spetoixpgenerates test cases
from the reduced FSM, and tests the conformity betwthe specification and the
implementation. To evaluate the conformity betweerspecification and an
implementation/GUI, additional functionalities must developed to observe the
GUI updates resulting from the interaction. TikgetText() method to
observe/read the text in a textbox is one examplthase functionalities (see
Figure 29 at page 96).

Using the transitions’ state coverage criteria énagate test cases from the state
machine of Figure 40 (with 18 transitions) we wogkt 4 test cases (paths) with
21 steps:

(00,a) Or% - (00,b) O - (00,d) O - (00,€) O - (10,a) OM — (11, a) O - (11 a)
(00,2) O - (00,b) O% - (00,c) O - (00, f) OIS - (00,€)

(00,a) O™ - (04,a) O™ - (0La) 0% — (0L, b) O — (0L, d) O™ - (0L e) O - (11,a)
(00,a) O™ - (01,a) O - (04,b) OCF - (01,¢c) O — (01, f) O — (0L €)

SinceD; andD, are independent dialogs, they don't need to kedesvery time
variables on which they don’t depend change. Omnly imstance of each dialog
needs to be tested. To test dialog the values of the variables that are not
manipulated byD; are fixed to a particular value, and the transiostate
coverage criteria is applied to the PFSVDpto generate test cases. For example,
to testD; we could fixv,;=0 (vs=a is already fixed) and generate the test case
illustrated by the dotted line in Figure 41. TottBs we could fixv,=0 (v,=0 is
already fixed). With this approach, only 7 tramsis are exercised, instead of 21.
The instances dP; andD, that are tested are the ones shown on the left-bide

of Figure 40.

To fully test the application, actions that do hetong to these dialogs, also have
to be exercised. This is the case of actidpandA; in Figure 40. Applying the
same approach to each of these actions (each arteeaa&garded as a dialog with

122

Specification-based GUI Test Automation

a single action), we conclude that only one instamiceach action need be tested
in this case. For example, we can exercise (test)nistances of, andA; shown

as thick lines in Figure 40. Overall, the transiicdhat need be exercised are all
the transitions shown as thick lines in Figure Blree test cases (paths), with a
total of 10 steps, are enough to cover them. Saitteeof the test suite is reduced
from 21 steps to 10 steps:

(00,2) O - (01,a) O - (0La)
(00,a) O - (0Lb) O — (0,0,d) O - (0,0,€) O - (1,0,a)
(00,a) O — (00,b) O — (00,c) O - (00, f) O = (00, €

In some cases, it is not sufficient to test onlg amstance of each dialog. After
assuring that one instance is fully tested, a stdostance may have to be
traversed (usually only in part, by the shortesh)pi order to reach some state or
transition that has to be exercised. For exammesurae that, with respect to
Figure 40, it is important to reach stgf&1,e) because it is the source of a
transition that has not been tested yet (not repted in Figure 40). In such case,
the path shown by the dotted lines of Figure 40 hbs to be included in the test
suite.

In order to explain this FSM reduction algorithransider,
- S-set of all states of the software application;

- D, , where I<i< m —dialog (first level of Figure 42);

The algorithm starts by selecting one instancesgltr, for each dialog/window,
i. Each dialog can have different instances thatespond to different values for
the non-manipulated variables of that dialog. IguFé 40 it is possible to see that
dialog D; has two instances that correspond to two diffensities for the
non-manipulated variable (the first one) namely@ 4. The set of all instances of

one dialogi, l;, can be obtained by projecting its stat§s,onto the variables
non-manipulated by that dialoy { v).
li =m/wi(S), (=1.m) (23)

The instance to test is selected from thel;satd corresponds to fixing the value
of the non-manipulated variables

lt1i O, (i=1.m) (24)

and then calculating the states to test in eadbgigSTT), which are given by

STT ={s0S O&/\vi(9 = I}, (i=1.m) (25)
The states not to test (the excluded states) logliare given by,
SNTT=§ \STT, (i=1.m) (26)

123

Chapter IV

The states that do not belong to any dialog arestidies of the main window. To
ensure that those states are not excluded frorR$iM: another step is performed
in the algorithm: it selects all states of the maindow given by

(27)
S\{ J sT%0 [JSNTT

i=1.m i=1lm

and ensures that there is a path to each of thates $y calculating the minimum
path to reach them from the starting state. Altestahat are traversed by these
paths are added to the set of states to &Ki)(It may be possible to add states
that were previously in an instance not to test.

It is important to have in mind that the exploratjgrocess may be stopped by the
user before ending. This means that the instantabeodialogs may not be
completed. So, instead of selecting randomly atant® to test, it is important to
test an instancd, with maximum number of states, that is, whichysbe
(28)
Oj =113, j #kC¥{sOS Uy \vi(9) =1} #{sOS Try\vi(9) = 1k}

Once FSM is reduced, an algorithm to calculatetéise suite may be applied. In
general, the selection of sequences ensuring lhaft the application’s behaviour
is exercised, is a problem as hard as decidingahehability of a state. Partial
order reduction (POR) techniques used in model kithgd156] address a very
similar problem: Given a property of the systeng..ea temporal property
describing the reachability of a state, POR redticesiumber of states that must
be explored in order to decide whether the prophdids for the entire state
space. POR exploits redundancies of the state dpecehe commutativity of
enabled transitions.

4.4. GUI Mapping Tool

As already mentioned, to perform conformance tegith Spec Explorer, a
binding or mapping between the model actions amldmentation methods in a
.NET assembly must be provided. When the implentiemtais a .NET
application, the mapping can be easily establigiece the model is written in a
.NET language as well. For APIs exposed by othearmeesome glue code might
be needed to map forth and back the data and metdtsd However, when the
application’s functionality is only exposed throut GUI, then the application
must be driven through the GUI's abstraction lapgrsimulating the actions of a
user interacting with it.

124

Specification-based GUI Test Automation

GUI
modelling

AN
Test case — GUI mapping >
generatior ég; —— definition . %

! Spec Explore GUI model GUI mapping
— (Speci or AsmL) tool

GUI mapping
Test suit code
L

> Test
exewtion %
l Spec Explorer -

GUI application
Under test
(binary executable)

B

Test results
Figure 47: GUI modelling and testing process

In previous experiences of using Spec Explorer todeh and test GUI
applications [151], it was realised that, evenhe tase of simple applications
such as Notepad, the manual building of the GUI pimap code, the code that
maps forth and back the data and method calls,uwpgactical and required too
much effort. To solve that problem, a GUI Mappingol was developed and
integrated with Spec Explorer (see Figure 47).

The GUI Mapping Tool assists the user in relating model actions ("logical”
actions) to "physical" actions on "physical” GUlj@etts. A major difficulty solved
by the tool is the identification of the GUI phyaiobjects that the model actions
refer to. The mapping code is automatically gemerdtom high-level mapping
information and methods of the intermediate code automatically bound to
related modelled actions of the specification. AH# these steps, test cases can
be finally generated and executed and inconsisenogtween the specification
and the implementation are reported. Further in&tiom about this tool will be
provided in the sections which follow.

Model-to-implementation mapping with the GUI Mapping Tool

The aim of the GUI Mapping Tool is to reduce thenoel work involved in
model-based testing of software applications thinahgir GUI.

As already mentioned above, the GUI Mapping Togists the user in relating
the logical actions described in the model to ptgisactions on physical GUI
objects of the application under test (AUT). Thaslt(Figure 48) has a front-end
(Figure 49) that shows the mapping information gegtl so far and gives access
to the GUI Spy tool and the GUI Mapping Code Getmerdl he Spy tool is used
to get information about physical GUI objects ie thUT, in a way similar to the

125

Chapter IV

Spy++ tool that ships with Microsoft Visual Studibhe code generator exports
mapping information to XML files and C# the mappinfprmation gathered. The

C# code generated is based on calls to a reusall@ &t Library. Further details

will be provided in the sequel.

2: make GUI object visible

!

3: use to point | GUI Spy tool e
out GU| object ™| i DR L 2
\ J GUI Application Under
¢ Test (bin. exec.)
()
1: sele¢t model | Front-end
action >
. J
¢ GUI action/object
@ GUI h mapping (XML)
Mapping Code
Generator
_ J ; .
‘5:% GUI object mapping
GUI model GUI mapping (XML)
(Spect or too

AsmL) > <:>
C#
GUI action
mapping code

Figure 48: Architecture of the GUI Mapping Tool

The GUI Spy tool

The GUI Spy Tool is accessible from the front-efithe GUI Mapping Tool (see
Figure 49). It allows the user to point out the sibgl GUI object that is the target
of each logical action specified in the model.

% Windows Binding

Spy Tool @
Bindings
Actions Logichame ClassName | ControllD | Parent Caption SubOption -
internal void MyMotepad.Open() MyMetepad.Open Motepad - - Untitled - Notepad ~1'&0pen...Cirl+01
internal void MyNotepad InsText(string) MyNotepad Text Edit 15 Untitled - Notepad - -
internal void MyNotepad Close() MyNotepad.Close Notepad - Untitled - Notepad "6\E&xit]
internal string Myhotepad. GetText(string) MyMNotepad. Text Edit 15 Untitled - Notepad - -
internal void MyNotepad SelText{int.int) MyNotepad Text Edit 15 Untitled - Notepad - -
internal void MyNotepad. Find() MyNotepad. Find Notepad - Untitled - Notepad ~B\&Find... Ctrl+Fl
internal string FindDizlog.Direction(string) FindDizlog.Direction Button 1072 Find Direction -
internal string FindDizlog Find\what(string) FindDizlog Findwhat Edit 1152 Find -
» internal bool FindDialog MatchCaselbool) FindDizlog. MatchCase Button 1041 Find Match &case
internal int FindNizlon Caneeall FindNizlon Cancel Fartton 2 Find Cancel - | Jﬂ
4 L3
XML Files Application Under Test
GuUl bj — Bath -
mapping |Nntepad0h]-‘4t:t;fm| ath : |Ncrtepad Exe
GUI ebject mapping : [NotepadObjaxml Start Function: [void MyNotepad LaunchMotepad) = | Submit

Figure 49: Front-end of the GUI Mapping Tool

126

Specification-based GUI Test Automation

After selecting the logical action in the main gffist column), the user drags
and drops the spy icon on top of the correspongimgsical GUI object in the
AUT. If the desired GUI object is not visible, thiger will have to interact also
with the AUT in order to make it visible. The phyai properties of the GUI
object selected, as well as a logical name infelosethe tool (to be explained later
on), are then displayed in the grid (see Figure 49)

™ Menu Data g@@
Select a Menu item:
Mone .

“InANewCid+N
“1"&0pen .. 0Ctr+0
“2ASavellin=5
“3\Save &hs...
“4"Page Setéup...
“B\&Print...0Cirl+P
“ENE &t

-1 -
TR W T

<] | 2l
Submit

Figure 50: Selection of menu options

The Microsoft Visual Studio Spy++ tool can only lyat information about proper
windows (or GUI objects with a window handle). Qaol goes a bit further: it
can also gather information about window menus.t&iers wanting to establish
a relation between a specification method andean ihside a menu, can drag and
drop the mouse on top of the window that contahes menu at which time
another window (at Figure 50) is opened with adl Hubmenu options, allowing
then to choose submenu options ("SubOption” colamfiigure 49). A similar
option exists for controls such as tab pages avltbdzes.

Logical names of GUI objects

Every physical GUI object is associated to a ldgicame. This keeps
specification and implementation levels independemnt allows the generation of
code more readable and easier to construct manifaliysired.

Default logical names are automatically generatethb tool. The logical name is
equal to the namespace name followed by the nantikea$pecification method
without prefix Set Get etc.). In order to obtain the same logical naoreafl the
logical actions with the same target physical abj#ds desirable that the names
of those actions are constructed with a differeafip and the same sulffix.

127

Chapter IV

XML files generated

The mapping information captured is saved into XML text files:

- a file with the mapping between model actions drellogical names
of the target GUI objects (GUI action/object magpirle in Figure
48);

<Action id="internal void MyNotepad.Open()">
<LogicalName>MyNotepad.Open</LogicalName>
</Action>

- afile with the mapping between logical names amgsjzal properties
of GUI objects (GUI object mapping file in Figur8)4

<GUIObject logicalName="MyNotepad.Open">
<ClassName>Notepad</ClassName>
<Caption>Untitled - Notepad</Caption>
<SubClassName>menu</SubClassName>
<SubOption>&0pen...Ctrl+O</SubOption>
</GUIObject>

The mapping information needs to be gathered juse dor each application. But
if the specification is changed and the mappingrmftion has to be updated, the
XML files can be loaded by the GUI Mapping Tool fgpdating. The XML files
can also be changed directly by the user.

These XML files are also used for code generatiod test execution, as is
explained in the sequel.

GUI Test Library

The C# code generated is based on calls to a deusabl test library that
provides methods to simulate the actions of a uswracting with a GUI

application and observe the content of GUI objetlss library was constructed
in C# extending a previous existing library to bigghe needs.

The GUI test library provides three kinds of meth@éigure 51):

- methods that act upon GUI objects simulating ther,uske sending
text to a control that accepts text inp8e(dText). The target GUI
object is identified by its logical name. Each noethmay have
additional parameters with information needed tdgoen the action.

- methods that observe properties of GUI objectse like text
(GetText), insertion point GetlnsertionPoint), and selected
text (GetSelectedText) of a text box. The target GUI object is
also identified by its logical hame. The return walconveys the
information requested.

- methods that provide physical information about Gblbjects
identified by their logical names in order to idgnthose objects in
the real AUT. This information may be loaded frorKML file.

128

Specification-based GUI Test Automation

/I To act upon GUI objects

void Click(string GUIObjName);

void SendText(string GUIObjName, string txt);

void SelectText(string GUIObjName, int start, int e nd)
void SelectSubOption(string GUIObjName, string opti on);
void SelectCheckBox(string GUIObjName, bool check);

void SelectListindex(string GUIObjName, int index);

void SelectMsgBoxOp(string GUIObjName, string optio n);

/I To observe properties of GUI objects
string GetText(string GUIObjName);

string GetSelectedText(string GUIObjName);
int GetlnsertionPoint(string GUIObjName);
bool GetCheckBox(string GUIObjName);

int GetListindex(string GUIObjName);

/I To map logical object names to physical objects
void LoadXMLObjMapping(string XMLFileName);

Figure 51: Examples of methods implemented in the GUI testdiary

Rules for mapping logical actions into physical actions

Besides identifying the physical GUI object thattie target of each model action,
it is also necessary to select the appropriate edeffom the GUI test library,
which will simulate a physical action of the usertbat GUI object.

The GUI Mapping Tool automatically infers the agmiate library method based
on the type of the GUI object, and the signaturthefmodel action.

Some required heuristic rules are:

When the sub option is filled in the mapping infation, it is assumed
that the logical action is modelling the actionaofiser selecting a sub
menu option, a tab option or a tool button insidetoalbox
(SelectSubOption method in the test library). This is the case of
actionsOpen, Close andFind in Figure 49.

When the logical action is an inspection method, datring as return
value and is mapped to a textbox, it is assumetdttisamodelling the
eyes of the user looking at the content of the bi@xt thereby
retrieving the textGetText method in the test library). This is the
case of actiofsetText in Figure 49.

When the logical action's name hsest as prefix, is mapped to a
textbox, and has one parameter of string types @sisumed that it is
modelling an action that replaces the content ef rilated textbox
with the contents passed in the parameter.

When a logical action has a string parameter ancthapped to a
textbox, we assume that the action is modellingeaent that sends
text (SendText method in the test library). This is the caseaifoms
InsText andFindWhat in Figure 49.

129

Chapter IV

When the prefix of the modelled action's namengg and the logical
action has one parameter of string type, it is rassl that the
specification action is modelling the interactioithwa message box
window by pressing the specific button that hasdéyetion passed in
the parameter.

When the prefix of the modelled action's namadk, it is assumed
that the specification action is modelling the pbsgk action of
pressing the button of an acknowledge message box.

When the logical action has neither parametersetarn value, and is
mapped to a button, we assume that physical adido click the
button Click method in the test library). This is the case afom
Cancel in Figure 49.

When the logical action is mapped to a ComboBox had one
parameter of typént, it is assumed that it is modelling an action that
selects the item from the list of items in the posi given by the
parameter.

Code generation

Spec Explorer requires actions in the model to band to implementation
methods (in a .NET assembly) with identical signegu(identical return type,
number of parameters, and parameters' types). [fibtlfis requirement, the tool
generates C# code with methods with the same signas the model actions, as
illustrated in Figure 52. For each logical actianmethod is generated with the
same signature, calling the method of the GUI Tdstary inferred according to
the rules described before, with the logical naméahe target GUI object as
additional parameter.

#region automatically generated code

class GeneratedCode{

public static void LaunchNotepad()}{
LoadXMLObjMapping("C:\\temp\\Notepad.xml");
new App(@"Notepad.exe");

public static void Open(){
UserEvents.SelectOption("Notepad.Open™);

}
public static void InsText(string pO){
UserEvents.SendText("Notepad.Text",p0);

}
public static string GetText(){
return UserEvents.GetText("Notepad.Text");

}
1.

#endregion

Figure 52: Excerpt of the code generated automatically for the Noteyl
example

130

Specification-based GUI Test Automation

The start function launches the application andisethe mapping information
between logical and physical GUI objects from tHél @bject mapping XML file
(in Figure 48). Every function has one parametdhwie logical name of the
interactive object where the action will take effand possibly other parameters
with data needed for the action, e.g., text to seraltextbox.

Only one instance of the AUT should be opened wdveatuting the test cases.
Otherwise, the tool can pick the wrong window tlampromising the test cases.
This problem can be partially solved by generatiegt cases that return to the
initial state. However, when a specific path doesran till the end, for instance,
because an error was detected, it may leave winddwise application opened.
To overcome this problem, some code is added migntalthe start method
(LaunchNotepad) to close all windows that were opened by the iprey
testing trace/path.

Test execution

As soon as the mapping code is available and cedhjiito a library, a reference
to this library is added to the Spec Explorer mhjeand the test cases are
generated, it is possible to execute the test cas@momously without user
intervention.

Let's assume we have a deterministic model. Thaoh @est case consists of a
sequence of steps. For each step, a specificatationaand its related
implementation method are executed in lock-step engelg., theClose()
method in Figure 53). At the implementation levadch method does a call to a
method defined in the generic GUI test library (eQfick() in Figure 53) that
interacts with the GUI AUT simulating the user an8. The query actions (with
the Get prefix) get information about interaction objectoperties that are
compared with the expected values obtained fromspheification. Whenever
inconsistencies are detected, they are reported.

In GUI testing, inconsistencies between specificetiand implementations can
rise for several reasons:

- the model is trying to act on a control that is apabled or cannot be
found,;

— the model is trying to act on a window that is redchable or is not
opened (e.g., a modal dialog is open and the wingewant to reach
is behind that dialog);

— the expected result was not displayed (e.g., dtextioes not display
the expected content).

The path that gave rise to the error must be aedlis infer the actual reason for
the error to happen.

While testing Notepad, we discovered two sequentestions which lead to an
inconsistency between our intuitive model and tttea Notepad application:

131

Chapter IV

1. Type text.
2. Search for text using the find dialog (Ctrl-F). €dathe dialog.
3. Open the replace dialog (Ctrl-H). Close the dialog.

4. Press the F3 key (shortcut for "Find Next").

Notepad will search upwards instead of downwards.

1. Type text, for instance, "aaa".

2.Search for text (e.g., "a") using find dialog (&#l in upward
direction. Close the dialog.

3. Open the find dialog (Ctrl-F) and close it immedlat(press Cancel
button).

4. Press the F3 (shortcut for "Find Next").

Notepad will search downward instead of upwardxgeeted.

These are sequences of events that manual testl woalbably miss since they
aren’t common sequences of events.

—

GUI object

mapping
(XML)

GUI mapping code

e.g. CIose(F |Actual result (bin. exec.)
Y

&

C#

e.g. Click(...) e.g.
— >
((SendMesane("~
«— «—

GUI test

GUI application

library under test

y

_, Execute

Test suite

Compare }%\

e.g. Close()

‘5% Test result
Spec Explorer

Expected
result

GUI model
(Spec# or AsmL)

Figure 53: Test execution

4.5. Conclusions

This chapter presented the main contributions ofamrk, namely, an approach to
model GUIs with HFSMs and to generate test cases fsuch models in an
optimized way, taking advantage of the hierarchétalcture.

The Spec# specification language, developed by ddaft Research based on
Abstract State Machines, is used to construct thdemof the application. This
model was converted automatically into a FSM udimg Spec Explorer tool

132

Specification-based GUI Test Automation

which is a model-based testing tool also develdpeticrosoft Research. With
the definition of expressions to construct stateups, it was also possible to
structure the model into a HFSM. This tool is alsed to generate test cases and
execute them to perform conformity checks betweespecification and an
implementation.

The Notepad application was used as a running eeatmilustrate our approach.
It was possible to reduce the states of an intiedmplete model of the Notepad
application from 69 to 41 states using the strigctfrthe corresponding HFSM.

To test conformity between the specification arelithplementation, intermediate
code in C# code is needed to simulate the useoractinteracting with the

application. Our approach automates this task thawk a tool, called GUI

Mapping Tool, which was developed on purpose.

The Mapping tool reduces the effort to test apglices through their GUI based
on a formal specification in Spec#. This tool iseatension to Spec Explorer tool
that already supports modelling, test case generaind test case execution.

An overview of the GUI model and test process wasided and the components
of Spec Explorer as well as the components ofdbketxtensions were described.

The GUI Mapping Tool has three components:

— a Spy tool that captures information about the net@ractive objects
where modelled actions occur;

- a front-end that maps the modelled actions toabgcts by dragging
and dropping the mouse on the real interactiveotdije

— a code generator to construct code simulating ther wactions
interacting with the GUI AUT;

The tool has some limitations: it requires manwefinition of input domains; it
only addresses Windows applications; and it doest meal with
internationalization, i.e., variable name mappings.

Spec Explorer together with the GUI Mapping Tooh ¢z used to test existing
software applications, or it can be used to asisistievelopment of new software
applications and to test them through their GUlL.the former case, a reverse
engineering process could be useful to construcbdel, or part of the model, of

an arbitrary application exhibited by its GUI. hetlatter case, the specification of
the application (or part of the application) is swocted later on to be

implemented and tested using automatically gengratgpping code.

133

Chapter V

Case studies

This chapter presents some case studies whicltratasand
evaluate the specification-based testing approemboged in this
dissertation.

The specification-based testing approach put fatway this dissertation was
validated with the help of two experiments perfodn@n two different kinds of

software application: Microsoft's text editor Notep and a Java software
application which manages database files of cos{@address Book).

Each of these experiments involved the construciwdnthe corresponding
software application models, test case generadiot execution.

The Address Book application is based on the Stan@éidget Toolkit (SWT).
SWT is a set of GUI widgets and related classeshvhre integrated with the
native window system and can be used to build ¢ig@nt user interfaces in Java.
SWT has been developed by the Eclipse FoundatiBM,(lIintel, Borland,
Computer Associates, etc.) as a part of the oparesoEclipse platform made
available in an operating system independent manner

The Address Book software application was modifiétth injected errors so as to
evaluate how sharp the approach is in fault detgctiThe same was not
performed on the Notepad application because iteceacode was not available.

The experiments were performed by a HewlettPackaadilion Notebook
dv1140EA with the following characteristics:

— CPU: 1.60GHz Intel Pentium M 725 processor;
- RAM:1.21GB

135

Chapter V

— Operating System: Microsoft Windows XP.

Whenever possible, quantitative measures concethege two case studies are
presented.

5.1. Notepad application

Notepad (Figure 54) is a basic text editor thapshvith the Microsoft Windows
operating system. It can be used to edit, viewgterand update simple text files:

Edit — The GUI makes it possible to type text; selegt;tcut, copy, paste, and
delete text; and replace, all at once or one by threeoccurrences of one string in
a text by another one.

View — The user can open an existing text file in dimigwse through the text,
and search for the occurrences of a string indgkie(Find) in the following rules:

— case sensitive or case insensitive way;
- backwards or forwards with respect to the curreotige position.

Create or update — the user can create a new text file (save), pulate an
existing text file (overwrite) in disk.

B Untitled - Motepad g@@l

File Edit Format Wiew Help

Figure 54: Notepad main window

5.1.1. Model

The model of the Notepad software application aastuthe atomic actions
available at each time to the user and can be ttedsu Appendix A.1. Format
and View functionalities are not taken into account). Otig Open and Find
functionalities will be used to illustrate the apach. The Open dialog is a modal
dialog and the Find dialog is a modeless dialogo Tmodels were constructed at
different levels of abstraction: taking the focuoperty of the windows and
interactive controls into account, and abstractingh such properties.

The main difference between the two models remiairise fact that to model the
focus property of windows and interactive controlside windows, additional

136

Case studies

state variables and methods are needed. The winfimws property is modelled
inside the window manager by one state variablé keaps the name of the
window/dialog which has the focus at each momemd, methods to manipulate
(write and read) that propertySetFocus , GetWindowWithFocus , and
HasFocus . Furthermore, there is one state variable insb evindow/dialog to
indicate the control that has the input focus athemoment and additional
methods to switch focus between controls belongpnthe same window/dialog.
Each method has at least one pre-condition reqguitie focus to be set to the
interactive control where the action will occur.idt possible to set focus on a
window whenever that window is enabled (meaning thes open and does not
have a modal window belonging to the same soft@pmication on top of it).

Should the focus property be abstracted away, thate s variables
ctrlwthFocus and the methods SetControlFocus and
SwitchToWindow are not needed. Each method has at least oneopdition
ensuring that the window where the modelled aatiocurs is enabled, instead of
checking if the window is focused.

Abstracting from the focus property will decreabe total number of actions
within the model as there will be no actions totstwifocus between windows and
interactive controls. This has an impact on naiegatnap views which will be
dealt in the sequel.

Notepad specification with the focus property modelled

The state of the Notepad application main window #re actions on the main
window are defined inside a namespace callettpad (see display below).

When a new window is createAddwindow), the window manager set the input
focus immediately on it.

After launching the application, it is possibleitteract with the client area by
typing text (nsText(string txt)), selecting text $elText(int pO,

int pl)) —wherep0 andpl are text positions, and with the main menu to open
the Open or Replace dialog®Ogen(), Replace()) or close the application
(Close()). Should the contents of the main window have ghkdn closing the
application or opening another file will be precgdsy a message offering the user
the opportunity to save changedisgSvBfrClose(string op) and
MsgSvBfrOpen(string op)). Actions modelling message boxes will have
at least one pre-condition requiring focus sehtorhessage box window.

Module
| namespace Notepad;

Types

type dir = string where value in Set{"Up","Down"};
type windows = string where value in
{"Notepad", "Find", "Replace"};

137

Chapter V

Variables

/I editing status
string text ="" /I the text of the main wi
selText ="";// text selected
int posCursor = 0; // cursor position within
bool dirty = false; // has text been update
// file being edited
string fileOpened ="",
directory = "E:"; // for testing purposes
/I find and replace settings
string findwhat =", // string to search

dir direction ="";//"Up" or "Down"

bool matchCase = false, // case sensitive search?
// temporary state of the open feature

bool svBfrOpen = false;

I/l temporary state of the close feature

bool svBfrClose = false;

ndow

the text
d?

Controllable actions

void Close() // close the Notepad application
void MsgSvBfrClose(string op) // save changes?
void Open() // open the open dialog

void MsgSvBfrOpen(string op) // save changes?
void Save() // save text in memory to disk

void SaveAs() // open the save dialog

void InsText(string txt) // insert text in the main
void SelText(int p0,int p1) //select text between p
void Find() // open the find dialog

void FindNext // find another occurrence of the "fi
void MsgAckCantFindWord() // can't find the word
void Replace() // open the replace dialog

void LaunchNotepad() // start the Notepad applicati

void SwitchToWindow(windows win) // switch window f

on

window
0 and pl

ndWhat"

OCUS

Observable action

| string GetText() // observe the text within the mai

n window ‘

When the Open dialog is open (Figure 55), it issfime to type a file name

(SetFileName(string fn)), and press buttons Canceélancel()), to

close the dialog, or OperOpen()), to open an existing text file (the other

interactive controls were not modelled). Since Opl@log is modal, it is not
possible to interact with the main window of theplagation until this dialog is

closed. When trying to open a nonexistent file,essage box informs the user of

that fact (Figure 56).

138

Case studies

Look it: v | Q i
Y uﬁcvgwin @Tmp
{ :} [C)Dacuments and Settings 100 WINDOWS
My Recent (Ceclipse @ adobelog. bzt
Documsnts | [3)Esciava [Z] Foo.bxt
= uﬁgs
|. () Intel
Desktap [hizsdkl 4.2_08
(Clocalkesmf
. M30Cache
___; [CIProgram Files
My Docurments Dhgquarantine
uﬁswsetup
i [CI5YSTEM.SAY
_31)3 (Ctemp
. (Cykexmf
ty Computer
‘;-‘] File name: |“.txt hd | [Open l
2 .
My Metwork | Files of tpe: | Text Documerts [bt v | [Cancel]
Encoding: |AN5| w |

Figure 55: Open dialog

The only action the user can perform on that messag is to acknowledge the
message by pressing the "Ok" buttdMs@AckFileNotFound()).

inexistentFile. bxt
File: not Found,
Please verify the correct file name was given.

A

Figure 56: File not found message box

Module
| namespace OpenDialog;

Types

type OpenCtrls = string where value in
Set{"Cancel","Open","FileName"}

Variables

string fileNameO = "*.txt", //name of the file
dirO ="E:"; // current directory
/I ("E:" for testing purposes)
OpenCitrls openCtrlwthFocus = "FileName"; // control
// with the inpu

t focus

139

Chapter V

Controllable actions

void Cancel() // press the cancel button
void Open() // press the open button

void MsgAckFileNotFound() // acknowledge error mess age
void SetFileName(string fn)//fill in the file name text box
void SetCtrlFocus (OpenCitrls c) // switch control f ocus

The relevant state of the file system is modelleside a namespace called
FileManager (Figure 57) by a table/map that assesifieys (file names) with
values (file contents). Each individual key-valwargcalled a maplet) models a
file.

This module has methods to createad anddeletefiles and also methods to
guery the state of the file system such as asses iflename exists
(FileExists), and asses if a file name is valid\(alid). A file name is valid

if it does not have weird characters e\y,,”, '/, "', 2", \", '<', >" |

namespace FileManager;
Map<string,string> files = Map{};

public void CreateFile(string fileName, string text)
requires !FileExists(fileName); {
files = files + Map{fileName :> text};

public bool FileExists(string fileName) {
choose (i in files, i == fileName) return true;
else return false;

}
public string ReadFile(string fileName)
requires FileExists(fileName); {

return files[fileName];

public void DeleteFile(string fileName)
requires FileExists(fileName); {
files[fileName] = none;

bool IsValid(string fileName) {

if (file =="") return false;
/I IndexOfAny reports the index of the first occu rrence
/l'in this instance of any character in a specifi ed

/I array of Unicode characters
if (file.IndexOfAny(new char[8[{
l\\l’|*I,I/I,I:l,I?l,l\lll,l<l’l>lylll})> - 0)
return false;
else return true;

Figure 57: File manager module

Upon opening the Find dialog (Figure 58), it is gibke to fill in the word to
search for $etFindWhat(string txt)), to choose the direction to look for

140

Case studies

(SetDirection(string d)), to choose if the search is case sensitive @& cas
insensitive $etMatchCase(bool op)), and also to press the buttons Find
Next (FindNext()), and CancelGancel()). The Find Next button is enabled
only when the Find What text box is not empty. Aftee Find Next button is
pressed, if the string to look for does not exastessage box is shown to the user
who is expected to acknowledge it by pressing thé& ®utton
(MsgAckCantFindWord()). Since Find is a modeless dialog, it will be also

possible to switch to the Notepad main window
(Notepad.SwitchToWindow("Notepad")) and the other way around
(Notepad.SwitchToWindow("Find")).

Find what: ||

Drirection Cancel

[]Match caze O Up & Down

Figure 58: Find dialog

Module
| namespace FindDialog;
Types
type FindCtrls = string where value in

Set{"FindWhat","Direction”,"MatchC ase",
"FindNext","Cancel"}
type dir = string where value in {"Up","Down"};

Variables

string findWhatF =""; //word to look for

dir directionF = "Down"; //direction to look for
bool matchCaseF = false; //case sensitive s earch?
FindCtrls findCtrlWthFocus = "FindWhat"; //control with the

[[focus

Controllable actions

void Cancel() // press the cancel button

void SetFindWhat (string fw) // fill "Find what" te xt box
void SetMatchCase (bool op) // match case option

void SetDirection(dir d) // select direction

void FindNext() // press the "Find Next" button

void SetCtrlFocus() // switch control focus

void MsgAckCantFindWord() // acknowledge user messa ge

The complete model of the Notepad application @afolnd in Apendix A.1.

141

Chapter V

5.1.2. Scenarios

Models of the GUI under test can be built at ddfarlevels of abstraction. The
specification of the Notepad application preserdbdve describes the possible
atomic actions the user can perform when intergatiith the GUI. However, it is
possible to describe the main functionalities &f Hotepad application at a higher
level of abstraction as the main usage scenaritiseoUl under test. High level
scenarios capture user visible functions (or higdel requirements) to achieve
user goals and model typical ways of using the @dknarios can be described
by "scenario actions" inside Spec Explorer. Thehhigvel scenarios are
constructed on top of atomic user actions thatdafened in the complete model
of the system (in Appendix A.1.). Scenarios degcpbssible sequences of atomic
user actions. For example, théndScenario presented bellow describes the
sequence of actions a user should perform to séara@m occurrence of a string
(as indicated by thevord parameter) in backward or forward direction (as
indicated by thalirection parameter), and in case sensitive or case insansit
way (as indicated by theatchCase parameter).

FindScenaria It is possible to search a string within a text:
- In a case sensitive or case insensitive way;

— Look for the string backwards or forwards relatite the mouse
position within the text.

[Action(Kind=ActionAttributeKind.Scenario)])
void FindScenario(string word, dir direction,
bool matchCase)
requires IsEnabled("Notepad") && text 1= "";
{
Notepad.Find();
assert IsEnabled("Find");
FindDialog.SetFindWhat(word);
FindDialog.SetDirection(direction);
FindDialog.SetMatchCase(matchCase);
FindDialog.FindNext();
if (IsEnabled("MsgAckCantFindWord"))
FindDialog.MsgAckCantFindWord();
FindDialog.Cancel();

Figure 59: Find scenario within Notepad application

Theassertclause is used to express a condition that mudtvaleen it is reached.
Although it will not be checked by the implemendationly by the model), it was
introduced to improve the documentation of the aden

ReplaceScenariolt is possible to find a word (indicated by terd parameter)
in a text file, in a case sensitive or case ingimesiway (indicated by the

142

Case studies

matchCase parameter), and replace that word by another imuicated by the
replaceWord parameter) (Figure 60).

- A message box will inform the user whenever thedmar look for
does not exist in the text. In this case, the akeuld acknowledge the
message box by pressing the Ok button
(MsgAckCantFindWord());

— Itis possible to replace one by one the occurente¢he string in the
text or replace all occurrences of the string ie step (as indicated by
therepAll parameter).

[Action(Kind=ActionAttributeKind.Scenario)])
void ReplaceScenario(string word,
string replaceWord,
bool matchCase, bool repAll)
requires IsEnabled("Notepad");

Notepad.Replace();
assert IsEnabled("Replace");
ReplaceDialog.SetFindWhat();
ReplaceDialog.SetReplaceWith(replaceWord);
ReplaceDialog.SetMatchCase(matchCase);
if (repAll) Replace.ReplaceAll();
else {
ReplaceDialog.FindNext();
ReplaceDialog.Replace();

}

if (IsEnabled("MsgAckCantFindWord"))
ReplaceDialog.MsgAckCantFindWord();

ReplaceDialog.Cancel();

Figure 60: Replace scenario within Notepad application

OpenScenario It is possible to load (open) data from a filedisk (the name of
the file to open is indicated by tlileToOpen parameter). If the file name to
open does not exist, a message box appears whichugler is expected to
acknowledge by pressing the Ok button
(OpenDialog.MsgAckFileNotFound()). If the text in the main window
was updated, a message box will ask the user whéi¥she wants to save
contents in memory to a text file before openingesv one (as indicated by the
saveChanges parameter). If this flename (as indicated by fiteToSave
parameter) already exists, a message box appdavdngl the user to choose
between overwriting and non-overwriting it (as rated by theoverwrite
parameter) (Figure 61).

[Action(Kind=ActionAttributeKind.Scenario)]
void OpenScenario(string fileToOpen,
string saveChanges,
string fileToSave,
bool overwrite)

143

Chapter V

requires IsEnabled("Notepad") &&
saveChanges in Set{"y","n","c"};

{
Notepad.Open();
if (IsEnabled("MsgSaveChanges")) // if dirty

{
MsgSvBfrOpen(saveChanges);
if (saveChanges)

assert IsEnabled("Save");
SaveDialog.SetFileName(fileToSave);
SaveDialog.Save();

Il file exists

if (IsEnabled("MsgOverwriteFile"))

SaveDialog.MsgOverwriteFile(overwrite);
if (loverwrite) {
assert IsEnabled("Save");
SaveDialog.Cancel(); // close save dialog

}
}
}

}

/l(saveChanges != c || !dirty)

if (IsEnabled("Open™))
OpenDialog.SetFileName(fileToOpen);
OpenDialog.Open();
if (IsEnabled("MsgAckFileNotFound"))

OpenDialog.MsgAckFileNotFound();
OpenDialog.Cancel(); // end of the scenario

Figure 61: Open file scenario within the Notepad application

SaveScenariolt is possible to save text (new or updated) {@ew or existing)
text file (as indicated byileName parameter). If the file already exists a
message box appears allowing the user to choosgedet overwriting and
non-overwriting it (as indicated by tlowerwrite parameter) (Figure 62).

[Action(Kind=ActionAttributeKind.Scenario)])
void SaveScenario(string fleName, bool overwrite)
requires IsEnabled("Notepad");

Notepad.SaveAs();
SaveDialog.SetFileName(fileName);
SaveDialog.Save();

if (IsEnabled("MsgOverwriteFile"))

SaveDialog.MsgOverwriteFile(overwrite);
if (loverwrite) {
assert IsEnabled("Save");
SaveDialog.Cancel();

}
}

}

Figure 62: Save scenario within Notepad application

144

Case studies

5.1.3. Testing goals

It is important to define testing goals as a wayléal with scalability problems
and decide when to stop testing.

Testing goals for the Notepad software applicatiere defined based on the
following coverage criteria on the generated FSKInfrwhich test cases are
generated. They aim at defining and checking thefdhe FSM testing properties
as a way to assess the quality of the FSM fromeastng perspective. If the FSM
fails such desired properties then the process gwshrough a new iteration, in
which a new FSM is constructed from an exploratibthe model after providing

new bounds.

The testing goals are:

— Full coverage of the actions in the model — all thedelled actions
should be present in the FSM;

— Full coverage of scenarios — all the modelled stesashould be
present in the FSM. The scenarios may be descébadodel views
to check if they are present in the FSM;

— Full coverage of functional dependencies — checkh# chosen
domains allow showing that all variables affectepdndently the
behaviour of the system (generalization for noniBao variables of
the MC/DC criterion);

— Full coverage of the test boundary and special itiond — check if the
FSM contains the states or sequences of statedahatibe boundary
and special conditions (to be defined ahead);

— Full coverage of the navigation map and dialog giewcheck if the
navigation map and dialog views are fully withiretkhSM (to be
defined ahead).

5.1.4. Choosing domain values for adequate testing

Once the model program of the GUI is written upeSjexplorer allows us to
generate a FSM by bounded exploration. This FSMists of the states of the
model program and method invocations that move fretate to state as
transitions. In order to explore the model by cajleach of the actions available at
each state, it is necessary to define the domditieactions' parameters. Should
the set of possible values that a parameter cabegetnall, the general rule is to
define the domain based on that set. Such is geinghe methods which follow:

Notepad.SwitchToWindow(window win)

where window = Set{"Notepad","Find","Replace"}
Notepad.MsgSvBfrClose(string op)
Notepad.MsgSvBfrOpen(string op)

where op in Set{"y","n","c"}

OpenDialog.SetCtrIFocus(OpenCitrls c)
where OpenCtrls = Set{"Cancel","Open","FileName"}

145

Chapter V

SaveDialog.SetCtrlFocus(SaveCitrls c)

where SaveCitrls = Set{"FileName","Save","Cancel"}
SaveDialog.MsgOverwriteFile(string op)

where op in Set{"y","n"}

FindDialog.SetCtrlIFocus(FindCtrls c)
where FindCtrls = Set{"FindwWhat", "Direction",
"MatchCase", "FindNext",
"Cancel"}
FindDialog.SetMatchCase(bool op)
where op in Set{true, false}
FindDialog.SetDirection(dir d)
where dir = Set{"Up","Down"}

ReplaceDialog.SetCtrIFocus(ReplaceCitrls c)
where ReplaceCtrls = Set{"Cancel", "Replace",
"ReplaceWith", "FindWhat",

"ReplaceAll",
"MatchCase", "FindNext"}
ReplaceDialog.SetMatchCase(bool op)
where op on Set{true,false}

For the other cases, a reduction of the humberos$iple values is on demand.
This domain reduction is applied according to testihg goals defined for the
current GUI under test. The domains chosen (Tablen@st allow for full
coverage of the functional dependencies and fuleiage of test boundary and
special conditions.

Actions with parameters Test conditions Domains

namespace Notepad:

InsText(char txt) Upper and lower case to tega’, 'A'}
the "match case" option
inside the find dialog

SelText(int p0, int p1) All pairs of integers that)
satisfy the pre-condition

namespace OpenDialog:

Q

SetFileName(string fn) Test for existing n@'foo.txt", "foo.htm"}

non-existing files

namespace SaveDialog:

Q

SetFileName(string fn) Test for existing n@'foo.txt","foo.html"}

non-existing files

namespace FindDialog:

SetFindWhat(string str) Test for existing anflA","aA"}
non-existing words

namespace ReplaceDialog:

SetFindWhat(string str) Test for existing anflA","aA"}
non-existing words

SetReplaceWith(string st) A char possibly differe {"a"}
from the ones within the text

Table 2: Domains for actions' parameters

146

Case studies

a) This is a dynamic set of values because it dégpen text contents
at each state. In Spec Explorer, dynamic domainsbeadefined by
properties.

SelectText property defined bellow reads the text values ahestate and
calculates the set of values valid for 8&Text parameters.

Set<<int,int>> SelectText { get {
if (text.Length>0)
return Set{p0 in Set{0..text.Length-1},
plin Set{pO+1..text.Length};<p0,p1>};
else return Set{<0,0>};

1}

Domain definition is an iterative process involviig need to verify full coverage
of functional dependencies. This is checked by & &dior the example under test.

Inputs Find effects

text |selText | posCursor findWhat direction matchCasthange Change |Appears
posCursor? selText? | Message?

aaA 0 A pown 4 |F T4 74, F*?

aaA 0 A Up ¢ F F¢ F¢ T v

aaa 1 aA Down |T 4 Ft Fd | T4

aaaa 1 aA Down F i T‘A T%; F ¢A

ada| Aa 4 |3 aA Up T T4 47| F 4

aAa aAa¢ 3 aA Up T F ¢ F¢ T ¢

aal ME aA Down [T T T F

aaA 3 Y A Down F F F T

Aa \ 1 aA % pown F FY| 4F Y47 Y4

Aa 1 A ¢ Down F T ' v |T ¢ F ¢

Table 3: Test data and coverage analysis for the Find effect

By analysing Table 3 one concludes that the domdé&ismed above allow for
testing the find effect according to the full covge of functional dependencies
criterion. Column "Message" refers to the effecaahessage box showing up to
inform the user that the word to look for could betfound in the text.

It should be stressed that this kind of analysislwa automated. In such case, the
manual task remaining would be to provide additiai@main values when the
test goals are not met yet.

Besides the test conditions identified in Tablat 3nay be interesting to identify
additional boundary test conditions and other spemdnditions. Boundary test
conditions correspond to situations located neaitdiof valid ranges where errors

147

Chapter V

are most likely to occur. Examples of boundary testditions for the find effect
are:

The word to look for is at the beginning of thettex

text.IndexOf(findWhat) ==
— The word to look for is at the end of the text.

text.LastindexOf(findWhat)==text.Length-
findWhat.Length

— The word to look for is equal to the text content.

text == findWhat

— The cursor's position is in middle of the worddok for.

Exists{ i in Set{0..text.Length};
posCursor>i && posCursor<i+findWhat.Leng th &&
i==text.IndexOf(findWhat)}

— The word occurs several times within the text ahd tifferent
occurrences overlap each other

Example: text ="aAaAa";
findWhat ="aAa";
matchCase = false;

This can be written ipeS# as

if ((Exists{i in Set{1..findWhat.Length-1 |
findWhat.Substring(0,i)==
findWhat.Substring(findWhat.Length-i,i)

&&

text.IndexOf(findWhat+

findWhat.Substring(i,text.Length))>=0})

I

(Exists{i in Set{1..findWhat.Length-1};

findWhat.Substring(0,i). ToLower() ==

findWhat.Substring(findWhat.Length-i,
i).ToLower()

&&

text.ToLower().IndexOf(findWhat. ToLower 0+
findWhat.Substring(i,text.Length). ToLow er())
>=0}

&& 'matchCase))

- The word occurs several times within the text ahd different
occurrences are side by side

Example: Text="aAaAa"; word="Aa"; MatchCa se=true

This can be written ipeS# as

text!="" && findWhat!="" &&
(text.IndexOf(findWhat+findWhat)>=0

148

Case studies

|
text.ToLower().IndexOf(findWhat. ToLower()+
findWhat.ToLower())>=0 && 'matchCase))

By analysing Table 4 one conclude that the domdéfmed allow for testing of
the replace effect meeting the full coverage otfiomal dependencies criterion.

Inputs Effect
Text |selText| findWhatmatchCasereplaceWith Replace
aaA |A A +F %t |a T 4
aaA |A A T ¢ a F ¢
aaA A taa Y F a F 4y
aaA |aA ¢ aA F a T ¢

Table 4: Test conditions for the Replace effect

Table 5 checks the full coverage of functional aejeamcies criterion for the Open
and Save effects inside the Open scenario.

Inputs Effect

dirty | Exists(fileToOpen)saveChanges Exists(fileToSav@yverwrite| Saved?| Opened?
T4 T A Y _ T A T AL T 4
T T Y 4 4 F A ; AT4 ATA
T|T Y Y 3
T[T N v - - FY T

T - c Y) i \ eV

F | |F - - - F F

T | F N - - F F
T||F Y - T T F

T ! F Y F - T ' £V
F T - - - F T

Table 5: Conditions to test the save and open effects inside the €p
scenario

5.1.5. State filtering

Once domains are defined and checked for achidulhgoverage of functional
dependencies criterion, additional techniques @uaded to prune the exploration

149

Chapter V

process in order to generate a FSM with managesbde For this purpose, one
may define state filters excluding from the explioma process all states where the
specified state condition does not hold.

An additional state filter was added to the Notepaftiware application limiting
the size of the text variable that models the itesitle the Notepad main window.

text.Length <=3

The size of the text should be chosen in a waysswoato forbid achieving states
where boundary and special conditions hold. Fomgte, a text size limited to 2
(instead of 3) would not allow states where a wawdurs several times within the
text and the different occurrences overlap eacaroth

5.1.6. FSM generation and reduction

The generation of the full FSM for the domains &stdte filtering defined
previously in a single step was not practical sdiESor subsets of the model
were generated. One of those subsets containinietaviour of the dialog Find
is reported in section 5.1.10. Although the congESM was never generated, a
FSM with enough size, i.e., covering all the tagtgoals defined, was used to
illustrate the process of FSM validation in the trgection.

5.1.7. FSM validation

Once parameter domains and state filters are dettiee Spec Explorer tool
generates automatically a FSM by exploring the rhpdegram within defined
bounds. By default, all states of the model thatraachable within such bounds
will be explored and represented in the FSM.

For visualization purposes, Spec Explorer allowsauprovide criteria to group

together in the same vertex states sharing a conutmaracteristic (two states are
grouped together if an expression provided by ther levaluates identically).

These expressions can be used to construct viewprégections) at different

levels of abstraction that may be used for FSMdedion. This can be done by
generating different views for different coveragealg (dialog views, scenarios,
functional dependencies, and special cases) andllisnspecting those views to
check for testing goals coverage.

Projections obtained from the Notepad model with focus property modelled

In our example, the variablesFocus inside the window manager refers to the
window or dialog with the input focus at each mommeVariables
ctrlwthFocus defined inside each dialog are used to point loatinteraction
object that has the input focus in the dialog. Byerying such variables it is

150

Case studies

possible to obtain two different views of the modehvigation map view and
dialog view.

string NavigationMap { get {
if (GetWindowWithFocus()=="")
return "NotOpen™;
else return GetWindowWithFocus();

1

Mgk CatFind Word()

Figure 63: Navigation map obtained from focus property of the windws

The navigation map view is obtained from the mdmeprojecting the state onto
the name of the window with the input focus (Figa83.

Within the navigation map view each vertex corregfsoto a group of states
where a specific window has the input focus. Is thew, it is possible to see that
the user can interact with the main window of thetdyad application by
interacting with the menu to open one of the digjagpen (e.g.Open()) and
find (e.g., Find()) or by interacting with the client area selectitext
(SelText(...)). It is also possible to switch focus between Fand Replace
dialogs GwitchToWindow("'Find") , SwitchToWindow("Replace"))
whenever one of them is opened. The interactiodensuch dialogs is detailed at
the lower level of abstraction.

The dialog views are obtained by projecting theestavhere the dialog has the
focus onto thetrlWthFocus variable. This can be obtained by

string OpenDialogGroup { get {
if (llIsOpen("Notepad")) return "NotOpen";

151

Close()

Chapter V

else if (IsOpen("Open™)) return openCtrlWthFocus;
else return "OpenDIgClosed"”; }}

and is illustrated in Figure 64.

p— S EES EEE T B B RS

giCtriFocus("FileNa..

SetCtrlFocus("FileNa.. SetCtrlFocus("Open™)

Open()|
MsgOverwrit..

N e e e = o

—— e - —

SelText(2, 2)|
Swit..

"OpenDlgClosed"”

LaunchNotepad()

MsgSvBfrCl..

Figure 64: Open dialog view

Inside the open dialog, the user can interact wiith file name textbox
(SetFileName(...)), open a file Qpen()), and close the dialog
(Cancel()). By default, when the Open dialog is open@gpdn() transition),

the interaction object with the focus is figleName textbox.

The find dialog view can be obtained by

string FindDialogGroup { get {
if (lIsOpen("Notepad™)) return "NotOpen";
else if (HasFocus("Find")) return findCtrlwWthFocu S;
else if (IsOpen("Find")) return "FindDIgNotActive "
else return "FindDIgClosed";

1

and is illustrated by Figure 65.

152

Case studies

(135012

et i e b S

LB EEo {pednorppe

MRAI0L, lllll‘lllllll"lll

VTR SOOI

ot

. .
TRl TR, SOOI AL JToeqng

AT
| rmdn

7 [

TR TR0 RS TR, TIPS

R EME ST RS V‘\

AT, T RS

{ranmy

Figure 65: Find dialog view

e e e e e o = == =

153

Chapter V

The Find dialog can have the focus (i.e., be aytiwe which case there is an
interactive control with focus, or may be openethwit focus, in which case it is
NotActive . When the Find dialog is active, the user caniffilthe "find what"
textbox EindWhat(...)), choose the search directidbefDirection()),
choose if the search is case sensitive or 8etMatchCase()), and press the
buttons find nextKindNext()), and cancelGancel()).

Projections obtained from the Notepad model abstractingrébm the focus
property

Modelling the focus property requires too much #ddal effort that is not

rewarding if the test goal does not include chegkirnich interactive object has
the input focus at each moment. Although the ndsigamap view and dialog

views can be easily obtained from models wherefdbas property is modelled
explicitly, it is also possible to obtain other wie from models where the focus
property is abstracted. The navigation map viewhtined by querying which

dialogs are enabled instead of querying which diahas the focus at each
moment.

Set<string> NavigationMap { get {
return GetEnabledWindows();

1
The diagram obtained from the expression abovéuistiated by Figure 66. In
this view it is possible to see the set of enabledlows at each moment and the
actions available in each of those sets. Theregavaps of states where two
different modeless windows are enabled, e.g., thiepad main windows and the
Find dialog, or the Notepad main window and thel&spdialog.

Setf" Mez Oreraite File"

Sarel) Em:e

COpent) Upmil

-hsa(Hotepad | Tl
"“
Ay "
Cmel(] Surel) '. TR
. .)
R .

EL(Open} . et File}ame(oo bim..

MsgAdxF)leNoLFamd()

Tyl
Figure 66: Navigation map obtained from the enabled windows' propey

The dialog views are obtained by projecting thetestanto the variables
manipulated by each dialog.

154

Samal)

Camwcel])

Case studies

<string,string> OpenDialogGroup { get {

if (IsOpen("Open™))

return <"fileNameO="+fileNameO,"dirO="+dirO>;
else return <"NotOpen","NotOpen">;

1}

SetFileMarme("foo txt..

—— o = = = =

<'"NotOpen", ”NotOpen”;

Replace

Figure 67: Open dialog view obtained from the projection onto th
manipulated variables

In this view (Figure 67) it is possible to see Hs of states of the Open dialog
that correspond to the different possible combamati of the manipulated
variables of the dialog.

Scenarios

In order to check if the identified scenarios aveered by the generated FSM, one
should construct views that can be inspected Jist@infer if there is full branch
coverage of the scenarios.

Open scenario: The view corresponding to the open scenario istilaied in
Figure 45

Save scenarioThe view corresponding to the save scenario catebieed by the
following state group:

/] save scenario
string SaveScenario { get {
if (NIsOpen("Notepad")) return "NotOpen";
else if (IIsOpen("Save")) return "SaveDIgClosed";
else if (IsEnabled("Save")) return "Save";
else return "MsgOverwriteFile";

1

155

Chapter V

Save()|

@‘ SetFileName..
MsgOverwriteFile("n"..
"MsgOverwriteFile" 7]

Cancel()
MsgOverwriteFile("y"..

"SaveDlgClosed”))

LaunchNotepad()

Save()|
MsgSvBfiClo..

SelText(2, 2)|

MsgOverwriteFile("y".. MisgS

Close()|
MsgSvBiCl..

Figure 68: Save scenario view

Find Scenario: The view corresponding to the find scenario describy Figure
59 can be defined by the following state group:

string FindScenario { get {
if (lIsOpen("Notepad™)) return "NotOpen";
else if (IIsOpen("Find")) return "FindDIlgClosed";
else if (HasFocus("Find")) return "Find";
else if (IsOpen("MsgAckCantFindWord"))
return "MsgAckCantFindWord";
else "FindDIgNotActive";
}

"NotOpen"

Close()|
MsgSVBCL.

LaunchNotepadi()

"FindDlgClosed” ™)

SelText(2, 2)|
Msgs..

Find{)|

:’ SetCtriFocus("FindNe.. Close()

MsgAckCantFindWord()

"MsgAckCantFindWord"

MsgAckCantFindWord()

SwitchToWindow("'Find.. SaveAs()|

¢ "FindDIgNotActive"”) MsgOverwriteFile("n"..

Figure 69: Find scenario view

Checking if the boundary (and special) conditiorss eovered by the generated
FSM can be done by visual inspection of the vieesegated from each of the
formal expressions that describe them. In case sirtiee test conditions are not
covered, it is still possible to construct scemario drive the system into the
desired states or to redefine the domains and gentre FSM again.

156

Case studies

Functional dependencies

Table 3 (on page 147), Table 4 (in page 149), aidels (on page 149) show that
it is possible to define states with the identifiddmains that guaranties full
coverage of functional dependencies. Even so, jtoissible to check if all the
states identified in the tables are present ingtirgerated FSM by writing a state
expression for each pair of lines in the table dhatw result dependency on one of
the input parameters. For instance, to check ifdinection parameter affects the
result independently, it is possible to constructiew based on the first and
second lines of Table 3 as:

string FindDirectionDependency { get {
if (text=="aaA" && selText=="" && posCursor==0
&& findWhat == "A" && !matchCase)
if (direction == "Down")
return "first line";
else return "second line";
else return "any other state";

1

and inspected visually in Figure 70.

GefText()/"aa"|
Rep..

"amy other state”)

FindNext()|
MzgSvBL.

SelText(0, 0)

GretText("AAa"|
cl..

FindNext()|
SelText..

FindNext()|
MegSvBL.

GetText()/" AAa"|
Cl.

Figure 70: Coverage analysis of a functional dependency

Special cases

The same process can be used to check if boundarys@ecial conditions are
within the generated FSM. Formal expressions fag thurpose are given in
section 5.1.4, whereby it is possible to constiietvs and inspect them visually
for coverage analysis. Figure 71 shows a view oigdrto analyse the coverage of
the special situation where a word occurs severas within the text and those
occurrences overlap with each other. This can peessed in Spec# by writing

string OverlapGroup { get {
if ((Exists{i in Set{1..findWhat.Length-1};
findWhat.Substring(0,i)==
findWhat.Substring(findWhat.Length-i,i) &&
text.IndexOf(findWhat+
findWhat.Substring(i,text.Length))>=0})

157

Chapter V

I
(Exists{i in Set{1..findWhat.Length-1};
findWhat.Substring(0,i). ToLower() ==

findWhat.Substring(findWhat.Length-i,i). ToLowe r) &&
text. ToLower().IndexOf(findWhat.ToLower()+
findWhat.Substring(i,text.Length).ToLower())>=0}

&& 'matchCase))
return "Overlap";
else return "NotOverlap";

GetText()/" AaA"|

Ge..
FindNext()| InsText("A")
MsgSvBf. InsTe..

GetText()/Maa"|
Rep..

"NotOverlap”)

Figure 71: Coverage analysis of a special case situation "several
occurrences overlapping each other"

5.1.8. Test case generation and execution

Upon defining domains for the methods' parametedsgenerating and validating
the FSM thus assessing its quality based on somnand boundary test
conditions, it is possible to generate test cases fthe FSM thus obtained.
However, executing all possible test cases mayobeealistic due to the huge size
of the FSM generated and consequently the huge euofillest cases.

A new algorithm is presented in section 4.3.4 taupe the FSM while
guaranteeing coverage of the intermediate levehlwdtraction defined by the
navigation map and dialog views. After applyingstigiruning technique to the
initial FSM, the size of the FSM is reduced and tases may be generated from
it based on full transition coverage criterionglab be executed.

5.1.9. Test results

In order to test the Notepad application withoworéing to its source code (that
is, running its executable binary file), some intediate code, in C#, must be
written to execute and interact with the applicatimulating the user (this will

trigger events like mouse clicks or keyboard keysyery method at the

specification level will have a corresponding metfad the intermediate code that
will simulate the user actions. Maps between fumdi at specification and

implementation levels are established so thatdbédan run related methods at
both levels and compare the results obtained.

158

Case studies

The intermediate code needed to simulate the w$iema and the maps between
methods of the specification and implementatiorlleis built automatically with
the support of the tool described in section 4.4.

Test execution is performed by Spec Explorer tdtlery time there is an
inconsistency (i.e., the outcome of an observattieraat the specification level is
different from the outcome of an related methothatimplementation level) it is
reported.

Observable actions whose pre-conditions hold aeewed after each controllable
action. In the case of the Notepad model, thejasisone observable action that
sees the content of the main window whenever plesgithen the main window is
enabled).

During the testing of Notepad, we found two seqgeenaf actions which lead to
an inconsistency between our intuitive model amdatttual Notepad application:

— After executing the next sequence of actions theepad will search
upwards instead of downwards as expected:

1. Type text.

2. Search for text using the find dialog (Ctrl-F) ihet downward
direction. Close the dialog (press Cancel button).

3. Open the replace dialog (Ctrl-H). Close the dialpgess Cancel
button).

4. Press the F3 key (shortcut for "Find Next").

— After executing the next sequence of actions, tbeephd will search
downward instead of upward as expected:

1. Type text, for instance, "aaa".

2.Search for text (e.g., "a") using find dialog (&#l in upward
direction. Close the dialog (press Cancel button).

3. Open the find dialog (Ctrl-F) and close it immedlat(press Cancel
button).

4. Press the F3 (shortcut for "Find Next").

These are sequences of events that manual testd mmlbably miss since they
are not common scenarios.

Finding only two errors is after all not surprisismce the Notepad application
has been in use and tested for years already.

159

Chapter V

5.1.10. Metrics

Several test experiments were performed in ordetest Notepad software
application and as a way to evaluate the testingraggh proposed in this
dissertation.

The Notepad model was constructed in a week. Isistsof 35 actions and 38
helper methods. The window manager consists of &hads. The file manager
consists of 5 methods.

For each experiment several metrics were gath&@hlt generation time; size of
the original generated FSM; size of the FSM afeluction; time taken to validate
the FSM according to coverage criteria defined; dage length; and errors found.
In addition, the configuration (set of actions ® donsidered for FSM generation
and domains for the action parameters) used by @gudriment is annotated.

Although several experiments were performed, jus of them is reported here
for illustration. The goal of this experiment ist&st the find word functionality of
Notepad. The subset of actions (and parameter s)atiiehe Notepad model used
in this experiment is listed in Table 6.

Actions Parameter domains

Notepad.LaunchNotepad()

Notepad.Close()

Notepad.GetText()

Notepad.InsText(string txt) {"a", "A"}

Notepad.SelText(int X, int y) if text.Length>0 {@® Set{0..text.Length-1}, p1 in
Set{p0+1,text.Length}; <p0,p1>} else {<0,0>}

Notepad.Find()

Notepad.FindNext()

Notepad.Replace()

Notepad.MsgAckCantFindWord()

Notepad.MsgSvBfrClose(string op) {"n"}

FindDialog.FindScn (string fw, {"A","Up" false}, {"A","Down" false}
string dir, {"aA","Up" true}, {"aA","Down" true}
string mc) {"aA","Down" false}

/* These values were taken from Table 3 */

FindDialog.FindNext()

FindDialogMsgAckCantFindWord()

FindDialog.Cancel()

ReplaceDialog.Cancel()

Table 6: Actions and parameter domains used in the first tegtxperiment

160

Case studies

The time needed to generate the FSM is 1 day, slend 47 minutes. The FSM
has 65701 states, 158571 transitions, and 30 iteosa (actions with
parameters).

The quality of the FSM was accessed according t@rege criteria defined in
section 5.1.7 for the find word functionality. tidk half an hour to conclude that
the FSM had the desired quality properties. Te#e gienerated from this FSM
has 1 segment with the total length of 257615 steps

The pruning technique described in section 4.3.4 applied to the original FSM.
After reduction, the FSM has 2478 states, 7573sitians and 30 invocations.
The number of transitions is reduced in 94.6% wliile number of states is
reduced in 96.2%. The time needed to reduce the IBSM hours. The reduced
FSM preserved the desired testing properties. $age generated from the
reduced FSM has 466 segments with the total lenigis566 steps.

With this experiment it was possible to find theotlwugs (reported in section
5.1.9).

5.2. Address book application

The address book application (Figure 72) allowsrianaging (creating, updating,
deleting, and querying) a database file of contatle address book data file
keeps personal information, like last name, firatne, business phone, home
phone, email, and fax number for each contact.

B Address Book - Untitled
File Edit 3Search Help

Last Mame | First Mame | Business Phone | Home Phone | Email | Fax |
Silva Paulo 351919357635 351917777562 paulo@mail. pk 351225762783
Finta Catla ID1Z2E28709458 33193779504 catla@rnail, pt 3513670459

Figure 72: Address book main window

5.2.1. Model

Modelling the Address Book software application htapturing atomic user
actions requires five namespaces that correspotitetdifferent windows/dialogs
of the software applicatiomddressBook(for the main window)OpenDialog(to
open an existing database file of contacBgyeDialog(to create a hew database
file of contacts or update an existing on@égntactDialog(to add a new contact or
update an existing ondjindDialog(to query the database).

161

Chapter V

The AddressBook namespace models the
application.

main windowthef software

Module
| namespace AddressBook;
Types
Fields = string where value in Set{"Last Name",
"First Name", "Business Phone",
"Home Phone", "Email", "Fax"};
Dir = string where value in Set{"Up","Down"};
SortDir = string where value in Set{"Asc","Desc"};
Contact = <string,string,string,string,string,strin g>;
Variables
Contact ~ contactinMem = <™ m s
Seg<Contact> dbContacts = Seq{};
SortDir sort = "Asc";
Fields orderedBy = "Last Name";
string fileOpened = ™,
directory = "E:", /lfor test purposes
nextAction = "™
int lineSelected = -1;
bool addNew = ftrue,
dirty = false;
bool returnToOpenDIlg = false,
returnToAddressBook = false;
Controllable actions
void LaunchAddressBook() // start the sw applicatio n
void Close() // close the sw application
void MsgSvBfrClose(string op) // save changes?
void NewContact() // open Contact dig to add a new contact
void SelContact(int line) // select one of the cont acts
void EditContact() // edit selected contact
void Copy() // copy selected contact
void Paste() // paste the contact in memory
void Delete() // delete selected contact
void Sort(Fields field) // sort contact by field
void MsgSvBfrNew(string op) // save changes?
void NewAddressBook() // start a new address book
void MsgSvBfrOpen(string op) // save changes?
void OpenAddressBook() // open an existing file of contacts
void SaveAddressBookAs() // save the address book
void SaveAddressBook() // save address book
void Find() // open find dialog
void FindNext() // look for a word
Observable actions
Contact GetContacts() // observe the contacts shown
// in the main window

162

Case studies

The model of the Address Book software applicat®similar to the Notepad

application. The main differences can be foundhim ¢dit (Contact dialog) and
view (Find dialog) functionalities. The contact Idig allows for adding, one by

one, new contacts to a database file, and for upmgakisting contacts. It is also
possible to copy-paste and delete, one by onetjirexisontacts. Contacts may be
sorted by a specific field in ascending or desaampdirder. It is also possible to
browse through all contacts in a sequential waggige arrow keys.

The Address Book software application has dialogspen and save address book
files from/to disk that are similar to the onesdibg the Notepad application, so
the modules of both dialogs are reused by the addveok application without
any changes. Two different modules were developedddel the Contact (Figure
73) and Find (Figure 74) dialogs.

Last Mame | Filva

First Mame | Paulo

Business Phone | 3519193576035

Home Phone | 391917777562

Email | paulo@mail,pt

Fax | 391225762783

Zancel

Figure 73: Contact dialog of the Address Book

Module
| namespace ContactDialog; |

Variables
| Contact contact = < > |

Actions

void Cancel() // close the contact dialog

void Ok() // press Ok button

void SetLastName (string In) // fill the last name

void SetFirstName (string fn) // fill first name

void SetBusinessPhone(string bph) // fill business phone
void SetHomePhone(string hph) // fill home phone

void SetEmail(string email) // fill email

void SetFax(string fax) // fill fax

The Find dialog has additional particularities witempared to the corresponding
module in the Notepad application: the user caacsdhe field where the word
will be searched and there is an additional optidatch whole word". When
"Match whole word" is selected, the search is esetafword in the database field
(column) selected which is an exact match of thedwno the "Find What" text

163

Chapter V

box. When this option is not selected, the searals raturn a word (field value)
that contains the word to look for as substring.

Find X
Find what: | Pinko

|Last Marme ﬂ

[Makch case
[Match whale word

Direction
" Up ™ Down

w Cancel

Figure 74: Find dialog of the Address Book

Module
| namespace FindDialog;

Variables

String findWhat ="",
field ="
direction = "Down";

bool matchCase = false,
matchWholeWord = false;

Actions

void SetFindWhat(string str) // fill find what

void SetField(string str) // select field

void SetMatchCase(bool op) // choose match case opt ion
void SetMatchWholeWord(bool op) // choose match who le word
void SetDirection(string d) // choose direction

void Find() // press find button

void Cancel() // press cancel button

void MsgAckCannotFindWord() // acknowledge message

5.2.2. Scenarios
The main functionalities of the Address Book apgtiien may be described by the
following high level scenarios: find, open, saveit,eand view.

Find Scenario: It is possible to search contacts that match ecBesiring within
one of the contacts' fields:

— in a case sensitive or case insensitive way;

- by looking for a string that is an exact match witik field or that is a
substring of the field content;

164

Case studies

— by searching backwards or forwards, with respectthe record
(Contact) currently selected;

— by issuing a message box informing the user evary the operation
tries to find a word that does not exist in theeginwlatabase field.

void FindScenario(string fw,Fields field, bool mc,
bool mww, Dir dir)
requires IsEnabled("AddressBook™);

{
AddressBook.Find(); // Opens the Find dialog
assert IsEnabled("Find");
FindDialog.SetFindWhat(fw);
FindDialog.SetField(field);
FindDialog.SetMatchCase(mc);
FindDialog.SetMatchwWholeWord(mww);
FindDialog.SetDirection(dir);
FindDialog.Find();
if (IsEnabled("MsgAckCantFindWord"))

FindDialog.MsgAckCantFindWord();

FindDialog.Cancel();

Open Scenario:lt is possible to load (open) an address book feofike in disk
(indicated by thdileToOpen parameter). When the file to open does not exist,
a message box will appear providing such infornmat@the user, which the user
should acknowledge by pressing its Ok button
(OpenDialog.MsgAckFileNotFound()). Should the address book in the
main window be updated, a message box will appawiag the user to choose
between saving and not saving (as indicated byt@hanges parameter) the
updates to a data file (indicated by fileToSave parameter) before opening
the new database. If the file name (indicatedileffoSave) already exists, a
message box will appear allowing the user to chdmte/een overwriting and
cancelling the operation (as indicated byakerwrite parameter).

void OpenScenario(string fileToOpen, string svChang es,
string fileToSave, string over write)
requires IsEnabled("AddressBook");

AddressBook.OpenAddressBook();
if (IsEnabled("MsgSvBfrOpen™)) // if dirty

MsgSvBfrOpen(svChanges);
if (svChanges)

assert IsEnabled("Save");
SaveDialog.SetFileName(fileToSave);
SaveDialog.Save();

if (IsEnabled("MsgOverwriteFile™)) { // file exists
SaveDialog.MsgOverwriteFile(overwrite);//ye s/no
if (IsEnabled("Save")) // don't want to ove rwrite
SaveDialog.Cancel(); // so end of the sce nario
}

}

}

/l(saveChanges != c || not dirty)

if (IsEnabled("Open™)) {
OpenDialog.SetFileName(fileToOpen);
OpenDialog.Open();

165

Chapter V

if (IsEnabled("MsgAckFileNotFound"))
{

OpenDialog.MsgAckFileNotFound();
OpenDialog.Cancel(); // end of the scenario

Save ScenarioThis makes it possible to save an address boak @naupdated)
to a file. If the file name already exists, a mggshox appears asking the user for
permission to replace/overwrite it or to cancelaperation.

void SaveScenario(string fileName, string overwrite)
requires IsEnabled("AddressBook™);

{
AddressBook.SaveAddressBook();
if (IsEnabled("Save")) //no file currently opened

SaveDialog.SetFileName(fileName);
SaveDialog.Save();
if (IsEnabled("MsgOverwriteFile"))

SaveDialog.MsgOverwriteFile(overwrite);
if (IsEnabled("Save"))
SaveDialog.Cancel();
}
}
}

Close Scenario:Whenever trying to close the Address Book softvegrglication
in a state where its content is updated, a messdballow the user to choose
among saving the content to a data file (thus prvg potential loss of important
information), not to save the content to a dat find to cancel the operation.

void CloseScenario(string svChanges, string fn,
string overwrite)
requires IsEnabled("AddressBook");

{
AddressBook.Close();
if (IsEnabled("MsgSaveChanges")) {
AddressBook.MsgSvBfrClose(svChanges);
if (svChanges =="y")
if (IsEnabled("Save")) {
SaveDialog.SetFileName(fn);
if (IsEnabled("MsgOverwriteFile") {
SaveDialog.MsgOverwriteFile(overwrite);
if (overwrite =="c") {
AddressBook.Close();
if (IsEnabled("MsgSaveChanges"))
AddressBook.MsgSvBfrClose("n");

166

Case studies

5.2.3. Testing goals

As already mentioned, it is important to definet igsals as a way to deal with
scalability and evaluate when to stop testing.

The testing goals defined for testing the AddreseskBapplication are similar to
the ones defined for the Notepad application:

— Full coverage of the actions in the model;
— Full coverage of scenarios;

- Full coverage of functional dependencies (a geizatidn for
non-Boolean variables of the MC/DC coverage ciote;i

— Full coverage of the test boundary and special itiond;

- Full coverage of the navigation map and dialog giew

5.2.4. Choosing domain values for adequate testing

As already mentioned, domains values must be difimerder to generate a FSM
by exploration of the model, the goal being to folmnains that allow achieving

the testing goals listed in the previous section eArlier on, whenever the defined
domains are not sufficient to achieve the testioglg they must be redefined.

When the set of possible values that a parametegetis finite and small, the
general rule is to define the domain based on susht. This is the case of the
following methods.

AddressBook.MsgSvBfrClose(string op)

AddressBook.MsgSvBfrNew(string op)

AddressBook.MsgSvBfrOpen(string op)
where op in Set{"y","n","c"}

AddressBook.SelContact(int line)
where line in Set{0..dbContacts.Size-1}

AddressBook.Sort(Field f)
where f in Set{"Last Name", "First Name",
"Business Phone", "Home Phone",
"Email", "Fax"}

FindDialog.SetDirection(Dir d)
where d in Set{"Up","Down"}
FindDialog.SetField(Field f)
where f in Set{"Last Name", "First Name",
"Business Phone", "Home Phone",
"Email", "Fax"}
FindDialog.SetMatchCase(bool op)
FindDialog.SetMatchWholeWord(bool op)
where op in Set{true, false}

SaveDialog.MsgOverwriteFile(string op)
where op in Set{"y","n"}

167

Chapter V

For the other cases, a reduction of the numberoskiple values is needed
according to the testing goals defined for theentriGUI under test. The domains
presented in Table 7 ensure full coverage of tinetfanal dependencies and full
coverage of test boundary and special conditions.

Actions with parameters Test Condition Domains

namespace ContactDialog:

SetLastName(string op) Two different values {Biy'Silva"}
SetFirstName(string fn) Will not be tested {"}
SetBusinessPhone(string bph) Two different values | {"1","3"}
SetHomePhone(string hph) Will not be tested {"}
SetEmail(string email) Will not be tested {"}
SetFax(string fax) Will not be tested {"}
namespace FindDialog:
SetField(Field f) Two fields of different{"Last Name",
types "Business Phone"}
SetFindWhat(string fw) Values that allow testing the {"pin”, "nuno"}

"match case" and the "matc¢h
whole word" functionalitieg
of the find action

namespace OpenDialog:

SetFileName(string fn) Test for an existing and{&AB.adr",
non-existing file "ABne.adr"}

namespace SaveDialog:

SerFileName(string fn) Test for an existing fil§'AB.adr",

and a file that does not'ABwe.adr"}
exist at first but will exist
eventually later

Table 7: Domains for the actions' parameters

After defining the domains for the actions' paramett is important to check if
they meet the full coverage of functional dependemncriterion identified as a
testing goal in section 5.2.3. For that, the foilugvtables were constructed. Table
8 and Table 9 are built for this purpose.

For example, column "Changed lineSelected?" in §&bls true when variable
lineSelected is updated after the find action occurs. The lastumn
"Appears message?" refers to the effect of a mesisag showing up to inform
the user that the word to look for could not berfdin the text.

168

Case studies

Inputs Find effect
Contacts Line find direction match | match | field Changed Appears
Selected | What Case Whole lineSelected message
Word ?

<"Pinto",","3","","™,""> ‘r 1A pin ‘Down A F A F A Last T F
Name

<"Pinto","™,"3","™","" "> -1 "pin" | | Down F F ¢Busines F T
Phone

<"Pinto" " 13 i s, 1 "pin” | | Down = T Last = T

Y | Name

<"Pinto" " 1 e s, 1 "pin” | | Down T v = Last = T
Name

<"Pinto","™,"3","™""" "> -1 "pin"| {Up V¥ F F Last F T
Name

<"Pinto","™,"3","™","" "> -1 "nund¥’| Down F F Last F T
Name

<"Pinto" " g s, 0oV "pin" | Down = = Last = T
Name

<"Silvar e s, | g "pin" | Down = = Last = T
Name

Table 8: Test data for the Find effect

Table 9 checks for full coverage functional depemiks criterion for the Sort
effect. In order to avoid having mutually dependeamong input variables the
set of contacts was considered instead of its segue

Inputs Effect
Set of Contacts orderedBy, sort field Order
changed?
Set{<"Pinto","","3","","™,"">, | Businesg Desc | Last F
<"Silva","""1","™ " ">} Phone * Name T
Set{<"Pinto","™,"3","","","">, | Businesg Degc Businesls Ty
<"Silva","""1","™ " ">} Phone Phone
Set{<"Silva","","1","","",""%, | Businesg Asd' Last T A
<"Pinto","","3","™","","">} Phone Name
Set{<"Silva","","1",","" "3, | Last Nal%e Desc | Last T VL
<"Pinto","","3","","","">} Name
Set{<"Pinto","","l“,"",‘"',""!)', Business |Asc | Last F v
<"Silva",""3","" " ">} Phone Name

Table 9: Test conditions for the Sort effect

Recall that it is possible to sort the contactsabgpecific field in ascending or
descending order. The sorting order is toggledyetiare two sorting operations
are sequentially performed on the same databakk Yéhen the field changes
between two sequentially sorting operations anépeddently of the last sorting
order used, it becomes ascending. The informatiteted to the previous sort
operation is kept within two additional state vhlés calledorderedBy (the

169

Chapter V

field by which the address book was last sorted)sant (that keeps the order of
the last sort operation).

Boundary test conditions

Examples of boundary test conditions for the fiffda are:
— The word to look for is at the beginning of thettéald.
- The word to look for is at the end of the textdiel
— The word to look for is equal to the text field.

— The word to look for is in the field of the currbnselected line.

5.2.5. State filtering

An additional state filter was added to the AddrBs®mk software application
limiting the size of thedbContacts variable that models the set of contacts
inside the Address Book main window.

AddressBook.dbContacts.Size <= 2

State filter exclude from the exploration procdéstates where the specified state
condition does not hold.

5.2.6. FSM generation and reduction

The generation of the full FSM for the domains atate filter defined previously
in a single step was not practical so FSMs for stsh®f the model were
generated. One of those subsets containing thevioehaof the dialog Find and
sort functionality is reported in section 5.2.10thAugh the complete FSM was
never generated, a FSM with enough size, i.e., rooyeall the testing goals
defined, was used to illustrate the process of W3hdiation in the next section.

5.2.7. FSM validation

The navigation map view of Figure 75 shows whichdeiws/dialogs are enabled
at each moment. The Find dialog is a modeless winglach that, when it is

enabled, the main window of the Address Book appibc remains enabled. The
navigation map view has one state group where wattlows/dialogs are enabled
at the same time. There is also one state groupedch other modal dialog
window. It is obtained from the following propeiity Spec#:

Set<string> NavigationGroup { get {
return GetEnabledWindows();

1

170

Case studies

Zo ¥ Find ", " hddme Bood b Inal”qu.ﬁub:u

CancoX i

e B G bl) Chinl) Huwitonct)) Ot}

M s Nk e % |

M B sy)

I B bl s)

Lamchtdmee Eoe X) M g AP e)) "Cipan”

I B Tenl " ..

Sa "B o WPk Ho o

171

Figure 75: Navigation map view of the Address Book software applicath

Chapter V

The Open dialog view (Figure 76) shows the statesraethods available inside
the dialog. According to Table 7 (in page 168), stede variabldileName can

be set to two different valueg\B.adr " (an existing address book database) and
"ABne.adr " (a non-existing address book database).

<string,string> OpenDialogGroup { get {
if (IsOpen("Open™))
return <"fileNameO="+fileNameO,"dirO="+dirO>;
else return <"NotOpen","NotOpen">;

1

Open()|

<"fileMameO=4Bne. adr", "dirO=E:"> SatFisMame

SetFileName{"4B adr".

w0

SetFileName{"4Bne.ad

Cancel()|
MsghckFil.

<"fileMameO=AB adr", "dir0=E:" SetFileMame("AB . adr".

Cancel()|
Opend)

<"NotOpen', "MotOpen''=) SetFileMame(" 4 Bwe ad.

COpend)|
MagOverwrit..

SetFileMame(" ABne. ad..

SetFileName(" AR ade"

<"file Mame O=* ade", "dirO=E:">

Figure 76: Open dialog view

The save dialog view shows the states and posatiens inside the Save dialog
(Figure 77). It can be obtained from the followfBpec# code:

<string,string> SaveDialogGroup { get {
if (IsOpen("Save"))
return <"fileName="+fileName,"dir="+dir>;
else return <"NotOpen","NotOpen">;

1

="MotOpen", "NotOpen">) Tlso

Savehs()|
WMegSvBHO.

A ck CannotFind Word.

Save()|
Cancell)|

Sawe ()|
Saveds))

Save()|
Savels()

Cancel()|
MegOwerwr..

SetFleName{" ABwe.ad..

Sawe()|
SetFileMatne.

<"filelame=~4Bwe.ad", "di

=

SetFleName("AB. adr"..

SetFileMame"AB. adt”..

SetFileMName(" ABwe.ad. .

= el
e SetFilelame..

<"fileMName=AB adr", "du=E">

Figure 77: Save dialog view

172

Case studies

In our point of view, the order in which the Coritdealog fields are filled in is
not relevant for testing purposes. The only thimg is really important is the state
of the dialog fields when the Ok button is pressedause that's the moment when
the database in memory will be updated (add a meard or update an existing
one). Hence, the states and transitions insid€tmact dialog can be reduced by
constructing a scenario action (an action constcuas a sequence of controllable
actions) that abstracts away the order by whichddieare filled in.
Substeps/subactions inside this scenario actioe baen disabled (the attribute
action was removed) so as to avoid being explowsiae of the scenario.

[Action(Kind=ActionAttributeKind.Scenario)]
void ScnEditContact(string LN, string FN, string BP h,
string HPh, string E, string F)
requires IsEnabled("Contact");{
SetLastName(LN);
SetFirstName(FN);
SetBusinessPhone(BPh);
SetHomePhone(HPh);
SetEmail(E);
SetFax(F);

According to Table 8 and Table 9, the domain ofdbenario action parameters is
defined as a set of four different tuples:

<"Pinto","™,"1",™ "™ ">,
<"Pinto","™,"3","," "> ,
<"Silva","","1","",","">,
<"Silva","™,"3","™ "™ ">

The Edit Contact dialog view in Figure 78 can btaoted by

<string,string,string,string,string,string>
ContactDialogGroup { get {
if (IsOpen("Contact")) return contc;
else return <I|ll’llll,Illl,llll,llll,llll>;

1

SmEdit Cordact Site..

' SetFileMime" ABvre ad
O

Figure 78: Contact dialog view

173

Chapter V

Similarly to the Edit Contact dialog, the orderwhich the Find dialog fields are
filled in is irrelevant. So, an action scenaridislt to set values to the fields and
search the word in the database.

[Action(Kind=ActionAttributeKind.Scenario)]
public void ScnFind (string fw, string f, string d,
bool me¢, bool mww)

requires IsEnabled("Find") && fw 1= "";{

findWhat = fw;
field = f;
direction = d;

matchCase = mc;
matchWholeWord = mww;

}

According to Table 8, the domains for tBenFind action arguments are defined
as a set of six different tuples:

Set{<"pin","Last Name","Down" false,false>,
<"pin","Business Phone","Down" false,false>,
<"pin","Last Name","Down" false,true>,
<"pin","Last Name","Down" true,false>,
<"pin","Last Name","Up",false,false>,
<"nuno","Last Name","Down" false,false>}

The Find dialog view in Figure 79 can be obtaingd b
string FindDialogGroup { get {

if (IsOpen(" Fi nd") return
"<"+findWhat + ";" + field + ";" + direction + 4
matchCase + ";" + matchWholeWord + ">";
else return " Not Open”;

174

Case studies

"= Last Ham; Tovmeny Pk Pk = 0 Fomal |

= ping Eeinaes Flos; Dhowog Faku; Faka ="

foxFind{"pir", "Last..

SonFd" pi”, B

Figure 79: Find dialog view

175

Chapter V

Scenario validation

In order to check by visual inspection if the scesdefined are covered by the
FSM generated with the domain values defined irtiGecs.2.4, a view was
defined for each scenario, as presented bellow:

string CloseScenarioView { get {
if (IsOpen("MsgOverwriteFile"))
return "MsgOverwriteFile?";
else if (IsEnabled("MsgSvBfrClose"))
return "MsgSvBfrClose?";
else if (IsEnabled("Save")) return "Save";
else if (llsEnabled("AddressBook")) return "NotOp en";
else return "AddressBook";

)

MagSvBfrClose("y'")

Sawel)|
SetFleName

(S DD

WsgEvBirClose("c") Close()

Save()|
Savelis()|

Save()|

Cancell) WsgSvBHClose("y")|..

"TlsgCverwriteFile 7"

MWegOverwriteFile("y"..

"AddressBook” ::‘ i

LaunchAddressEook()

tEovBECpenn')|

Figure 80: Close scenario view

st ri ng FindScenarioView { get {
i f (IsEnabled(" MsgAckCannot Fi ndWor d"))
return" MsgAckCannot Fi ndWor d";
el se i f (IsEnabled(" Find") return" Find"
el se if (IsOpen(" AddressBook") return" NotOpen";
el se return "AddressBook";

1

"AddressBook") MsgOverwriteFile("n"..

Save()|
Close()|

Cancel()|
MsgSvBfiC..

MsgSvBiCl.

"MsgAckCannotFindWord"

Figure 81: Find scenario view

176

Case studies

string OpenScenarioView { get {
if (IsEnabled("MsgAckFileNotFound"))
return "MsgAckFileNotFound";

else if (IsEnabled("Open")) return "Open";
else if (IsEnabled("Save") && returnToOpenDIg)

return "Save";
else if (IsEnabled("MsgSvBfrOpen"))

return "MsgSvBfrOpen";
else if (IsEnabled("MsgOverwriteFile")

&& returnToOpenDIg) return "MsgOverwrite File";

else if (IlsOpen("AddressBook™)) return "NotOpen" ;
else return "AddressBook";

1

"WezgickFileMotFound"

MegickFileotFound()

"LddressBook” % SetFileMare(" hBwe ad..

IlagswBfrOpen(c")

OpendddressBook()

"TlsgSvBiOpen?”

MsgSvEfrCpen("y")

LaunchsddressBook()

IlsgCreerwriteFile("n"..

G 3

Open()

Savel()|

Cancel()|
SetFileMare..

Open()

OpentsddressBook()

WagSvBftOpen("y")|

"TlagCrveramiteFile?”

MsgOverwriteFilel"y" .
b inen
@J‘ SetFileMame..

Figure 82: Open scenario view

string SaveScenarioView { get {
if (IsEnabled("MsgOverwriteFile"))
return "MsgOverwriteFile";
else if (IsEnabled("Save")) return "Save";
else if (IsEnabled("MsgOverwriteFile"))
return "MsgOverwriteFile";
else if (IIsOpen("AddressBook™)) return "NotOpen"
else return "AddressBook";

1}

Sort("Last Name")|

"AddressBook”)

Save()|
Cancel()

oy

Save()|
Savehs()

Save()|

SetFilelTame MsgOverwriteFile("y".

LaunchiddressBook()|..

MaeBvBirClose("y'™| "MagOverwriteFile?"

MsgOverwriteFile("y".

sgavBirOpen("n')|

"NotOpen" ;

Figure 83: Save scenario view

177

Chapter V

5.2.8. Test case generation and execution

After assuring that the test goals are met, theritkgn presented in section 4.3.4
was applied on the FSM generated to reduce itsvdide guaranteeing coverage
of the two intermediate levels of abstraction dedirby the navigation map and
dialog views. Then, test cases that meet full tt@mscoverage criterion were

generated from this FSM.

The map between model actions and interactive alsntwhere the modelled
actions will occur is established with the GUI Mapp Tool (Figure 84). This
makes it possible to point out, for each modeloactihe interactive control where
the modelled action will occur. Two XML files andG# file are automatically
generated for this purpose.

@ Windows Binding Q@E|

Spy Toal ﬁ&
Bindings
3 ¢ | LogicalN ame ClassName ControllD | Parent Captian SubOptian -
woid AddiessBook MsgSvBhClose(sting) AddressBook SvBhClose #2770 0 Addiess Book Address Book -
woid AddressBook. M agSvBRMNew(string] AddressBook.SvBfiMew #2770 0 Address Book Address Book - J
void AddressBook MsgSvBfipen(sting) AddressBook.SvBRDpen #32770 0 Address Book Address Book -
void AddressBook. NewdddressBook(] AddressBook MewaddressBook SWT_WindowD - - Address Book "2\New Addres
woid AddreszBook. MewContact() AddrezzBook. MewContact SWT_Windowd - - Addrees Book "0hiMew Conta
woid AddressBook. OpentddressEook(] AddressBook. OpendddressBon SWT_WindowD - - Address Book “3Wk0pen Addr
void AddressBook. S avedddressBoak(] AddressBook. SavedddressBock SWT WindowD - - Address Book “#\4Save Addr
void AddressBook SavesddiessBookds[AddressBook.SavedddressBook SWT_WindowD - - Address Book "B\Save SAddr
void AddressBook. S oitfstring) AddrezsBook. Sort SWT_WindowD - - Address Book 4
J whid Cantartialan Caneell CantartNialan Caneel Ruttnn TRA99RN Canrel - ‘ ’j
4 »
#ML Files Application Under Test
GUI action/object
mapping : |actObitanag. smi Path : |4 doressBook
GUI object mapping : |ob|MapAE.Hm\ Start Function: ||ntama| woid AddressBook.LaunchAddrj Subrmit

Figure 84: GUI Mapping Tool relating model action of the Address Bok
application with interactive controls

5.2.9. Capacity of detecting errors

Unlike the Notepad application, the source codthefAddress Book is available,
thus enabling testing by a particularly kind of Ifaimjection called mutation
testing (recall section 3.3). This makes it possibd assess how sharp the
developed methodologies and tools are in interacoftware error detecting (in a
sense, this amounts to "testing the testing tdoitsetf).

List of injected errors

The list of errors was constructed having in mine kind of errors this approach
is suited to find and classified as "functionaktyors" in section 2.2.

The errors injected spread over several diffengrag:

178

Case studies

— Mandatory fields are not mandatory.

- Missing commands.

— Existing commands are disabled when they shoukhbéled.
— Commands do not do what was expected.

— Incorrect field defaults.

— Windows with incorrect modality.

- Message boxes do not show up when expected or tdehow the set
of options they should.

— Files are not correctly saved.

5.2.10. Metrics

The Address Book model was constructed in a sidgle It reuses the modules
Open, Save, and Window and File managers alreaustrewted for the other case
study (section 5.1). In addition to the modulessesl) it was necessary to model
more 38 actions and 20 helper methods to desdndbéehaviour of the Address
Book.

The goal of this experiment is to test the find dvand sort functionalities. The
subset of actions (and parameter values) of thaesddBook model used in this
experiment is listed in Table 10.

Actions Parameter domains

FindDialog.Cancel()
ContactDialog.Cancel()
AddressBook.Close()
AddressBook.EditContact()
AddressBook.Find()
AddressBook.LaunchAddressBook()
FindDialog.MsgAckCantFindWord()

AddressBook.MsgSvBftClose(string)
AddressBook.MsgSvBfrNew(string)
AddressBook.NewContact()
AddressBook.SelContact(int line)

ContactDialog.Ok()

ContactDialog.ScnEditContact(string,string
string,string)

ey

ey

if (dbContactseSi@) return

Set{0..dbContacts.Size-1} else return Set{-1}

){<"Pinto",‘"',"3","">, <"Pinto",","1","">
<"Silva",™,"1","">, <"Silva",","3",">}

/* taken from Table 9*/

179

Chapter V

FindDialog.ScnFind(string,string,string, [<"pin","Last Name","Down",false,false>,

bool,bool) <"pin","Business Phone","Down" false,false>

<"pin","Last Name","Down" false,true>,
<"pin","Last Name","Down",true,false>,
<"pin","Last Name","Up",false,false>,
<"nuno","Last Name","Down" false,false>

/* taken from Table 7 */
AddressBook.Sort(Fields) {"Last Name", "Busines®fdi'}
AddressBook.GetDBLastName()
AddressBook.GetDBBusinessPhone()

Table 10: Actions and parameter domains used in the experiment tose
find word and sort functionalities of the Address Book

The time needed to generate the FSM is 6 hour2@nainutes. The FSM has
64797 states, 105317 transitions, and 44 invocsajactions with parameters).

The quality of the FSM was accessed according t@rege criteria defined in
section 5.1.7 for the find word and sort functignes. It took half an hour to
conclude that the FSM had the desired quality ptegse

The pruning technique described in section 4.3.4 applied to the original FSM.
After reduction, the FSM has 23059 states, 369&2sttions and 44 invocations.
The number of transitions is reduced in 64.9% wliile number of states is
reduced in 64.4%. The time needed to reduce the BSivelevant. The reduced
FSM preserved the desired testing properties. $ade generated from the
reduced FSM has 69 segments with the total lenghib&01.

All the injected errors were found with this expeeint.

5.3. Conclusions

This chapter presented some experiments whichtrilies and evaluate the
specification-based testing approach proposed iis tiissertation. Such
experiments were performed on two different kindssoftware applications
(Microsoft's text editor Notepad, with source codeavailable, and a Java
software application which manages database fileootacts, with source code
available) and involved the construction of theresponding software application
models, test case generation, and execution.

Quantitative measures were provided for each exy#i concerning the time

needed to construct the models, the time needegrierate the FSMs, and the

time needed to assess the quality of the FSM gaterln addition, the sizes of
the models as well as the reduction achieved wghapplication of the reduction
algorithm were provided.

180

Case studies

Since the source code of the Address Book softwamication is available, a

mutation testing technique was applied on the sooorle as a way to evaluate
how sharp the approach is in fault detection. Ajcted defects were found with
this experiment. The same approach was not folldieethe Notepad application

because its source code was not available. Althtveghg used for several years,
two so far unreported errors were detected in theepad application related to
uncommon sequences of events.

The results achieved with the experiments perforrgade us enthusiasm to
continue our work in the field of model-based Gelting.

181

Chapter VI

Conclusions and future work

This chapter presents a summary of the main canioifis of the
work reported in this dissertation in the fields ioteractive
software development and testing, and points opicsothat
deserve future attention.

The starting point of the work which leads to ttlissertation was our analysis of
current state-of-the-art methods for GUI developmerich revealed their lack of

support for the modelling and verification phasesdll Chapter 1l). As a rule, the
testing activity is performed manually without sysfatization. Moreover, no

guarantee of adequate coverage with respect to poadefined criteria is given.

Although there have been efforts in constructimggd®o automate the GUI testing
process and diminish the resources (time and mameyired, they suffer from
many drawbacks that make them unsatisfactory soisitior the problem.

This dissertation reports on the application of c#pation-based testing
techniques as a way to overcome such drawbacksoamake GUI testing more
systematic, thus improving overall GUI quality.

6.1. Summary of contributions

The contributions of this research work fall inboge areas:

— GUI testing process— The GUI testing process proposed in this
dissertation is introduced in section 4.1 and thdain its subsequent

183

Chapter VI

sections. This process involves the following stepsstruction of the
GUI model, definition of test goals, definition d@fput domains,
assessment of the quality of the FSM generatedkplpeation of the
model, FSM reduction, test case generation, auioroahstruction of
the intermediate code needed to simulate userlenacttest case
execution, and analysis of the test results.

A set of GUI modelling techniques specially suited fortesting
purposes, promoting modularity and reusability — Section 4.2
explains in detail how to model GUIs, in particulsow to model
windows, windows' controls, and communication amavigdows.
The proposed modelling technique enables GUI dasani at
different levels of abstraction where different pedies under
analysis (navigation between windows, use caseasiomn atomic
user actions) can be expressed and then verified.

Specification-based GUI testing tools- Two extensions to the Spec
Explorer tool were developed: the first one (ddmamtiin section 4.3.4)
is an algorithm to reduce the FSM generated byegpdoration of the
Spec# model, while guaranteeing coverage of tlegrivediate level of
abstraction defined by the navigation map and dialews; the
second extension (the GUI Mapping Tool describedgeantion 4.4)
assists the user in relating the model actionsgiChd" actions) to
"physical" actions of "physical" GUI objects. It eth generates
intermediate code that simulates the user actioes thhe GUI under
test. This code is automatically bound to relatetioas in the
specification.

These contributions address some of the GUI testimglenges identified in
section 3.1, as follows:

GUI testing is known to be laborious, costly, extremely
time-consuming and difficult to automate — Our approach
automates both test case generation and test xasetien. The GUI
Mapping Tool automates the execution of the tesésdy controlling
the GUI and observing the outputs automaticallyst tases generated
include uncommon sequences of actions or eventsathald not be
tested by manual tests. Errors detected when ¢estia Notepad
application are reported as examples of errorse@l® such kinds of
sequence.

Test case explosionr- The modelling technique allows for defining
scenario actions, that is, actions built as seceeit smaller actions
that abstract the order in which inputs are praditg eliminating all
the other possible permutations. In addition, agorthm is put
forward to reduce the corresponding FSM while goteing
coverage of the navigation map and dialog views.

Controllability and observability — The toolset described in this
dissertation resorts to a GUI test library desigtedontrol the GUI
while simulating users' actions and observing prige of the GUI
interactive controls.

184

Conclusions and future work

— Need for multiple testing techniques— The approach proposed can
be combined with scenario testing technique.

— Documentation — Models built according to our approach document
the behaviour of the GUIs under test. Althoughrismtéve controls are
not modelled in detail, the same approach coulddesl to model and
test interactive controls and document their behaviThis topic is
illustrated in one of the papers published whilergag out the
current research work [150]).

6.2. Summary of experimental results

The approach put forward in this research work walédated by two testing
experiments on two software applications availabider different contexts: the
Notepad application that ships with Microsoft Wimgo (source code
inaccessible) and the Address Book application ldgeel for the Eclipse platform
(example of a SWT application whose source codeadable).

We stress the fact that two so far unreported ema@re detected in the Notepad
application, despite its widespread use for mamysall over the world.

Our model of the Notepad application was built week (full time). Such a long
time was needed because along the way we weredaisgoping the modelling
technique proposed in research work. By contrhstpodel of the Address Book
application reused some modules of the Notepad ifsqaion and was
constructed in a single day.

Microsoft testers who use model-based testing timolSUI testing have reported
that modelling accounts for 10% of their work amdniy automation bugs for
90%. Without model-based testing tools, testersid@% of their time/effort
writing the automation harnessing and 40% in wgititests. Thanks to our
approach, the harnessing code can be built autcatigtiThis means that most of
the effort and time are spent on the constructiotn® model. It should be noted
that models required by our approach are morelddtéian models currently in
use at Microsoft. Even so, the time saved duriegctinstruction of the harnessing
code surpasses beyond doubts the additional tirededefor the construction of
the model itself.

6.3. Future Work

Although specification-based testing achieves & hayel of testing automation,
there is still a long way to go before it reachesglespread acceptance in
industry-strong environments. Main obstacles to thetroduction of
specification-based testing techniques are:

185

Chapter VI

The specification language itsel— We believe that specification
languages should not involve a complete divorcenfitbie current
nature of programming languages used by industogrammers,
otherwise these will resist to learn and use th&wme modellers
resist constructing textual specifications, likeogd used in this
research work in Spec#. They argue that specifisntbo close to
programming. Because they don't regard themselgsagrammers,
they would prefer to construct models usgrgphical notations like,
for instance, Statecharts [87]. This points to tark direction in our
research, that of investigating how to model GUis graphical
notations and building mechanisms to translate swmtations into
Spec#, thus hiding the Spec# formalism from theetleck.

End-to-end support of specification-based testing in thetest

process— Planning how models cover test goals (by teseggion

and coverage analysis based on test goals) andligisiiag

communication channels among test managers (aupmatically

providing reports for test management purposes tdst cost, test
coverage, and defects found) are important aspécddJI testing. As
future work, we intend to suppaekplicit definition of testing goals

to support the construction of reports with coveragnalysis
measures.

State space explosion of the model and test suite explosien

Additional pruning techniques must be provideddotool models and
test suites size. Although two techniques haveadirebeen made
available within the testing process proposed iis tissertation

(scenario actions and a FSM reduction algorithmg mtent to

construct an algorithm combining the explorationgass itself with

test coverage analysis (based on the explicit tfiefinof test goals) so
as to stop automatically the exploration processcas as test goals
are reached.

Time needed to build the model— Specification-based testing
methods can be criticized for the time and eff@ecded to construct
the model of the system under test. As future warg, intend to
derive techniques for reverse engineering exigBg applications by
automatic exploration, leading to automatic genanatof Spec#
models in a way similar to the one presented by bfenm [124].
Such models will in general be incomplete and aalyture the coarse
structure of the application; nevertheless, thaey sarve as starting
point for further manual enhancements. This revesgineering
process will trim down the time needed to constraotlels and will
allow us to apply our approach to more complex igppbns while
saving on the effort to construct entire modelsfiscratch.

Degree of automation— The GUI testing method proposed in this
research work involves manual definition of inpotrdhins. As future
work, we will study ways to integrate test dataeyation approaches
(see section 3.3.1) to allow coverage of the tgsgimals defined. The
testing process also involves evaluation of thdityuaf the generated
FSM in terms of meeting test goals previously ideat (recall
section 4.3.3 in this respect). For instance, oag whish to check if

186

Conclusions and future work

the FSM covers the scenarios identified, specisé cituations, and so
on. Right now, this phase is performed by expressiose properties
as state group views in Spec# and then inspediiggtviews visually

to check if they produce the expected result. Soneehanism to

check such properties automatically is on demand.

- Integration with other testing approaches— The prototype tool
developed in this work can be further extended Ha future to
transform the test cases generated into scriptdewrin the input
language of a Capture/Replay tool for being exetwad taking
benefit of the observability capabilities of sudols. Moreover, test
suites can be coded automatically and then be hgedhit testing
frameworks like JUnit and NUnit.

Other topics which deserve further attention are:

— Usability testing — The main target of the approach proposed in this
research work is that of finding functionality erspas described in
section 2.2. However, further functionalities candunded to support
additional analysis of the model in so far as tbect for instance,
information about the steps needed to reach agear(complete a
task), thus predicting GUI usability.

— Support for multiple platforms and languages— The prototype tool
developed so far only recognizes interactive cdsitrath window
handlers. This works for Windows applications anbeo software
applications constructed with SWT (Standard Widgedolkit)
controls. By using existing libraries it is possiblo extend this
approach for other platforms, namely Java and Vpglications.

— Configuration testing — The prototype tool developed so far does not
explicitly deal with internationalization, e.g.,ramand keys and data
formats may change according to internationalizatibo deal with
these issues, the mapping tool should be extendedsé system
configurations (e.g., data formats) and help ther us "translating"
user commands.

Pragmatically, we hope that the approach develapéais research work will be
used effectively in industrial environments and defarth contribute to higher
quality interactive software. However, we are awtu@ the specification-based
testing technique is not yet widely understoodéstdrs and their managers. May
this dissertation be also a contribution to dissettd the knowledge about
methodologies and techniques to make testing #eBvimore systematic,
automatic, and less resource demanding.

187

188

Bibliography

10.

11.

G. Abowd, J. Bowen, A. Dix, M. Harrison, and Rook, "User
Interface Languages: A survey of Existing Methods",
Programming research group, Oxford University Cotimgu
Laboratory, Oxford, Technical Report PRG-TR-5-8989.

G. Abowd and A. J. Dix, "Integrating status amdent

phenomena in formal specifications of interactiysteams”, in

Proceedings of the Symposium on Fundations of Swoéw
Engineering - SIGSOFT'94, D. Wile(Eds.), New Orlealf94.

G. Abowd, H.-M. Wang, and A. F. Monk, "A formachnique
for automated dialog development”, in Proceedingstte
Designing interactive systems: processes, practiveshods &
techniques, 1995.

B. K. Aichernig, "Automated Black-Box Testing ttviAbstract
VDM Oracles", in Proceedings of the Workshop MatistiVDM

in Practice! Part of the FM'99 World Congress onrnfad

Methods, I. J. F. a. P. G. L. editors(Eds.), Tosiu
September,1999.

B. K. Aichernig, "On the value of fault injectimn the modeling
level”, in Proceedings of the Overture Workshop Pt and P.
G. Larsen(Eds.), Newcastle upon Tyne, UK, 18 JORR2

Y. Ait-Ameur, M. Baron, and P. Girard, "Formadlaation of
HCI user tasks", in Proceedings of the Internati@enference
on Software Engineering Research and Practice -PSEBO3,
Las Vegas, Nevada, USA, 2003.

S. Alagar and K. PeriyasamySpecification of Software
Systemgd., Springer-Verlag, New York, Inc., pp.422,
isbn:ISBN: 0-387-98430-5, 1998.

M. F. Ali, "A Transformation-based Approach tailBling Multi-
Platform User Interfaces Using a Task Model and theer
Interface Markup Language”, PhD thesis, FacultthefVirginia
Polytechnic Institute and State University, 2004

P. Ammann and P. E. Black, "Model Checkers irftvoe
Testing”, National Institute of Standards and Tetbgy,
Technical Report NIST-IR 6777, 2002.

P. E. Ammann, P. E. Black, and W. Majurski, itigsModel

Checking to Generate Tests from SpecificationsRProceedings
of the 2nd IEEE International Conference on ForEajineering
Methods (ICFEM'98), M. G. H. John Staples, and $hmap
Liu(Eds.), Brisbane, Australia, 1998.

A. A. Andrews, J. Offutt, and R. T. Alexand&resting Web
Application by Modeling with FSMs", Software System
Modeling vol. 4(3), pp. 326-345, 2005.

189

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Artho, H. Barringer, A. Goldberg, K. Havetlyjnand S.
Khurshid, "Automated Testing using Symbolic ModdieCking
and Temporal Monitoring"submitted to Theoretical Computer
Science2004.

H. Balzer, F. Hofmann, V. Kruschinski, and GemNann, "The
JANUS Application Development Environment-Genergtin
More than the User Interface", in Proceedings ef @ADUI'96,
J. Vanderdonckt(Eds.), 1996.

M. Barnett, R. DeLine, B. Jacobs, M. Fahndri¢hR. M. Leino,
W. Schulte, and H. Venter, "The Spec# Programmipgtesn:
Challenges and Directions"”, in Proceedings of ti8TVE2005,
2005.

M. Barnett, K. R. M. Leino, and W. Schulte, €TtSpec#
Programming System: An Overview", in Proceedings tlod
CASSIS'04 - International workshop on Constructiand
Analysis of Safe, Secure and Interoperable Smakticeg,
Marseille, 10-13 Mar,2004.

R. Bastide and P. Palanque, "A Petri Net B&edronment for
the Design of Event-Driven Interfaces"”, in Procegdi of the
Application and Theory of Petri Nets — ATPN'95, riho, Italy,
1995.

B. Bauer, "Generating User Interfaces from Fdrm
Specifications of the Application”, in Proceedingt the 2nd
International Workshop on Computer-Aided Design Wder
Interfaces CADUI'96, J. Vanderdonckt(Eds.), 1996.

A. Beer, S. Mohacsi, and C. Stary, "IDATG: Aped Tool for
Automated Testing of Interactive Software", in Rredings of
the COMPSAC'98 - The Twenty-Second Annual Inteovsl
Conference Computer Software and Applications, 19-2
Aug,1998.

F. Belli, "Finite State Testing and Analysis @faphical User
Interfaces"”, in Proceedings of the ISSRE 2001 - Ti2th
International Symposium on Software Reliability Eregring,
Hong Kong, 27-30 Nov,2001.

E. Bernard, B. Legeard, X. Luck, and F. Peuré@Generation of
test sequences from formal specifications: GSM L1kthndard
case study"Software Testing, Verification and Reliabilitywol.
34(10), pp. 915-948, 2004.

J. Berstel, S. C. Reghizzi, G. Roussel, andSPPietro, "A
Scalable Formal Method for Design and Automatic ckivey of
User Interfaces", in Proceedings of the ICSE'0D]120

D. W. Binkley and K. B. Gallagher, "Programc8ig", Advances
in Computers vol. 43, pp. 1-50, 1996.

E. Bishop, "News: conferences - Report on tloarth
International Conference on Software Testing (ICSTE, in
Professional TesteR003, pp. 6-7.

P. E. Black, V. Okun, and Y. Yesha, "Mutatioh Model
Checker Specifications for Test Generation and Uatan", in

190

Bibliography

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Proceedings of the Mutation 2000, W. E. Wong(Edm)) Jose,
California, 2000.

F. Bodart, A.-M. Hennebert, J.-M. Leheureux,Provot, B.
Sacré, and J. Vanderdonckt, "Towards a SystemaiilciBg of
Software Architecture: the TRIDENT Methodologicali@e", in
Proceedings of the Workshop on Design, Specifinatand
Verification of Interactive Systems DSVIS'95, P.sike(Eds.),
Toulouse, France, 1995.

K. Bogdanov, J. P. Bowen, R. Cleaveland, Jri€lerJ. Dick, M.
CGheorghe, M. Harman, R. M. Hierons, K. KapoorKPRause,
G. Luettgen, and A. J. H. Simons, "Working togetHeormal
Method and Testing/ACM Computing Survey2005.

T. Bolognesi and E. Brinksma, "Introduction tbe ISO
Specification Language LOTOS'Computer Networks ISDN
Systems. Special Issue: Protocol Specification Begting vol.
14(1), pp. 25-59, 1987.

E. Borger and R. Staerkbstract State Machines: A Method for
High-Level System Design and Analysikst ed., Springer,
isbn:3540007024, 2003.

J. P. Bowen, "X: Why Z?" in Proceedings of fiemputer
Graphics Forum, 1992.

C. J. Bramwell, "Formal Development Methods laeractive
Systems: Combining Interactors and Design RationBHD
thesis, University of York, The Department of CongruScience,
1996

J. Bredereke and B.-H. Schlingloff, "An Autoexht Flexible
Testing Environment for UMTS", in Proceedings of tRIP 14th
International Conference on Testing Communicatingt&ns
X1V, 2002.

J. Brown, "Evaluation of the Task-Action Gramnvethod for
Assessing Learnability in User Interface Softwareih
Proceedings of the 6th Australian Conference on [aen-
Human Interaction (OZCHI'96), 1996.

P. Bumbulis, P. S. C. Alencar, D. D. Cowan, @nd. P. Lucena,
"Combining Formal Techniques and Prototyping in Use
Interface Construction and Verification", 1995.

P. Bumbulis, P. S. C. Alencar, D. D. Cowan, @nd. P. Lucena,
"A Framework for Machine-Assisted User Interface
Verification", in Proceedings of the 4th Internatid Conference
on Algebraic Methodology and Software Technology
(AMAST'95), London, UK, 1995.

R. Butterword, A. Blandford, and D. Duke, "Tiwe of formal
proof in modelling interactive behaviour", in Predings of the
Design, Specification and Verification of Interaeti Systems
(DSV-IS), P. Markopoulos and P. Johnson(Eds.), traatyr1998.

R. Butterword, A. Blandford, D. Duke, and R.ung, "Formal
user models and methods for reasoning about irtegac
behaviour", in Proceedings of the WP17, 1998.

191

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

R. J. Butterworth and D. J. Cooke, "Using Terapbogic in the
Specification of Reactive and Interactive Systemsh,
Proceedings of the BCS-FACS Workshop on Formal éispef
the Human Computer Interface, S. H. U. C.R. Roast al.
Siddiqi, UK(Eds.), 1996.

M. Cabrera, M. Gea, F. Gutierrez, and J. Crélpr'Algebraic
specification of User Interfaces”, in Proceedings tloe 1st
ERCIM Workshop on "User Interfaces for All", C.
Stephanidis(Eds.), Crete, Greece, October 30-35,199

C. Campbell, W. Grieskamp, L. Nachmanson, \Whu§e, N.
Tillmann, and M. Veanes, "Model-Based Testing ofjeob
Oriented Reactive Systems with Spec Explorer”, boft
Research, MSR-TR-2005-59, May, 2005.

A. Campi, E. Martinez, and P. S. Pietro, "Eigrezes with a
Formal Method for Design and Automatic Checking Wder
Interfaces”, in Proceedings of the Position paper i
IUI/CADUI'2004 Workshop on Making Model-Based Ul §ign
Practical: usable and open methods and tools,Je8thary,2004.

J. Campos and M. D. Harrison, "Model Checkingetdactor
Specifications”, inAutomated Software Engineeringol. 8,
2001.

J. F. C. F. d. Campos, "GAMA-X Geracdo Semiefudtica de
Interfaces Sensiveis ao Contexto", MSc, Universdaal Minho,
Departamento de Informética, 1993

D. A. Carr, "Specification of Interface Intetiaa Objects”, in
Proceedings of the ACM Conference on Human Factors
Computing Systems - CHI, Boston, Masachusetts, ,1S84.

S. S. Chok and K. Marriott, "Automatic Constro of User
Interfaces from Constraint Multiset Grammars", ideedings
of the 11th International IEEE Symposium on Visuahguages
(VL'95), Washington, DC, USA, 1995.

E. Ciapessoni, A. Coen-Porisini, E. Crivelli, Blandrioli, P.
Mirandola, and A. Morzenti, "From formal models farmally-
based methods: an industrial experiendeCM Transactions on
Software Engineering and Methodology (TOSEM)I. 8(1), pp.
79-113, 1999.

K. Claessen and J. Hughes, "QuickCheck: A Migight Tool
for Random Testing of Haskell Programs", in Prodegsl of the
ICFP'00, Montreal, Canada, 2000.

E. M. Clarke, O. Grumberg, M. Minea, and D.dRl&tate space
reduction using partial order techniquebiternational Journal
on Software Tools for Technology Transfer (STWVBI. 2(3), pp.
279-287, 1998.

T. Clement, "The Formal Development of a Winddaterface",
in Proceedings of the 3rd BCS-FACS Northern Foriviathods
Workshop, 1998.

L. Constantine, "Rapid Abstract Prototyping'echnical Report
#100, 1998.

192

Bibliography

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

L. L. Constantine and L. A. D. Lockwood, "Usdgentered
Engineering for Web Applications", ilEEE Software vol. 19,
2002.

J. Coutaz, "Software Architecture Modeling ftger Interfaces”,
in Encyclopedia of software Engineer{iagls.), Wiley and sons,
1993.

T. Dabdczi, 1. Kollar, G. Simon, and T. Megyeitiow to test
Graphical User Interfaces”, InlEEE Instrumentation &
Measurement Magazin2003, pp. 27-33.

L. Dan and B. K. Aichernig, "Combining Algelraand Model-
based Test Case Generation", in Proceedings of Ringt
International Colloquium in Theoretical Aspects @dmputing
(ICTAC'04), Guiyang, China, 2004.

R. DeMillo and J. Offutt, "Constraint-Based #wiatic Test Data
Generation", iInEEE Transactions on Software Engineeringl.
17, 1991, pp. 900-910.

J. Dick and A. Faivre, "Automating the genenatiand
sequencing of test cases from model-based spditificd, in
Proceedings of the FME'93: Industrial-Strength Fadriviethods,
Odense, Denmark, 1993.

A. W. Dikstra, "Notes On Structured Programgiin
Technological University Eindhoven, The Netherlands
Department of Mathematics, 70-WSK-03, 1970.

A. Dix and C. Runciman, "Abstract Models of drsctive
Systems, People and Computers: Designing the &ulf in
Proceedings of the HCI'85, P. J. S. Cook(Eds.)dbon1985.

G. J. Doherty, J. Campos, and M. D. Harris&gpresentational
Reasoning and VerificationFormal Aspects of Computingol.
12(4), pp. 260-277, 2000.

D. Duke and M. Harrison, "Towards a Theory tietactors”,
Amodeus Esprit Basic Research Project /WP6, Fepraa
1993.

D. J. Duke and M. D. Harrison, "Abstract Intgian Objects", in
Proceedings of the EUROGRAPHICS'93, 1993.

M. B. Dwyer, V. Carr, and L. Hines, "Model Ckaxw Graphical
User Interfaces Using Abstractions"”, in Proceedioigthe Sixth
European Software Engineering Conference (ESEC/RSRY.

J. Edvardsson, "A Survey on Automatic Test Dadémeration”,
in Proceedings of the Second Conference on Com3dience
and Engineering in Linkoping (ECSEL), October,1999.

M. Evers, "Adaptability Problems of Architeatarfor Interactive
Software", in Proceedings of the Workshop on Obk{géented
Technology (ECOOP'99), Lisbon, Portugal, 1999.

J. C. P. d. Faria, "Regras Activas Dirigidakbpddados para a
Manutencdo de Restricdes de Integridade e Daddsddes em
Aplicacbes Interactivas de Bases de Dados", Phbyl&ade de

193

65.

66.

67.

68.

69.

70.

71.

72.

73.

74,

75.

76.

7.

Eng® da Universidade do Porto, Departamento de Eng?®
Electrotécnica e de Computadores, 1999

R. Ferguson and B. Korel, "The Chaining Apphofor Software
Test Data Generation", ACM Transactions on Software
Engineering and Methodology (TOSEMYol. 5(1), pp. 63-86,
1996.

J. Fitzgerald and P. G. Larsen, "Modelling 8yst: Practical
Tools and Techniques in Software Developme@ambridge
University Press1998.

J. Fitzgerald, P. G. Larsen, P. Mukherjee, hat,Pand M.
Verhoef, Validated Designs for Object-oriented Systgus
Springer-Verlag Telos, isbn:1-85233-881-4, NewRk/2005.

J. S. Fitzgerald and P. G. Larsen, "Formal ifipation
techniques in the commercial development process",
Proceedings of the International Conference on wawé
Engineering (ICSE), Seattle, April,1995.

S. Flynn, "Expression Refinement Explained", tidvsl
University of Ireland, Department of Information cheology,
Galway, Technical Report, 1999.

S. Fujiwara, G. v. Bochmann, F. Khendek, M. Aouaand A.

Ghedamsi, "Test selection based on finite stateetsbdEEE

Transactions on Software Engineerjngol. 17(6), pp. 591-603,
1991.

A. Galloway and B. Stoddart, "Integrated Fornvdthods",
IRIN - Institute de Recherche en Informatic de antl997.

E. Gamma, R. Helm, R. Johson, and J. Vlissid&ssign
Patterns: Elements of Reusable Object-Orientedwaod 1st
ed., Addison-Wesley Professional, pp.395, isbn:628612,
1995.

J. Gannon, P. McMullin, and R. Hamlet, "Datastaction
Implementation, Specification, and TestingCM Transactions
on Programming Languages and Systenwl. 3(3), pp. 211-
223, 1981.

G. Gediga, K.-C. Hamborg, and |. Duntsch, "Hatibn of
Software Systems", iEncyclopedia of Library and Information
Sciencevol. 72, A. Kent and J. G. Williams (Eds.), 20Gh.
166-102.

D. F. Gieskens and J. D. Foley, "ControllingetJsnterface
Objects Through Pre- and Postconditions”, GVU hhgal
Report Number GIT-GVU-91-09, June, 1991.

J. A. Goguen, T. Winkler, J. Meseguer, K. Rugt, and J.-P.
Jounnaud, "Introducing OBJ", i\pplications of Algebraic
Specification using OBJR. G. a. J. G. D. Coleman (Eds.),
Cambridge University Press, 1993.

C. Gram and G. Cocktoesign Principles for Interactive
Softwareed., Chapman & Hall, isbn:0412724707, 1996.

194

Bibliography

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

A. S. Grant, "Modelling Cognitive Aspects of i@aex Control
Tasks", University of Strathclyde, Department of ngputer
Science, 1990

W. Grieskamp, Y. Gurevich, W. Schulte, and MeaXxes,
"Generating Finite State Machines from Abstract te&Sta
Machines", in Proceedings of the ISSTA 2002, Ira&omal
Symposium on Software Testing and Analysis, Jul§Z20

T. Griffiths, "Teallach: A Model-Based User dniace
Development Evironment for Object Databases", incBedings
of the User Interfaces to Data Intensive SystebhdS, 1999.

T. Griffiths, J. McKirdy, N.Paton, J.Kennedy, .(®oper,
P.Barclay, C.Goble, P.Gray, M. Smyth, A. West, a&d®inn,
"An Open Model-Based Interface Development Systdine
Teallach Approach”, in Proceedings of the DSV-ISE08.

J. V. Guttag, J. J. Horning, and A. Modet, "&¢mpn the Larch
Shared Language - Version 2.3", SRC Research rRé&go
April 14, 1990.

G. d. Haan, "Formal Representation of Human+{@der
Interaction”, in Proceedings of the Human-Compur&raction:
Preparing for the Ninties, T. N. W. a. A. G. A. G. van der
Veer(Eds.), Amsterdam, 1991.

G. d. Haan, "ETAG, A Formal Model of Competekecmwledge
for User Interface Design", Vrije Universiteit, ZD0

G. d. Haan, G. C. v. d. Veer, and J. C. v. tyli&ormal
Modelling Techniques in Human Computer Interactjon"
(http://home.tiscali.nl/gdehaan/articles/formal-mtsie
review.html) conferred in October, 2006.

P. R. Hanau and D. R. Lenorovitz, "Prototypamgl simulation
tools for user/computer dialogue design”, in Prdoegs of the
7th annual International Conference on Computeplica and
Interactive Techniques, Seattle, Washington, UE80.

D. Harel, "Statecharts: a visual formalism domplex systems",
in Science of Computer Programmjngpl. 8(Eds.), 1987, pp.
231-274.

M. Harman and S. Danicic, "Using Program Sticia Simplify
Testing", Software Testing, Verification and Reliabilityvol.
5(143-162), 1995.

A. Hartman and K. Nagin, "The AGEDIS Tools fodel Based
Testing”, in Proceedings of the ISSTA'04, Boston,
Massachusetts, USA, July 11-14,2004.

H. R. Hartson, A. C. Siochi, and D. Hix, "TheAN: a user-
oriented representation for direct manipulatioeifstce designs",
in ACM Transactions on Information Systems (TOISEM
Press, 1990.

K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenskd L. K.
Rierson, "A Practical Tutorial on Modified Conditid Decision
Coverage", NASA/TM-2001-210876, 2001.

195

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

E. Hendrickson, "Making the Right Choice" Software Testing
& Quality Engineering 1999.

R. M. Hierons, "Testing From a Z Specificatiodburnal of
Software Testing, Verification, and Reliabilityol. 7(1), pp. 19-
33, 1997.

C. A. R. HoareCommunicating Sequential Processes (CSP)
Prentice Hall International, 2004.

A. Howes, S. J. Payne, and D. Moffat, "Autordakbeory-based
Procurement Evaluation”, in Proceedings of ther&m97, 1997.

A. Hussey and D. Carrington, "Comparing twortiserfaces:
MVC and PAC", in Proceedings of the FAHCI'96, 1996.

A. Hussey, I. MacColl, and D. Carrington, "Assiag Usability
from Formal User-Interface Designs"”, in Proceedimjsthe
Interact'01, 2001.

K. lizuka, J. Tanaka, and B. Shizuki, "Deseripia Drawing
Editor by Using Constraint Multiset Grammars", iro€eedings
of the Sixth International Symposium on the Futofesoftware
Technology (ISFST), Zhengzhou, China, November200

M. Y. Ivory and M. A. Hearst, "The State of that in
Automating Usability Evaluation of User InterfacesACM
Computing Surveysvol. 33(4), pp. 470-516, 2001.

C. Janssen, A. Weisbecker, and J. Zieglernéeaing User
Interfaces from Data Models and Dialogue Net Spatibns"”,
in Proceedings of the Proceedings of the CHI'93awNork,
NY, 1993.

R. Jeffries, J. R. Miller, C. Wharton, and M. Uyeda, "User
Interface Evaluation in the Real World: A Companisaf Four
Techniques", 1991.

B. E. John and D. E. Kieras, "The GOMS FanufyUser
Interface Analysis Techniques: Comparison and @stitrACM
ToCHlI, 1996.

C. W. Johnson and M. D. Harrison, "Using Terapbogic To
Support The Specification and Prototyping Of Intéikee Control
Systems" International Journal Of Man-Machine Studjewol.
36, pp. 357-385, 1992.

P. Johnson, H. Johnson, R. Waddington, andul§h&Task

Related Knowledge Structures: Analysis, Modellinghd a
Application", in People and Computers 1V, Cambridge
University Press1988, pp. 35-61.

C. Kaner, "Improving the Maintainability of famated Test
Suites", in Proceedings of the Tenth Internaticablity Week,
San Francisco, CA, May,1997.

C. Kaner, "Cem Kaner on Scenario Testing: Ftver of "What
If. " and Nine Ways to Fuel Your Imagination", Boftware
Testing & Quality Engineering (STQE003.

196

Bibliography

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

C. Kaner, J. Bach, and B. Pettichotggssons Learned in
Software Testing: A Context-Driven Approaah, John Wiley &
Sons, 2002.

C. Kaner, J. Falk, and H. Q. Nguyenhesting Computer
Softwareed., Wiley Computer Publishing, isbn:0-471-35846-
1999.

H. C. Keh and T. G. Lewis, "Direct-Manipulati®ser Interface
Modeling with High-Level Petri Nets", in Proceedingf the 19h
annual conference on Computer Science, San Antdm@gas,
United States, 1999.

W. C. Kim and J. D. Foley, "Providing high-#twontrol and
expert assistance in the user interface presentaisign”, in
Proceedings of the Human Factors in Computing 8yste
(InterCHI'93 Proceedings), New York, 1993.

B. A. Kitchenham, "Evaluating Software Engimeg Methods
and Tool. Part 1: The Evaluation Context and Euaoa
Methods", ACM SIGSOFT Software Engineering Notesol.
21(1), 1996.

D. Lee and M. Yannakakis, "Principles and Mdthof Testing
Finite State Machines - A SurveyProceedings of the IEEE
vol. 84, pp. 1090-1996, 1996.

F. Lonczewski, "The FUSE-System: an Integratedr Interface
Design Environment", in Proceedings of the CADU|'82896.

M. Cabrera, M. Gea, and J. C. Torres, "Towarssr Interfaces
Prototyping for Algebraic Specification", in Procéggs of the

VI Eurographics Workshop on Design, Specificationd a
Verification of Interactive Systems - DSV-1S'99, raBa,

Portugal, June,1999.

I. MacColl and D. Carrington, "User InterfaCerrectness”, in
Proceedings of the Human Computer Interaction -$¥C1997.

I. MacColl and D. Carrington, "Specifying Irdaetive Systems
on Object-Z and CSP", in Proceedings of A. G. a.TKK.
Araki(Eds.), 1999.

P. Markopoulos, J. Pycock, S. Wilson, ancoRhgon, "Adept —
A task based design environment", in Proceedingthef25th
Hawaii International Conference on System Scient@3?.

C. Martin, "Software Life Cycle Automation fdnteractive
Applications: The AME Design Environment", in Predings of
the Computer-Aided Design of User Interfaces - CAB& J.
Vanderdonckt(Eds.), 1996.

F. M. Martins, "Semi-Automatic Design and Btgping of
Adaptive User Interfaces”, in Proceedings of the BHRCIM
Workshop on "User Interfaces for All", C. Stephas(lds.),
Prague, Czech Republic, 7-8 November,1996.

F. M. J. Martins, "Métodos Formais na Concepcd
Desenvolvimento de Sistemas Interactivos", PhD,olsae
Engenharia da Universidade do Minho, 1995

197

121. A. v. Mayhauser, M. Scheetz, and E. Dahimdpenkrating
Goal-oriented Test Cases", in Proceedings of the Tenty-
Third Annual International Computer Software andofigations
Conference (COMPSAC'99), 27-29 Oct,1999.

122. T. McCarthy, "Intro to NEXTSTEP",
(www120.pair.com/mccarthy/nextstep/intro.htmldpnferred in
October, 2006.

123. A. Memon, "Using Tasks to Automate Regressiesting of
GUIs", in Proceedings of the The IASTED Internatibn
Conference on Artificial Intelligence and applicets
(AlIA2004), Innsbruck, Austria, Feb. 16-18,2004.

124. A. Memon, |. Banerjee, and A. Nagarajan, "GRibping:
Reverse Engineering of Graphical User Interfaced ésting", in
Proceedings of the WCRE2003 - The 10th Working €anfce
on Reverse Engineering, Victoria, British Columbi@anada,
13-16 Nov,2003.

125. A. M. Memon, "A Comprehensive Framework for sfliey
Graphical User Interfaces", Pittsburgh, 2001

126. A. M. Memon, M. E. Pollack, and M. L. Soffd)sing a Goal-
driven Approach to Generate Test Cases for GUIsl', i
Proceedings of the International Conference on wawé
Engineering, Los Angeles, 1999.

127. A. M. Memon, M. E. Pollack, and M. L. Sofféiutomated Test
Oracles for GUIs", in Proceedings of the FSE, 2000.

128. A. M. Memon, M. E. Pollack, and M. L. Soffaiérarchical
GUI Test Case Generation Using Automated PlannitigEE
Transactions on Software Engineeringpl. 27(2), 2001.

129. A. M. Memon, M. L. Soffa, and M. E. PollackCdverage
Criteria for GUI Testing", in Proceedings of theh &uropean
Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundatiarfis
Software Engineering (FSE-9), Sept,2001.

130. C. Meudec, "ATGen: automatic test data geimgratsing
constraint logic programming and symbolic executi@oftware
Testing, Verification and Reliabilityvol. 11(2), pp. 81-96, 2001.

131. M. Mezzanotte and F. Paternd, "Verification Rybperties of
Human-Computer Dialogs with an Infinite Number ¢&t8s", in
Proceedings of the BCS-FACS Workshop on Formal éispef
the Human Computer Interface, S. H. U. C.R Roast ah
Siddigi, UK(Eds.), 10-12 September,1996.

132. Microsoft, "Visual Basic Home", msdn2.microsoft.com/en-
us/vbasic)conferred in October, 2006.

133. Microsoft, "Visual Studio”, nisdn.microsoft.com/vstudio),
conferred in October, 2006.

134. K. Mitchell and J. Kennedy, "DRIVE: An Envinment for the
Organised Construction of User-Interfaces to Databg in
Proceedings of the 3rd International Workshop aerfaces to

198

Bibliography

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

Databases, J. K. a. P. Barclay(Eds.), Napier Usiter
Edinburgh, 1996.

P.-J. Molina-Moreno, |. Torres-Boigues, and Rastor-Lépez,
"User Interface Patterns for Object-Oriented Natiigd, in
Human-Computer Interaction: Overcoming Barrie2903.

P. J. Molina and J. Hernandez, "Just-Ul: Uspajterns as
concepts for IU specification and code generatioiri,
Proceedings of the CHI 2003 workshop on HCI Pagtern
Concepts & Tools, Fort Lauderdale, Florida, 2003.

P. J. Molina, S. Marti, and O. Pastor, "Piptmto Réapido de
Interfaces de Usuario", in Proceedings of the V kgbop
Ideroamericano de Ingenieria de Ambientes Software,
IDEAS'2002, M. K. e. al.(Eds.), La Habana, Cubari2003.

T. P. Moran, "Getting into a System: Extermékrnal Task
Mapping Analysis”, in Proceedings of the CHI'83,
December,1983.

C. Morgan,Programming from Specificatioprnd edition ed.,
Prentice Hall, isbn:ISBN: 0131232746, 1994.

B. A. Myers, "User Interface Software ToolsACM
Transactions on Computer-Human Interaction (TOCHIHol.
2(1), pp. 64-103, 1995.

B. A. Myers and M. B. Rosson, "Survey on ugeerface
programming", in Proceedings of the SIGCHI'92, 1992

N. Nyman, "In Defense of Monkey Testing", amnéd in May,
2006.

N. Nyman, "Using Monkey Test Tools", BTQE - Software
Testing and Quality Engineering Magazir2®00.

J. Offutt, S. Liu, A. Abdurazik, and P. Ammat@enerating test
data from state-based specificationsSoftware Testing,
Verification and Reliability vol. 13(1), pp. 25-53, 2003.

V. Okun, P. E. Black, and Y. Yesha, "TestinghwModel
Checker: Insuring Fault Visibility" WSEAS Transactions on
Systemsvol. 2(1), pp. 77-82, 2003.

D. R. Olsen and E. P. Dempsey, "SYNGRAPH: Aaphical
User Interface Generator", KCM - Computer Graphi¢wvol. 17,
1983, pp. 43-50.

T. Ostrand, A. Anodide, H. Foster, and T. @@ma"A Visual
Test Development Environment for GUI Systems", in
Proceedings of the ISSTA'98, Clearwater BeachiddorUSA,
1998.

A. C. Paiva, J. P. Faria, and R. M. Vidal, é8fication-based
Testing of User Interfaces”, in Proceedings of 16eéh DSV-IS
Workshop - Design, Specification and Verificatidnlrteractive
Systems, Funchal - Madeira, 4-6 de Junho,2003.

A. C. R. Paiva, J. C. P. Faria, N. Tillmanm] &. F. A. M. Vidal,
"A Model-to-implementation Mapping Tool for Autonemt

199

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

Model-based GUI Testing", in Proceedings of the HEFO5,
2005.

A. C. R. Paiva, J. C. P. Faria, and R. M. Vidautomated
Specification-based Testing of Interactive Compdsiewith

AsmL", in Proceedings of the 5th edition of the Qué&Quality:

the bridge to the future in ICT) international cergnce, Porto,
2004.

A. C. R. Paiva, N. Tillmann, J. C. P. Fariad &. F. A. M. Vidal,
"Modeling and Testing Hierarchical GUIs", in Prodas of the
ASM 2005 - 12th International Workshop on Abstr&tate
Machines, Paris - France, March 8-11,2005.

P. Palanque, "Petri Net Based Design Of Usateb Interfaces
Using Interactive Cooperative Objects Formalism"n i
Proceedings of the Design, Specification and Mifon of
Interactive Systems - DSV-1S'94, 1994.

D. L. Parnas, "On the use of transition diaggrin the design of a
user interface for an interactive computer systenm,
Proceedings of the 24th National Conference, NeskYNY,
USA, 1969.

F. Paterno, C. Mancini, and S. Meniconi, "GofeaskTrees: A
Diagrammatic Notation for Specifying Task Modelsin
Proceedings of the Interact'97, 1997.

F. Paterno and C. Santoro, "Integrating M&@tedcking and HCI
Tools to Help Designers Verifying User Interfaceparties", in
7th International Workshop on Design, Specificati@amd
Verification of Interactive Systems DSV-1S'2000merick,
Ireland, 2000.

D. Peled, E. Clarke, and O. Grumbagdel checkinged., MIT
Press, isbn:02620327 -08, Cambridge, Massach/ 28616

I. Phillips, "A comparative review of Hyper@aand Director as
tools for time-based expressive work",
(www.agocg.ac.uk/reports/graphics/26/nodel12.htrapferred in
October, 2006.

N. Plat and P. G. Larsen, "An Overview of tB®/VDM-SL
Standard"ACM SIGPLAN Noticesvol. 27(8), pp. 76-82, 1992.

A. Pretschner, "Classical search strategie®fb case generation
with Constraint Logic Programming”, in Proceedingt the
CONCUR'01 Workshop on Formal Approaches to Testifg
Software (FATES'01), Aalborg, Denmark, August,2001

M. Priestley, "The Logic of Correctness in t®aie
Engineering”, in Proceedings of the 17th Intermatio
Conference, CAISE 2005, Porto, Portugal, June7,2aD5.

A. R. Puerta, "The MECANO Project: Comprehemsand
Integrated Support for Model-Based Interface Dgwelent”, in
Proceedings of the 2nd International Workshop omgaer-
Aided Design of User Interfaces - CADUI'96, 1996.

A. R. Puerta, "Supporting User-Centered DesiffrAdaptive
User Interfaces Via Interface Models", in Procegdinf the First

200

Bibliography

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

Annual Workshop On Real-Time Intelligent User Ifaees for
Decision Support and Information Visualization, ngaancisco,
January,1998.

A. R. Puerta and D. Maulsby, "Management tdrface Design
Knowledge with MOBI-D", in Proceedings of the IUI'9
Orlando, FL, January,1997.

S. Rayadurgam and M. P. E. Heimdahl, "TestiSece
Generation from Formal Requirements Models", incBealings
of the Sixth IEEE High Assurance in Systems Endinge
Workshop, Florida, October,2001.

P. Reisner, "Further Developments Toward UskFgrmal
Grammar as a Design Tool", in Proceedings of thef€ence on
Human Factors in Computing Systems, Gaithersbvegyland,
United States, 1982.

J. Schalken, "Research Methods for the Engpiissessment of
Software Processes", in Proceedings of the Proogedif the
12th doctoral consortium on Advanced Informationst8gns

Engineering - CAISE'05, H. BOUNIF(Eds.), Porto erfagal,

13-14 June,2005.

E. Schlungbaum, "Model-based User Interfaciw@oce Tools
Current state of declarative models", Graphicsu#ligation &
Usability Center, GIT-GVU-96-30, 1996.

B. v. Schooten, O. Donk, and J. Zwiers, "MbaglInteraction
in Virtual Environments using Process Algebra"Piroceedings
of the Interactions in Virtual Worlds - TWLT 15, 99.

M. L. Scott and S.-K. Yap, "A Grammar-basecprgach to the
Automatic Generation of User-Interface Dialogs"Piroceedings
of the CHI'88, 1988.

R. K. Shehady and D. P. Siewiorek, "A MethodAutomate
User Interface Testing Using Variable Finite Stetechines”, in
Proceedings of the 27th International Symposium Fault-
Tolerant Computing, 1997.

P. P. d. Silva, "User Interface Declarative dels and
Development Environments: A Survey", University of
Manchester, 2000.

D. Sinnig, P. Forbrig, and A. Seffah, "Patseim Model-Based
Development", in Proceedings of the INTERACT'03 etkshop
entitled: Software and Usability Cross-Pollinatidrhe Role of
Usability Patterns, 2003.

D. Sinnig, A. Gaffar, A. Seffah, and P. FagbtiPatterns, Tools
and Models for Interaction Design", in Proceedingfs the
CADUI'0O4 - Workshop entitted Making model-based ruse
interface design practical: Usable and open mettaodks tools,
2004.

E. G. Sirer and B. N. Bershad, "Using Productsrammars in
Software Testing", in Proceedings of the Secondf&@ence on
Domain Specific Languages, Austin, Texas, Oct@8r1999.

201

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

H.-W. Six and J. Voss, "User Interface Devaiept: Problems
and Experiences”, in Proceedings of the SysmposioniNew
Results and New Trends in Computer Science, S. .Li. IT.

Science(Eds.), Graz/Austria, 1991.

G. Smith,The Object-Z Specification Languageol. 1,ed.,
Kluwer Academic Publishers, pp.160, isbn:0-792348682000.

S. Software, "Seapine QA Wizard - Automateddtional and
Regression Testing", déwnloads.seapine.com/pub/product-
info/gawizard.pdf)conferred in November, 2006.

N. Souchon and J. Vanderdonckt, "A Review BiXCompliant
User Interface Description Languages", in Procegdinf the
10th International Conference on Design, Specificat and
Verification of Interactive Systems (DSV-1S'03), alteira, 4-6
June,2003.

J. M. SpiveyThe Z Notation: A Reference Manyal., Prentice
Hall International (UK) Ltd, 1998.

E. Stroulia, M. EI-Ramly, P. Iglinski, and Borenson, "User
Interface Reverse Engineering in Support of Intafiigration

to the Web" Automated Software Engineeringol. 10, pp. 271-
301, 2003.

E. Stroulia, M. EI-Ramly, L. Kong, P. Sorensand B.
Matichuk, "Reverse Engineering Legacy Interfacesn A
Interaction-Driven Approach”, in Proceedings of IMCRE99,
1999.

P. Szekely, P. Luo, and R. Neches, "Faciligathe Exploration
of Interface Design Alternatives: The HUMANOID Mddef
Interface Design", in Proceedings of the CHI'9292.9

P. Szekely, P. Sukaviriya, P. Castells, J.nvkiimarasamy, and
E. Salcher, "Declarative interface models for usserface
construction tools: the MASTERMIND approach”, in
Proceedings of the EHCI'95, 1995.

C. SzyperskiComponent Software: Beyond Object-Oriented
Programminged., Addison-Wesley, pp.411, isbn:ISBN:
0201178885, 1999.

N. Tillmann and W. Schulte, "Parameterized tURests", in
Proceedings of the ESEC/FSE'05 - Joint 10th EuroSedtware
Engineering Conference (ESEC) and the 13th ACM &IEB
Symposium on the Foundations of Software EngingefiSE-
13), Lisbon - Portugal, Semtember 5-9,2005.

H. Traetteberg, "Model-based user interfasigdé, PhD Thesis,
Norwegian University of Science and Technology, &épent
of Computer and Information Sciences, 2002

S. Trewin, G. Zimmermann, and G. Vanderheidéstract
User Interface Representations: How Well do theypsu
Universal Access?" in Proceedings of the CUU'0Znd&buver,
British Columbia, Canada, November 10-11,2003.

J. D. Ullman and J. D. Widom First Course in Database
Systems2nd ed., Prentice Hall, pp.528, isbn:0130353Q001.

202

Bibliography

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

M. Utting, "COMP424 Module 2: Specification<dgal Testing",
2004.

J. Vanderdonckt, L. Bouillon, and N. SoucH®iexible Reverse
Engineering of Web Pages with VAQUISTA", in Prociegd of
the IEEE 8th Working Conf. on Reverse Engineeritif)1.

M. Veanes, C. Campbell, W. Grieskamp, W. Sehund N.
Tillmann, "Online Testing with Model Programs",Pmoceedings
of the ESEC/FSE'05, 2005.

M. Veanes, C. Campbell, W. Schulte, and P.liIK&Bn-The-Fly
Testing of Reactive Systems", Technical Report M$R2005-
05, January, 2005.

M. v. Welie, G. C. v. d. Veer, and A. Elieidn Ontology for
Task World Models", in Proceedings of the DSV-1$'9898.

L. White and H. Almezen, "Generating Test Gafkwm GUI
Responsibilities Using Complete Interaction Seqashc in
Proceedings of the 11th International SymposiumSoftware
Reliability Engineering (ISSRE'00), San Jose, fGaiia, 2000.

C. Wiecha, W. Bennett, S. Boies, J. Gould,&n@reen, "ITS: A
Tool for Rapidly Developing Interactive Applicatish ACM

Transactions on Infomation Systemwol. 8(3), pp. 204-236,
1990.

C. Wiecha and S. Boies, "Generating userfattes: principles
and use of ITS style rules", in Proceedings ofRheceedings of
the UIST'90, October,1990.

J. M. Wing, "Formal Methods", ikncyclopedia of Software
Engineering J. J. Marciniak (Eds.), 1994, pp. 504-517.

K. Winter, "Model Checking Abstract State Mngs", PhD,
Elektrotechnik und Informatik der Technischen Unsigt
Berlin, 2001

K. Zambelich, "Totally Data-Driven Automated esling.
Whitepaper", littp://www.sqa-test.com/White Paper.doc)
conferred in October, 2006.

M. V. Zelkowitz and D. R. Wallace, "Experimahmodels for
validating technology"]EEE Computer vol. 31(5), pp. 23-31,
1998.

203

Appendix A

A.1l. Notepad specification

e R
/1 Notepad mai n wi ndow

namespace Notepad;
using WindowManager;
using FileManager;

/1 State variabl es
/I ---- editing status ----

string text =",
selText =""

int posCursor = 0;

bool dirty =false;

Il ---- file being edited ----
string fileOpened =",
directory=" E: "; /| "E:" for test purposes

/I ---- file and replace settings ----
string findWhat =",

replaceWord =",

direction =" Down";
bool matchCase = false;
/I ---- temporary state of the open feature ----
bool svBfrOpen = false;
/I ---- temporary state of the close feature ----
bool svBfrClose = false;

/1 It is possible to | aunch the Notepad application
[Acti on] void LaunchNotepad()

requires !IsOpen("Notepad"); {

AddWindow("Notepad",™ false);

Init();

b
void Init()

FileManager.CreateTextFile("E:\\foo.txt","); /lfor test purposes
text=""

posCursor = 0;

selText="",;

dirty = false;

fileOpened ="";

findWhat = "";

svBfrOpen = false;

svBfrClose = false;

/1 It is possible to close the application.
[Acti on] void Close()
requires IsEnabled("Notepad") ; {
if (dirty) {
AddWindow("MsgSaveChanges"," Not epad",true);
svBfrClose = true;
svBfrOpen = false;

}

else CloseApp();
}
void CloseApp(){

if (IsOpen(" Repl ace")) ReplaceDialog.RemoveReplace();
if (IsOpen(" Fi nd")) FindDialog.RemoveFind();

Init();

if (IsOpen("Notepad")) RemoveWindow(" Not epad");

205

[Acti on] void MsgSvBfrClose(string option)
requires IsEnabled("MsgSaveChanges") && svBfrClose &&
option in Set{"y","n","c"}; {
RemoveWindow("MsgSaveChange s");
switch (option){
case "n" : CloseApp();break;
case "c" : svBfrClose=false; break;
case "y" : if (fleOpened !="")
SaveDlglistener.SaveFile(directory,fileOpened);
CloseApp();
}

else
AddWindow("Save","Notepad",true);
return;
default : return;

/1l It is possible to type text
[Acti on] void InsText(string typedText)
requires IsEnabled("Notepad") &&
text.Length + typedText.Length < 4; {
text = text.Substring(0,posCursor-selText.Length) + typedText +
text.Substring(posCursor,text.Length-posCursor);
posCursor = posCursor — selText.Length + typedText.Length ;
selText ="";
dirty = true;

}
[Acti on(Ki nd=Acti onAttri buteKi nd. Probe)]
string GetText()
requires IsEnabled("Notepad"); {
return text;

}
/I helper method
Set<<int,int>> SelectText { get {
if (text.Length==1 || text.Length==2)
return Set{p0 in Set{0..text.Length-1},
plin Set{pO+1..text.Length}; <p0,p1>};
else return Set{<0,0>};

B

[Acti on] void SelText(int pl,int p2)
requires IsEnabled("Notepad") && text!="" &&
p1>=0 && pl< text.Length &&
p2>=pl && p2<= text.Length; {
selText = Substring(text,pl,p2-pl);
posCursor = p2;

/1 It is possible to open a file
[Acti on] void MsgSvBfrOpen (string option)
requires IsEnabled("MsgSaveChanges") && svBfrOpen &&
option in Set{"y","n","c"}; {
RemoveWindow("MsgSaveChanges");
switch (option){
case "y": if (fileOpened = ""){

SaveDialog.Show(" Not epad",directory, fileOpened);
else
SaveDlglistener.SaveFile(directory,fileOpened);
break;
case "n": OpenDialog.Show(" Not epad",directory);
break;

case "c": break;
default: return;

}
[Acti on] void Open()
requires IsEnabled("Notepad"); {
if (dirty) {
AddWindow("MsgSaveChanges","Notepad",true);
svBfrOpen = true;
svBfrClose = false;

else {

206

Appendix A

OpenDialog.Show("Notepad",directory);

/1 It is possible to save the content in nmenory to a file
[Acti on] void Save()
requires IsEnabled("Notepad") ;{
if (fileOpened ==") {
SaveDialog.Show("Notepad",directory,fileOpened);

else
SaveDlglistener.SaveFile(directory,fileOpened);

}
[Acti on] void SaveAs()
requires IsEnabled("Notepad"); {
SaveDialog.Show("Notepad",directory,fileOpened);

/1 It is possible to open the find dialog.
[Acti on] void Find()

requires text!="" && !IsOpen(" Repl ace") && IsEnabled("Notepad") ;{
if (IsOpen("Find")) {
FindDialog.Show(" Not epad",findWhat);

}
[Acti on] void FindNext()
requires text!="" && IsEnabled("Notepad") ;{
if (findWhat == "" && !IsOpen("Find") && !IsOpen("Replace")) {
FindDialog.Show("Notepad",");

}
else if (findWhat!="")
FindNextWord(findWhat, matchCase, direction);

}
[Acti on] void MsgAckCantFindWord()
requires IsEnabled("MsgAckCantFindWord") &&
windows["MsgAckCantFindWord"].parent == "Notepad"; {
RemoveWindow("MsgAckCantFindWord");
SetFocus("Notepad");
}
/1 It is possible to open the replace dial og.
[Acti on] void Replace()
requires !IsOpen("Find") && IsEnabled("Notepad") ;{
if (IsOpen("Replace"))
ReplaceDialog.Show(" Not epad" findWhat,replaceWord);

/'l Interfaces
/I ---- Open dialog interface ----
var CNotepadOpDIg OpDlglistener = new CNotepadOpDIg();

class CNotepadOpDlg : OpenDialog.IOpenDlgListener {
void OpenFile(string dir, string file){
string path = dir + "\" + file;
text = FileManager.ReadFile(path);
dirty = false;
posCursor = 0;
selText="";
directory = dir;
fileOpened = file;
svBfrOpen = false;

}
CNotepadOpDlIg(){
OpenDialog.SetOpenDialogListener(this);
}}
I ---- Save dialog interface ----

var CNotepadSaDlg SaveDlglistener = new CNotepadSaDlg();

class CNotepadSaDlg : SaveDialog.ISaveDlgListener {
string dir=null,file=null;

void SaveFile(string dir, string file){
string path = dir + " W\ + file ;

207

if (file 1=" ot xt" && file 1="") {

CreateTextFile(path,text);

Notepad.fileOpened = file;

directory = dir;

dirty = false;

if (svBfrOpen) {
AddWindow("Open","Notepad",true);
svBfrOpen = false;

else if (svBfrClose)
CloseApp();

CNotepadSaDIg(){
SaveDialog.setSaveDialogListener(this);

/I ---- Find dialog interface ----
var CNotepadFiDIg FiDlglistener = new CNotepadFiDIg();

class CNotepadFiDIg : FindDialog.IFindDlgListener {
void FindNext(string findWord, bool matchC, string dir)
requires dir in Set{"Up","Down"}; {
intindex = -1;
direction = dir;
matchCase = matchC;
Notepad.findWhat = findWord;
index = FindWord();
if (index in Set{0..text.Length-findWord.Length} && dir=="Up"){
selText = text.Substring(index,findWord.Length);
posCursor = index + findWord.Length;

else if (index != -1 && dir == "Down") {
selText = text.Substring(index+posCursor,findWord.Length);
posCursor = posCursor + index + findWord.Length;

else
AddWindow("MsgAckCantFindWord","Find" true);
Notepad.findWhat = findWord;

CNotepadFiDIg(){
FindDialog.setFindDialogListener(this);

/I ---- Replace dialog interface ----
var CNotepadReDlg ReDlglistener = new CNotepadReDIg();

class CNotepadReDlg : ReplaceDialog.IReplaceDlgListener {
public void FindNext(string findWord,string repWord, bool matchC){
int index = -1;
Notepad.findWhat=findWord;
replaceWord=repWord;
direction="Down";
matchCase=matchC;
index = FindWord();
if (index I=-1) {
posCursor = index + posCursor + findWord.Length;
selText = findWord;

else
AddWindow("MsgAckCantFindWord","Replace" true);

}
public void Replace(string findWord, string repWord, bool matchC)

{
Notepad.findWhat = findWord;
replaceWord = repWord;
matchCase = matchC;
direction="Down";
if ((matchC && selText == findWord) ||
(fmatchC && selText.ToLower() == findWord.ToLower())) {
text = text.Substring(0, posCursor-findWord.Length) + repWord

208

Appendix A

+ text.Substring(posCursor, text.Length — posCursor);
posCursor = posCursor - findWord.Length + repWord.Length;
selText = repWord;

}
FindNext(findWord,repWord, matchCase);

}
public void ReplaceAll(string findWord, string repWord,
bool matchCase) {
inti;
findwhat = findWord; replaceWord = repWord;
posCursor = 0; selText =",
if (matchCase) text = text.Replace(findWord, repWord);
else{
i = text. ToLower().IndexOf(findWord.ToLower());
if (i>=0 && i<text.Length)
text = FindRep(text,i,findWord, repWord);

}
string FindRep(string txt,int i, string findWord,string repWord){
if (i<0 || i>txt.Length) return txt;
else return txt.Substring(0,i)+ repWord+
FindRep(txt.Substring(i+findWord.Length,
txt.Length-i-findWord.Length),
txt.Substring(i+findWord.Length, txt.Length-i-
findWord.Length).ToLower().IndexOf(findWord.ToLower()),
findWord,repWord);

}
CNotepadReDIg({
ReplaceDialog.setReplaceDialogListener(this);

}
}
/1 hel per methods
int FindWord(){

string txt = text;

string findStr = findWhat;
int index = -1;

if (!ImatchCase) {
txt = text.ToLower();
findStr = findWhat. ToLower();

if (direction ==" Down")

index=txt.Substring(posCursor,

txt.Length-posCursor).IndexOf(findStr);

else {

int i=posCursor-selText.Length+findStr.Length-1;

if (i<0 || i>text.Length) i=posCursor;

index = txt.Substring(0,i).LastindexOf(findStr);

if (index>-1 && index<posCursor - selText.Length)

return index;
else index = -1;

return index;

void FindNextWord(string findWord, bool matchC, string dir)
requires dir in Set{"Up","Down"}; {
intindex = -1;
direction = dir;
matchCase = matchC;
index = FindWord();
if (index = -1 && dir== Up"){
selText = text. Substnng(lndex findWord.Length);
posCursor = index + findWord.Length;

}

else if (index != -1 && dir ==" Down"){
selText = text.Substring(index+posCursor,findWord.Length);
posCursor = posCursor + index + findWord.Length;

else {
AddWindow("MsgAckCantFindWord","Notepad",true);

209

[= = m e e e e e

namespace OpenDialog;
using WindowManager;
using FileManager;

var string fileNameO = "*.txt";
var string! dirO = "E:";

var |I0OpenDlgListener OpenDlgListener;

public interface IOpenDlgListener{
void OpenFile(string dirO, string file);
void Cancel();

}
public void SetOpenDialogListener(IOpenDlgListener listener) {
OpenDlgListener = listener;

public void Show(string parent, string d)
requires !IsOpen("Open"):{
dirO =d,;
AddWindow("Open",parent,true);

[Acti on] void Cancel()
requires IsEnabled("Open");{
fileNameO = "*.txt";
RemoveWindow("Open");
OpenDlgListener.Cancel();

[Acti on] void MsgAckFileNotFound()
requires IsEnabled("MsgAckFileNotFound") ; {
RemoveWindow("MsgAckFileNotFound");

}
[Acti on] void Open()
requires IsEnabled("Open");{
if (FileManager.FileExists(dirO+" \\ " tfileNameO)) {
OpenDlgListener.OpenFile(dirO.fileNameO);
fileNameO = "*.txt";

RemoveWindow("Open™);

else
AddWindow("MsgAckFileNotFound","Open",true);

[Acti on] void SetFileName(string fileName)
requires IsEnabled("Open") {
fileNameO = fileName;

}
[== m e e e
/
/

J o o e e e D e e e e e e e e e e e e e e e eeeee e
namespace SaveDialog;

using WindowManager;

using FileManager;

var string fileNameS = "*.txt";
var string! dirS = "E:";

var ISaveDlgListener SaveDlgListener;

public interface ISaveDlgListener{
void SaveFile(string dir, string file);
void Cancel();

public void setSaveDialogListener(ISaveDlgListener listener) {
SaveDlgListener = listener;

210

Appendix A

public void Show(string parent, string dir, string file)
requires !IsOpen("Save"); {
dirS = dir; fileNameS = file;
AddWindow("Save",parent,true);

[Acti on] void Cancel()
requires IsEnabled("Save") ; {
fleNameS ="";
SaveDlgListener.Cancel();
RemoveWindow("Save");

}
[Acti on] void Save()
requires IsEnabled("Save") ; {

if (FileManager.FileExists(dirS + " "

AddWindow("MsgOverwriteFile","Save",true);

else{
if (IsValid(fileNameS)) {
fleNameS ="";
RemoveWindow("Save");
SaveDlgListener.SaveFile(dirS,fileNameS);

}
}

[Acti on] void MsgOverwriteFile(string option)
requires IsEnabled("MsgOverwriteFile");{
RemoveWindow("MsgOverwriteFile");
switch (option){

case "n" : return;

case "y" : RemoveWindow("Save");
SaveDlgListener.SaveFile(dirS,fileNameS);
fileNameS =",

return;
default : return;

}

[Acti on] void SetFileName(string fName)
requires IsEnabled("Save"); {
fleNameS = fName;

}
[] = = e e ool
/
/

namespace FindDialog;
using WindowManager;

/] state variables
string findWhatF="";

string directionF = "Down" ;
bool matchCaseF = false;

var IFindDlIgListener FindDlIgListener;

public interface IFindDIgListener{
void FindCancel();

void FindNext(string findWord, bool matchC, string dir) ;

public void setFindDialogListener(IFindDlgListener listener) {

FindDlIgListener = listener;

}
/1 hel per methods
public void Show(string parent, string findWord)
requires !IsOpen("Find");{
findWhatF = findWord;
directionF = "Down" ;
AddWindow("Find",parent,false);

public void RemoveFind()
requires IsOpen("Find");

findWhatF=""; directionF = "Down" ;
matchCaseF = false;

211

RemoveWindow("Find");

}
/'l Actions
[Action(Ki nd=ActionAttributeKi nd. Scenari o)]
void ScnFind(string fw, string dir, bool mc)
requires IsEnabled("Find") &&
dir in Set{"Up","Down"} ; {

SetFindWhat(fw);

SetDirection(dir);

SetMatchCase(mc);

}

[Acti on] void SetFindWhat(string str)
requires IsEnabled("Find");{
findWhatF = str;

[Acti on] void SetDirection(string dir)
requires dir in Set{"Up","Down"} && IsEnabled("Find");{
directionF = dir;

}

[Acti on] void SetMatchCase(bool op)
requires IsEnabled("Find");{
matchCaseF = op;

}

[Acti on] void FindNext()

requires IsEnabled("Find") && findWhatF!="";{
FindDlIgListener.FindNext(findWhatF, matchCaseF, directionF);

[Acti on] void Cancel()

requires HasFocus("Find") {
findWhatF=""; directionF = "Down" ;
matchCaseF = false;
RemoveWindow();

}
[Acti on] void MsgAckCantFindWord()
requires IsEnabled("MsgAckCantFindWord") &&
windows["MsgAckCantFindWord"].parent == "Find"; {
RemoveWindow("MsgAckCantFindWord");

N e e L
/'l Repl ace di al og
N R R
namespace ReplaceDialog;

using WindowManager;

// state variabl es

string findWhatR="",
replaceWithR="";

bool matchCaseR=false;

var IReplaceDlgListener ReplaceDlgListener;

/'l interface
public interface IReplaceDlgListener{
public void FindNext(string findWord, string replaceWord,
bool matchCase) ;
public void Replace(string findWord, string replaceWord,
bool matchCase);
public void ReplaceAll(string findWord, string replaceWord,
bool matchCase);

}

/'l hel per methods

public void setReplaceDialogListener(IReplaceDlgListener listener){
ReplaceDlgListener = listener;

public void Show(string parent, string findWord,string replaceWord)
requires !IsOpen("Replace"); {
findwhatR = findWord; replaceWithR = replaceWord;
matchCaseR = false;
AddWindow("Replace",parent,false);

212

Appendix A

public void RemoveReplace()

requires IsOpen("Replace"); {
findWwhatR =""; replaceWithR="";
RemoveWindow("Replace");

}
/1 Actions
[Action(Ki nd=Acti onAttri buteKind. Scenari o)]
void ScnReplace(string fw, string rw, bool mc)
requires IsEnabled("Replace");{
SetFindWhat(fw);
SetReplaceWith(rw);
SetMatchCase(mc);

[Acti on] void Cancel()

requires IsEnabled("Replace"); {
findWwhatR =""; replaceWithR="",
RemoveWindow("Replace");

}

[Acti on] void SetFindWhat(string str)
requires IsEnabled("Replace”) ; {
findWhatR = str;

}

[Acti on] void SetReplaceWith(string str)

requires IsEnabled("Replace") && findWhatR =" ; {
replaceWithR = str;

[Acti on] void SetMatchCase(bool value)
requires IsEnabled("Replace"); {
matchCaseR = value;

}

[Action] void FindNext()

requires IsEnabled("Replace") && findWhatR !=""; {
ReplaceDlgListener.FindNext(findWhatR, replacewlthR matchCaseR);

[Acti on] void Replace()
requires IsEnabled("Replace") && findWhatR = ""; {
ReplaceDlgListener.Replace(findWhatR, replaceWithR, matchCaseR);

[Acti on] void ReplaceAll()
requires IsEnabled("Replace") && findWhatR ="
&& findWhatR.Length>=replaceWithR.Length // for testing purposes

i
ReplaceDlgListener.ReplaceAll(findWhatR,replaceWithR,matchCaseR);

[Acti on] void MsgAckCantFindWord()

requires IsEnabled("MsgAckCantFindWord") &&
windows["MsgAckCantFindWord"].parent=="Replace"; {
RemoveWindow("MsgAckCantFindWord");

/1 Open scenari o.

[Action(Ki nd=Acti onAttri buteKind. Scenari o)]

void ScnOpen(string fileToOpen, string saveChanges,
string fileToSave, string overwrite)

requires IsEnabled("Notepad");

Open();
if (IsEnabled("SaveChanges")) // if dirty

MsgSvBfrOpen(saveChanges);
if (IsEnabled("Save")) // saveChanges == true

SaveDialog.SetFileName(fileToSave);
SaveDialog.Save();
if (IsEnabled("MsgReplaceFile")) // file exists

SaveDialog.MsgOverwriteFile(overwrite); //yes or no
if (IsEnabled("Save")) // overwrite = no, so get
/l out of the cycle
SaveDialog.Cancel(); /I end of the scenario

213

}
}

/[(saveChanges != c || !dirty

if (IsEnabled("Open"))
OpenDialog.SetFileName(fileToOpen);
OpenDialog.Open();
if (IsEnabled("AckMsgFileNotFound"))

OpenDialog.MsgAckFileNotFound();
OpenDialog.Cancel(); // end of the scenario

}
}
}
/1 Navigation map view
/1 with focus property nodelled
string NavigationMapWithFocus { get {

if (GetWindowWithFocus()=="") return "NotOpen";
else return GetWindowWithFocus();

/1 without nodelling focus property
Set<string> NavigationMapWithoutFocus { get {
return GetEnabledWindows();

b3
/1 distinguish the Find dialog states with different enabl ed
/'l actions
string ValidationGroup { get {
if (GetWindowWithFocus()=="Find") {
if (FindDialog.findWhatF !="") return "Find Next enabled";
else return "Find Next disabled";

else return "OutFind";

/1 Open scenario view
string OpenScenario { get {
if (IIsOpen("Notepad")) return "NotOpen";
else if (IsEnabled("MsgSaveChanges") && svNfrOpen)
return "MsgSaveChanges";
else if (IsEnabled("Save") && svBfrOpen) return "Save";
else if (IsEnabled("MsgAckFileNotFound™))
return " MsgAckFileNotFound";
else if (IsEnabled("MsgOverwriteFile") && svBfrOpen)
return "MsgOverwriteFile";
else if (IsEnabled("Open")) return "Open";
else if (dirty) return "Dirty";
else if ('dirty) return "NotDirty";
else return "*;
1 _
/'l save scenario
string SaveScenario { get {
if (IIsOpen("Notepad")) return "NotOpen";
else if (IsEnabled("Save")) return "Save";
else if (IsEnabled("MsgOverwriteFile") && IsOpen("Save"))
return "MsgOverwriteFile";
else return "SaveDIgClosed";

/1 find scenario
string FindScenario { get {
if (IIsOpen("Notepad")) return "NotOpen";
else if ('IsOpen("Find")) return "FindDIgClosed";
else if (HasFocus("Find")) return "Find";
else if (IsOpen("MsgAckCantFindWord"))
return "MsgAckCantFindWord";
else return "FindDIgNotActive";

b
/1 the word to ook for is at the beginning of the text
string AtBeginningGroup { get {
if (text!I="" && findWhat.Length<=text.Length &&
text.Substring(0,findWhat.Length)==findWhat
&& Notepad.findWhat!=""
return "AtBeginning";
else return "NotAtBeginning";}}

214

Appendix A

/1 the word to look for is at the end of the text

string AtEndGroup { get {

if (text!I="" && findWhat.Length<=text.Length &&
text.Substring(text.Length-findWhat.Length,findWhat.Length)==
findWhat && Notepad.findWhat!="") return "AtEnd";

else return "NotAtEnd";

/1 the word to ook for is equal to the text content
string WordEQToText{ get {

if (text==findWhat) return "wordEQText";

else return "NotEQ";

/1 the cursor positionis in the mddle of the word to | ook for
string AtTheMiddleGroup { get {
if (Exists{i in Set{0..text.Length};
posCursor>i && posCursor<i+findWhat.Length &&
i==text.IndexOf(findWhat)})
return "InTheMiddle";
else return "NotInTheMiddle";

}

/'l the several occurrences of the word overlap each other

string OverlapGroup { get {

if (findWhat.Length>1 && (Exists{i in Set{1..findWhat.Length-1};
findWhat.Substring(0,i)==findWhat.Substring(findWhat.Length-i,i)
&&
text.IndexOf(findWhat+findWhat.Substring(0,i))>=0})
[| (Exists{i in Set{1..findWhat.Length-1};
findWhat.Substring(0,i). ToLower() ==
findWhat.Substring(findWhat.Length-i,i). ToLower() &&
text.ToLower().IndexOf(findWhat.ToLower()+

findWhat.Substring(0,i). ToLower())>=0}

&& 'matchCase))

return "Overlap";

else return "NotOverlap";

/'l the several occurrences of the word are side by side
string SideBySideGroup { get {
if (text!="" && findWhat!="" && (text.IndexOf(findWhat+findWhat)>0

|
text. ToLower().IndexOf(findWhat. ToLower()+findWhat. ToLower())>0
&&

ImatchCase))
return "SideBySide";
else
return "NotSideBySide";

/'l open view

/1 without nodelling the focus property

<string,string> OpenDialogGroup { get {
if (IsOpen("Open")) return fileNameO="+fileNameO,"dirO="+dirO>;
else return <"NotOpen","NotOpen">;

/'l open view

/1 nmodelling the focus property

string OpenDialogGroup { get {
if (IIsOpen("Notepad")) return "NotOpen";
else if (IsOpen("Open™)) return openCtrlWthFocus;
else return "OpenDlgClosed";

/'l save view
/1 without nodelling the focus property
<string,string> SaveDialogGroup { get {
if (IsOpen("Save")) return <"fleNameS="+fileNameS,"dirS="+dirS>;
else return <"NotOpen","NotOpen">;

/1 find dial og view
/1 without nodelling the focus property
<string,string,string> FindDialogGroup { get {
if (IsOpen("Find") && matchCaseF==true)
return
<"findWhatF="+findWhatF,"directionF="+directionF,
"matchCaseF=true">;
else

215

if (IsOpen("Find") && matchCaseF==false) return
<"findWhatF="+findWhatF,"directionF="+directionF,
"matchCaseF=false">;

else return <"NotOpen","NotOpen","NotOpen">;

/1 find dial og view
/1 nodelling the focus property
string FindDialogGroup { get {

if (IIsOpen("Notepad")) return "NotOpen";

else if (HasFocus(" Fi nd")) return findCtrlWthFocus;
else if (IsOpen(" Fi nd")) return "Find Dl gNot Acti ve";
else return " Fi ndDl gd osed";

/'l replace dial og view
/1 without nodelling the focus property
<string,string,string> ReplaceDialogGroup { get {

if (IsOpen(" Repl ace"))
return <" fi ndwWwhat R="+findWhatR," repl aceW t hR="+replaceWithR,
" mat chCaseR="+matchCaseR>;
else return <" Not Cpen"," Not Open"," Not Open">;

/'l replace dial og view

/1 nodelling the focus property

string ReplaceDialogGroup { get {
if (HasFocus("MsgAckCantFindWord") &&

windows["MsgAckCantFindWord"].parent != "Replace")
return "MsgAckcantFindWord";

else if (HasFocus("Replace")) return "";//replaceObjActive;
else return "NotOpen";

1

216

A.2. Address Book specification

R e R R P
/1 Address Book nai n w ndow

R R R P
using System.String;

using WindowManager;

using FileManager;

namespace AddressBook;

/l ---- types and state variables ----
type Contact = <string,string,string,string,string,string>;

var Contact contactinMem = <" s
var Seg<Contact> dbContacts = Seq{}
var string sort ="Asc";
orderedBy ="Last Name";
fileOpened = ™,
directory = "E ;" [/ "E:" for test purposes
nextAction = "™
var int lineSelected = -1;
var bool addNew = ftrue,
dirty = false;
var bool returnToOpenDIlg = false,
returnToAddressBook = false;

/1 Actions

/I To launch the AddressBook application

[Acti on] void LaunchAddressBook()

requires !IsOpen("AddressBook"); {
AddWindow("AddressBook"," false);
lineSelected = -1;

/[for testing purposes
FileManager.CreateDataBaseFile("E:\\AB.adr",
Seq{<"Pinto","Nuno","1","4","™ ">,
<"Silva","Ana","3","2","","">});
}

/I To close the application.

[Acti on] void Close()
requires IsEnabled("AddressBook"); {
if (dirty) AddWindow("MsgSvBfrClose","AddressBook" true);
else CloseApp();

}
void CloseApp(){
dbContacts = Seq{};
fileOpened = ";
directory=" E:"; //"E:" for test purposes
nextAction ="";
lineSelected = -1;
addNew = true;

dirty = false;
returnToOpenDlg = false
contactinMem = <" s

if (IsOpen("Find")) Flnleang Cancel()
RemoveWindow("AddressBook");

}

[Acti on] void MsgSvBfrClose(string option)
requires option in Set{"y","n","c"} &&
IsEnabled("MsgSvBfrClose"); {
RemoveWindow("MsgSvBfrClose");
switch (option){
case "y" : if (fleOpened == "") {
AddWindow("Save","AddressBook" true);

else {
SaveDlgListener.SaveFile(directory,fileOpened);

217

CloseApp();

case "n" : CloseApp(); return;

case "c" : return;
default : return;

}

}

/l To add a new contact

[Acti on] void NewContact()
requires IsEnabled("AddressBook");{

addNew = true;
ContactDialog.Show("AddressBook",<"","™ ™ "™ " "'>);

/I To edit an existing contact
Set<int> selLine{ get {
if (dbContacts.Size>0)
return Set{0..dbContacts.Size-1};
else return Set{-1};

1
[Acti on] void SelContact(int line)
requires IsEnabled("AddressBook™) && dbContacts.Size>0 &&
line>=0 && line<dbContacts.Size; {
lineSelected = line;

}
[Acti on] void EditContact()
requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
lineSelected > -1; {
addNew = false;
ContactDialog.Show("AddressBook",dbContacts[lineSelected));

}
[Acti on] void Copy()
requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
lineSelected != -1;
ensures contactinMem == dbContacts[lineSelected]; {
contactinMem = dbContacts[lineSelected];

[Acti on] void Paste()
requires IsEnabled("AddressBook") &&

contactinMenm 1= < m s wd s,
dbContacts = dbContacts + Seq{contactinMem};
dirty = true;

[Acti on] void Delete()
requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
lineSelected = -1; {
dbContacts = dbContacts.Subseq(0,lineSelected) +
dbContacts.Subseq(lineSelected+1,dbContacts.Size);
dirty = true;
lineSelected = -1;

}

[Acti on] void Sort(string field)

requires IsEnabled("AddressBook") && dbContacts.Length>0 &&

field in Set{"Last Name","First Name","Business Phone",
"Home Phone","Email","Fax"}; {
if (field == orderedBY) {

if (sort == "Asc") sort = "Des";
else sort = "Asc";
SortContacts(field, sort);

else {
sort = "Asc";
SortContacts(field, sort);

}
orderedBy = field;

void SortContacts(string f, string s)
requires field in Set{"Last Name","First Name","Business Phone",
"Home Phone","Email","Fax"} &&
s in Set{"Up","Down"}; {
bool permutation = true;
Contact x = <™, " ">
while (permutation){

218

Appendix A

permutation = false;
for (int i=0,j=1; i<=dbContacts.Length-2 &&
j<=dbContacts.Length-1;i++,j++)
if (s=="Asc"){
if (System.String.Compare(GetField(dbContactsi],f),
GetField(dbContacts][j],f))>0){
x = dbContacts]i];
dbContacts][i] = dbContacts][j];
dbContacts]j] = x;
permutation = true;

}

else
if (System.String.Compare(GetField(dbContactsi],f),
GetField(dbContacts]j],f))<0){
x = dbContacts]i];
dbContacts][i] = dbContacts]j];
dbContacts|j] = x;
permutation = true;

}

}
/I To open a database file
[Acti on] void MsgSvBfrNew(string option)
requires IsEnabled("MsgSvBfrNew") &&
option in Set{"y","n","c"}; {
RemoveWindow("MsgSvBfrNew");
switch (option){
case "y": if (fileOpened!="") {
SaveDlgListener.SaveFile(directory,fileOpened);
fileOpened ="";
lineSelected = -1;
dbContacts = Seq{};

else {
returnToAddressBook = true;
SaveDialog.Show("AddressBook",directory,fileOpened);

return;

case "n": fileOpened =",
lineSelected = -1;
dbContacts = Seq{};
return;

case "c": return;

default: return;

}
}
[Acti on] void NewAddressBook()
requires IsEnabled("AddressBook™); {
if (dirty) AddWindow("MsgSvBfrNew","AddressBook",true);
else {
fileOpened = ";

lineSelected = -1;
dbContacts = Seq{};

}
[Acti on] void MsgSvBfrOpen (string option)
requires IsEnabled("MsgSvBfrOpen") &&
option in Set{"y","n","c"}; {
RemoveWindow("MsgSvBfrOpen");
switch (option){
case "y": if (fileOpened!="") {
SaveDlgListener.SaveFile(directory,fileOpened);
OpenDialog.Show("AddressBook", directory);

else {
returnToOpenDIg = true;
SaveDialog.Show("AddressBook",directory,fileOpened);

return;
case "n": OpenDialog.Show("AddressBook",directory);
return;

219

case "c": return;
default: return;

}

[Acti on] void OpenAddressBook()

requires IsEnabled("AddressBook™); {
if (dirty) AddwWindow("MsgSvBfrOpen","AddressBook",true);
else OpenDialog.Show("AddressBook",directory);

}

[Acti on] void SaveAddressBookAs()

requires IsEnabled("AddressBook™) && dirty;{
SaveDialog.Show("AddressBook",directory,fileOpened);
AddWindow("Save","AddressBook" true);

}
[Acti on] void SaveAddressBook()
requires IsEnabled("AddressBook") && fileOpened =" &&
dirty == true;{
SaveDialog.Show("AddressBook",directory,fileOpened);
AddWindow("Save","AddressBook" true);

}

/I To open the find dialog.

[Acti on] void Find()

requires IsEnabled("AddressBook");{
FindDialog.Show("AddressBook");

}

[Acti on] void FindNext()

requires IsEnabled("AddressBook");{
FindDialog.Show("AddressBook");

}
[Acti on(Ki nd=Acti onAttri but eKi nd. Probe)]
string GetDBLastName()
requires IsEnabled("AddressBook"); {
if (dbContacts.Size > 0)
return GetField(dbContacts[0],"Last Name");
else return "0,

}
[Acti on(Ki nd=Acti onAttri buteKi nd. Probe)]
string GetDBBusinessPhone()
requires IsEnabled("AddressBook"); {
if (dbContacts.Size > 0)
return GetField(dbContacts[0],"Business Phone");
else return "0";

}

/'l Interfaces
/I ---- Find dialog interface ----
var CAddressBookFiDIg FiDIgListener = new CAddressBookFiDIg();

class CAddressBookFiDlg : FindDialog.IFindDlgListener {

void FindNext(string fw, string f, string d, bool mc, bool mww) {

int lineSelOld = lineSelected;

if (O<lineSelected && lineSelected<dbContacts.Size-1)

if (d=="Up") lineSelected =
FindWord(dbContacts.Subseq(0,lineSelected), fw,f,d,mc,mwwy);

else lineSelected =
FindWord(dbContacts.Subseq(lineSelected+1,

dbContacts.Size),fw,f,d,mc,mww);

if (lineSelOld == lineSelected)

AddWindow("MsgAckCannotFindWord","Find",true);

CAddressBookFiDIg(){
FindDialog.setFindDialogListener(this);

/I ---- helper methods ----
int FindWord(Seqg<Contact> dbC, string w, string f, string d, bool
mc, bool mww)
requires d in Set{"Up","Down"}; {
int i=0;
it @=="Up){
for (i=dbC.Size-1;i>=0;i--) {
if (CompareStrings(mc,mww,GetField(dbContacts]i],f),w,i)!=-1)

220

Appendix A

return i;
} .
return lineSelected;

else {
for (i=0; i< dbC.Size; i++) {
if (CompareStrings(mc,mww,GetField(dbContacts]i],f),w,i)!=-1)
return i+lineSelected;

return lineSelected;

}
public int CompareStrings(bool mc,bool mww,
string cf,string w,int i) {
if (mc && mww && System.String.CompareOrdinal(cf,w)==0)
return i;
else if (mc && 'mww && cf.IndexOf(w)!=-1 &&
System.String.CompareOrdinal(cf. Substring(
cf.IndexOf(w),w.Length),w)==0)
return i;
else if (Imc && mww &&
System.String.CompareOrdinal(cf.ToLower(),
w.ToLower())==0)
return i;
else if (Imc && Imww &&
cf.ToLower().IndexOf(w.ToLower()) !=-1)
return i;
else return -1;

string GetField(Contact c, string f)
requires f in Set{"Last Name","First Name",
"Business Phone","Home Phone","Email","Fax"};

switch (f{
case "Last Name": return c.First;
case "First Name": return c.Second;
case "Business Phone": return ¢.Third;
case "Home Phone": return c.Fourth;
case "Email": return c.Fifth;
case "Fax": return c.Sixth;
default : return ";

}

// ---- Open dialog interface ----
var CAddressBookOpDIlg OpDlgListener = new CAddressBookOpDIg();

class CAddressBookOpDlIg : OpenDialog.IOpenDlgListener

{
void OpenFile(string dir, string file){

inti=0;

string path = dir +" "+ file;

if (FileManager.DataBaseExists(path)) {
dbContacts = FileManager.ReadDataBase(path);
dirty = false;
directory = dir;
fileOpened = file;

else
OpenDialog.Cancel();
AddWindow("MsgAckFileNotFound","AddressBook" true);

CAddressBookOpDIg(){
OpenDialog.SetOpenDialogListener(this);

/I ---- Save dialog interface ----
var CAddressBookSaDlg SaveDlgListener = new CAddressBookSaDIg();

class CAddressBookSaDlg : SaveDialog.ISaveDlgListener

221

string SaveFile(string dir, string file){
string path = directory +" \\" + file;
string content = ™"
if (file I="*.adr" && file =" {
FileManager.CreateDataBaseFile(path,dbContacts);
AddressBook.fileOpened = file;
AddressBook.dirty = false;

}

if (returnToOpenDIg) {
OpenDialog.Show("AddressBook",directory);
returnToOpenDlg = false;

}

if (returnToAddressBook) {
fileOpened =";
dbContacts = Seq{};
lineSelected = -1;
returnToAddressBook = false;

return "Ok";

}

void Cancel(){
returnToOpenDlg = false;
returnToAddressBook = false;

}
CAddressBookSaDIg(){
SaveDialog.setSaveDialogListener(this);

/I ---- Contact dialog interface ----
var CContactDlg ContactDIgListener = new CContactDIg();

class CContactDlg : ContactDialog.IContactDIgListener {
public void ContactUpdate(Contact contc) {

if (addNew)// lineSelected == -1) // add a new contact
dbContacts = dbContacts + Seqg{contc};

else /[update an existing contact
dbContacts = dbContacts.Subseq(0,lineSelected) +

Seq{contc} +
dbContacts.Subseq(lineSelected+1,dbContacts.Size);
dirty = true;
addNew = false;

}
CContactDIg(){
ContactDialog.setContactDialogListener(this);

}
N e R
/1 Contact dial og
N e
using WindowManager;

namespace ContactDialog;
I/ types and variables
type Contact = <string,string,string,string,string,string>;

var CONtact Conte = < 1w i w ws,.
var IContactDIngstener ContactDIngstener

public interface IContactDlgListener{
public void ContactUpdate(Contact contc) ;

public void setContactDialogListener(IContactDlIgListener listener){
ContactDlgListener = listener;

public void Show(string parent, Contact c)
requires !IsOpen("Contact"); {
contc = <c.First,c.Second,c.Third,c.Fourth,c.Fifth,c.Sixth>;
AddWindow("Contact",parent,true);

[Acti on] void Cancel()

222

Appendix A

requires IsEnabled("Contact"); {
conte = <™, >
RemoveWindow("Contact");

}

[Acti on] void Ok()

requires IsEnabled("Contact"); {
ContactDIgListener.ContactUpdate(contc) ;
CONLC = <™ ot i s T,
RemoveWindow("Contact");

[Acti on] void SetLastName(string str)
requires IsEnabled("Contact"); {
contc = <str,contc.Second,contc.Third,
contc.Fourth,contc.Fifth,contc.Sixth>;

[Acti on] void SetFirstName(string str)
requires IsEnabled("Contact"); {
contc = <contc.First,str,contc.Third,
contc.Fourth,contc.Fifth,contc.Sixth>;

[Acti on] void SetBusinessPhone(string str)
requires IsEnabled("Contact"); {
contc = <contc.First,contc.Second,str,
contc.Fourth,contc.Fifth,contc.Sixth>;

[Acti on] void SetHomePhone(string str)
requires IsEnabled("Contact"); {
contc = <contc.First,contc.Second,contc.Third,
str,contc.Fifth,contc.Sixth>;

[Acti on] void SetEmail(string str)
requires IsEnabled("Contact"); {
contc = <contc.First,contc.Second,contc.Third,
contc.Fourth,str,contc.Sixth>;

}
[Acti on] void SetFax(string str)
requires IsEnabled("Contact"); {
contc = <contc.First,contc.Second,contc.Third,
contc.Fourth,contc.Fifth,str>;

}
[Action(Ki nd=Acti onAttri buteKind. Scenari o)]
void ScnEditContact(string LN,string FN,string BPh,
string HPh,string E,string F)
requires IsEnabled("Contact");{
SetLastName(LN);
SetFirstName(FN);
SetBusinessPhone(BPh);
SetHomePhone(HPh);
/I SetEmail(E); SetFax(F); // not tested
Ok();

e e e R
/1 Find dial og

using WindowManager;
namespace FindDialog;

var IFindDlIgListener FindDlIgListener;
string findWhat =",

field =",

direction = "Down";

bool matchCase = false,
matchWholeWord = false;

public interface IFindDIgListener{
void FindNext(string fw, string f, string d, bool mc, bool mww)
requires fin Set {"Last Name","First Name","Business Phone",
"Home Phone","Email","Fax"}
&& d in Set{"Up","Down"};

223

public void setFindDialogListener(IFindDIgListener listener) {
FindDlgListener = listener;

public void Show(string parent)
requires !IsOpen("Find"); {
I/l resets the values of the variables
findWhat =",
field="Last Name";
direction="Down";
matchCase=false;
matchWholeWord=false;
AddWindow("Find",parent,false);

[Action(Ki nd=Acti onAttri buteKind. Scenari o)]
public void ScnFind (string fw, int f, string d, bool mc, bool mww)
requires IsEnabled("Find") && fw !=""{

SetFindWhat(fw);

if (f == 0) SetField("Last Name");

else SetField("Business Phone");

SetDirection(d);

SetMatchCase(mc);

SetMatchWholeWord(mww);

Find();

[Acti on] public void SetFindWhat(string str)
requires IsEnabled("Find");{
findWhat = str;

}
[Action] public void SetField(string str)
requires IsEnabled("Find") && str in Set{"Last Name","First Name",

"Business Phone","Home Phone","Email","Fax"}; {
field = str;

}
[Acti on] public void SetMatchCase(bool op)
requires IsEnabled("Find"); {

matchCase = op;

}

[Acti on] public void SetMatchwholeWord(bool op)
requires IsEnabled("Find") && windows '= Map{}:{
matchWholeWord = op;

[Acti on] public void SetDirection(string d)
requires IsEnabled("Find") && d in Set{"Up","Down"};{
direction = d;

}
[Acti on] public void Find()
requires IsEnabled("Find") && findWhat!=""{
FindDlIgListener.FindNext(findWhat, field, direction,
matchCase, matchWholeWord);

}

[Acti on] public void Cancel()
requires IsEnabled("Find");{
/] reset the value of the variables
findWhat =",

field="Last Name";
direction="Down";
matchCase=false;
matchWholeWord=false;
RemoveWindow("Find");

}
[Acti on] public void MsgAckCannotFindWord()
requires IsEnabled("MsgAckCannotFindWord") &&

windows['"MsgAckCannotFindWord"].parent == "Find"; {
RemoveWindow("MsgAckCannotFindWord");

224

Appendix A

Set<string> NavigationGroup { get {
return GetEnabledWindows();

/'l view to check the find scenario
string FindViewScn { get {
if (IsEnabled("MsgAckCannotFindWord"))
return "MsgAckCannotFindWord";
else if (IsEnabled("Find")) return "Find";
else if ('IsOpen("AddressBook")) return "NotOpen";
else return "AddressBook";

/1 find view
<string,string,string,string,string> FindDialogGroup { get {
if (IsOpen("Find")) return <"findWhat="+ findWhat,
"field="+ field, "direction="+ direction,
"matchCase="+ matchCase,"matchWholeWord="+ matchWholeWord>;
else return <"NotOpen","NotOpen","NotOpen","NotOpen”,"NotOpen">;

/'l view to check the open scenario
string OpenViewScn { get {
if (IsEnabled("MsgAckFileNotFound")) return "MsgAckFileNotFound";
else if (IsEnabled("Open")) return "Open";
else if (IsEnabled("Save")) return "Save";
else if (IsEnabled("MsgSvBfrOpen™)) return "MsgSvBfrOpen?";
else if (IsEnabled("MsgOverwriteFile"))
return "MsgOverwriteFile?";
else if (!IsOpen("AddressBook")) return "NotOpen";
else return "AddressBook™;

/'l view to check the save scenario
string SaveViewScn { get {
if (IsEnabled("MsgOverwriteFile")) return "MsgOverwriteFile?";
else if (IsEnabled("Save")) return "Save";
else if (IsEnabled("MsgOverwriteFile"))
return "MsgOverwriteFile?";
else if ('IsEnabled("AddressBook™)) return "NotOpen";
else return "AddressBook";

i

/1 dirty and a file opened

string DirtyFileView{ get {
if (dirty && fileOpened = "") return "fileOpenedDirty";
else if (dirty && fileOpened != ") return "fileOpenedNotDirty";
else if (fileOpened == "" && dirty) return "contentDirty";
else if (fileOpened == "" && !dirty) return "contentNotDirty";
else return "other";

/'l Scenari os
/! Find Scenario
[Action(Kind=ActionAttributeKind.Scenario)]
void FindScenario(string findW,string field,bool mc,bool mww,
string dir)
requires dir in Set{"Up","Down"} &&
field in Set{"Last Name","First Name", "Business Phone",
"Home Phone", "Email","Fax"} &&
IsEnabled("AddressBook™); {
Find();
FindDialog.SetFindWhat(findw);
FindDialog.SetField(field);
FindDialog.SetMatchCase(mc);
FindDialog.SetMatchWholeWord(mww);
FindDialog.SetDirection(dir);
FindDialog.Find();
if (IsEnabled("MsgAckCannotFindWord"))
FindDialog.MsgAckCannotFindWord();
FindDialog.Cancel();

/1 Open Scenario
[Action(Kind=ActionAttributeKind.Scenario)]
void OpenScenarioScn(string fileToOpen, string saveChanges,
string fileToSave, string overwrite)
requires IsEnabled("AddressBook") &&
saveChanges in Set{"y","n","c"} &&

225

overwrite in Set{"y","n"}; {
OpenAddressBook();
if (IsEnabled("MsgSvBfrOpen™)) // if dirty

MsgSvBfrOpen(saveChanges);
if (IsEnabled("Save")) // saveChanges == true

SaveDialog.SetFileName(fileToSave);
SaveDialog.Save();
if (IsEnabled("MsgOverwriteFile")) // file exists

SaveDialog.MsgOverwriteFile(overwrite); //yes or no
if (IsEnabled("Save")) // overwrite = no, so get
// out of the cycle
SaveDialog.Cancel(); // end of the scenario

}
}
/l[(saveChanges != c || !dirty
if (IsEnabled("Open")) {
OpenDialog.SetFileName(fileToOpen);

OpenDialog.Open();
if (IsEnabled("MsgAckFileNotFound"))

OpenDialog.MsgAckFileNotFound();
OpenDialog.Cancel(); // end of the scenario

}

/| Save Scenario
[Action(Kind=ActionAttributeKind.Scenario)]
void SaveScenario(string fileName, string overwrite)
requires IsEnabled("Notepad") && overwrite in Set{"y","n"}; {
SaveAddressBook();
if (IsEnabled("Save")) //no file currently opened

SaveDialog.SetFileName(fileName);
SaveDialog.Save();
if (IsEnabled("MsgOverwriteFile"))

SaveDialog.MsgOverwriteFile(overwrite);
if (IsEnabled("Save"))
SaveDialog.Cancel();

}
}
/'l close scenario
string CloseViewScn { get {
if (IsOpen("MsgOverwriteFile")) return "MsgOverwriteFile?";
else if (IsEnabled("MsgSvBfrClose™)) return "MsgSvBfrClose?";
else if (IsEnabled("Save")) return "Save";
else if (!IsEnabled("AddressBook™)) return "NotOpen";
else return "AddressBook™;

1

226

A.3. Window manager and file manager

[== m e e e e

/1 W ndow manager
namespace WindowManager;
string hasFocus = ";

structure winInf{
string parent;
bool isModal;

Map<string,wininf> windows = Map{};

bool IsOpen(string name) {
return Exists { i in windows; i == name};

bool IsEnabled(string name) {
int id;
if (IsOpen(name)) {
choose (i in windows, windows[i].isModal &&
il=name && NotParent(i,name))
return false;
else
return true;

}
else return false;

}
Set<string> GetEnabledWindows(){
return Set{x in windows, IsEnabled(x)};

bool NotParent(string p, string c) {

if (windows|c].parent =="") return true;
if (windows|c].parent == p) return false; /lp is parent of ¢
else

return NotParent(p, windows[c].parent);

void AddWindow(string name, string parent, bool isModal) {
windows = windows + Map{name :> winInf(parent,isModal)};
hasFocus = name;

void RemoveWindow(string name)

requires Exists { i in windows; i == name}; {
RemoveChild(name);
hasFocus = windows[name].parent;
windows[name] = none;

void RemoveChild(string name) {
foreach (x in windows, windows[x].parent == name)
RemoveChild(x);
windows = Map{i in windows, windows[i].parent != name;
i:>winInf(windows[i].parent, windowsJi].isModal)};

void SetFocus(string name)
requires IsEnabled(name) || name ==""; {
hasFocus = name;

}
string GetWindowWithFocus() {
return hasFocus;

bool HasFocus(string name) {
return name == hasFocus;

227

e R TR
/1 File manager

namespace FileManager;
Map<string,string> files = Map{};

public void CreateTextFile(string fileName, string fileContent) {
files = files + Map({fileName :> fileContent};

}

public bool FileExists(string fileName) {
choose (i in files, i == fileName) return true;
else return false;

}
public string ReadFile(string fileName)
requires FileExists(fileName); {

return files[fileName];

}

public void RemoveFile(string fileName)
requires FileExists(fileName); {
files[fleName] = none;

}
bool IsValid(string file) {

if (file =="") return false;
if (file.IndexOfAny(new char[8]{"\\',*","/",":",'"?" \"",'<",
>4'1)>=0)

return false;
else return true;

228

