
Ana Cristina Ramada Paiva Pimenta

Automated Specification-Based Testing of
Graphical User Interfaces

Department of Electrical and Computer Engineering

November 2006

Ana Cristina Ramada Paiva Pimenta

Automated Specification-Based Testing of
Graphical User Interfaces

Dissertação apresentada para a obtenção do grau de Doutor em Engenharia
Electrotécnica e de Computadores

Dissertação realizada sob a orientação científica de

Doutor Raul Fernando de Almeida Moreira Vidal

Professor Associado do Departamento de Engenharia Electrotécnica e de
Computadores, FEUP,

e co-orientação partilhada de

Doutor João Carlos Pascoal de Faria

Professor Auxiliar do Departamento de Engenharia Electrotécnica e de
Computadores, FEUP, e

Doutor José Nuno Fonseca de Oliveira

Professor Associado do Departamento de Informática, Escola de Engenharia,
Universidade do Minho

Novembro 2006

v

Abstract
Today's software systems usually feature Graphical User Interfaces (GUIs). GUIs
have become an important and accepted way of interacting with today's software.
They can be a crucial point in the users' decisions to use or not use the system.
However, GUI testing is difficult, extremely time-consuming, and costly, with
very few tools and techniques available to aid in the testing process.

This dissertation addresses the GUI testing problem. The goal is to introduce more
systematization and automation into the GUI testing process by applying
specification-based testing methods. The use of formal specifications allows the
automatic generation of test cases containing not only the input data but also the
outcomes expected. Specification-based testing methods have been applied for
API testing but are insufficiently developed for GUI testing. Some of the specific
challenges posed by GUI testing are addressed in this research work.

The starting phase of the GUI testing process proposed is the construction of the
GUI model. Then test cases are generated from the model and are executed on the
GUI implementation. The results obtained from the GUI are compared with the
results derived from the specification (test oracle). Whenever there is a
conformance error it is reported.

A set of guidelines are proposed for GUI modelling. For scalability and reusability
reasons, GUI models are organized as a set of modules or classes. Besides
modelling the atomic user actions and their effect on the GUI state, it is also
possible to model composite actions (sequences of atomic actions), views (e.g.,
navigation map), and use case scenarios.

Test cases are automatically generated in a two-step process: a FSM is built by a
bounded exploration of the GUI model first; secondly, test sequences are
generated from the FSM according to some coverage criteria (e.g., full transition
coverage). The exploration process calculates the set of methods available in each
state (those whose pre-condition holds) and calls them with parameter values
taken from domains supplied by the tester. Test cases are sequences of operations
that model user actions interleaved with operations to check the outcomes of those
actions.

The quality/adequacy of the generated FSM is assessed according to the degree of
coverage of the model elements (actions, scenarios and views) as well as
additional test conditions supplied by the tester. In order to reduce the number of
test cases, it was developed an algorithm to reduce the FSM by removing
redundant states and transitions with respect to the coverage goals defined.

Conceptually, during test execution test cases are run in both levels, specification
and implementation, in a "lock-step" mode and their results are compared after
each step. This requires the definition of a mapping between abstract actions
defined in the specification and concrete actions on concrete GUI objects in the
implementation. To automate this process it was developed a GUI Mapping Tool
that allows the tester to interactively relate the abstract actions with concrete GUI

Abstract

vi

objects. The tool also generates automatically the code of a set of methods that
simulate the concrete user actions on the GUI, and binds such methods to the
abstract actions for test execution.

The approach proposed in this research is illustrated and validated by two case
studies performed on two software applications: the Notepad application that ships
with the Microsoft Windows operating system, and the Address Book example
application freely available with the open-source Eclipse platform. In spite of
being used for several years, two errors were found in the Notepad application
related to uncommon sequences of user actions. Since the source code of the
Address Book application is available, a mutation testing technique was applied to
assess the defect detection capability of the test cases generated automatically. All
defects injected were detected.

Overall, the approach proposed represents a significant improvement over the
current GUI testing approaches based on Capture/Replay tools, since they only
automate the execution and recording of the test cases.

vii

Resumé
Les systèmes logiciels d'aujourd'hui comportent habituellement les interfaces
utilisateur graphiques (GUIs). Les GUIs sont devenus une forme importante et
admise d'agir l'un sur l'autre avec le logiciel d'aujourd'hui. Ils peuvent être un
point crucial dans les décisions des utilisateurs pour employer ou ne pas employer
le système. Cependant, l'essai de GUI est difficile, extrêmement long, et coûteux,
avec très peu d'outils et techniques disponibles à l'aide dans le processus d'essai.

Ce travail adresse le problème d'essai de GUI. Le but est de présenter plus de
systématisation et d'automation dans le processus de essai de GUI en appliquant
des méthodes d'essai spécification-basées. L'utilisation des caractéristiques
formelles permet génération automatique des cas d'espèce contenant non
seulement les données d'entrée mais également les résultats prévus. Des méthodes
d'essai spécification-basées ont été appliquées pour l'api examinant mais sont
insuffisamment développées pour l'essai des GUI. Certains défis spécifiques
posés par l'essai de GUI sont adressés dans ce travail.

La phase initiale du processus d'essai des GUI proposé est la construction du
modèle des GUI. Après ça les cas d'espèce sont produits du modèle et sont
exécutés sur l'exécution de GUI. Les résultats obtenus à partir du GUI sont
comparés aux résultats dérivés des spécifications (oracle d'essai). Toutes les fois
qu'il y a une erreur de conformité on la rapporte.

On propose un ensemble de directives pour modeler des GUI. Pour des raisons de
balance et de réutilisation, des modèles de GUI sont organisés comme ensemble
de modules ou de classes. Il est tant possible de modeler les actions atomiques
d'utilisateur et leur effet sur l'état des GUI comme de modeler les actions
composées (ordres des actions atomiques), les vues (par exemple, carte de
navigation), et les scénarios de cas d'utilisation.

Des cas d'espèce sont automatiquement produits dans un processus en deux
étapes: premièrement, un FSM est construit par une exploration liée du modèle
des GUI; deuxièmement, les ordres d'essai sont produit du FSM selon quelques
critères d'assurance (par exemple, pleine assurance de transition). Le procédé
d'exploration calcule l'ensemble de méthodes disponibles dans chaque état (ceux
dont les prises de condition préalable) et les appelle avec des valeurs de paramètre
prises des domaines a fourni par l'appareil de contrôle. Les cas d'espèce sont des
ordres des opérations que les actions modèles d'utilisateur ont intercalé avec des
opérations pour vérifier les résultats de ces actions.

La qualité/adéquation du FSM produit est évaluée selon le degré d'assurance des
éléments modèles (actions, scénarios et vues) aussi bien que conditions d'essai
additionnelles fournies par l'essayeur. Afin de réduire le nombre de cas d'espèce, il

Resumé

viii

a été développé un algorithme pour réduire le FSM par l'enlèvement états et
transitions superflus en ce qui concerne les buts d'assurance définis.

Conceptuellement, pendant l'exécution d'essai des cas d'espèce sont courus dans
les deux niveaux, spécifications et l'exécution, en mode de «serrure-étape» et leurs
résultats sont comparées après chaque étape. Ceci exige la définition de tracer
entre les actions abstraites définies dans les spécifications et les actions concrètes
sur les objets concrets de GUI dans l'exécution. Pour automatiser ce processus c'a
été développé un GUI traçant l'outil qui permet à l'essayeur de rapporter
interactivement les actions abstraites avec les objets concrets de GUI. L'outil
produit également automatiquement du code d'un ensemble de méthodes qui
simulent les actions concrètes d'utilisateur sur le GUI, et lie de telles méthodes aux
actions abstraites pour l'exécution d'essai.

L'approche proposée dans ce travail est illustrée et validée par deux études de cas
réalisées sur deux applications de logiciel: l'application de bloc-notes qui se
transporte avec le logiciel d'exploitation de Microsoft Windows, et l'exemple de
carnet d'adresses application librement disponible avec la plateforme d'éclipse
d'ouvrir-source. Malgré être employé pendant plusieurs années, deux erreurs ont
été trouvées dans l'application de bloc-notes liée aux ordres rares des actions
d'utilisateur. Depuis le code source de l’application de carnet d'adresses est
disponible, une méthode d'essai de mutation a été appliquée pour évaluer les
possibilités de détection de défaut des cas d'espèce produits automatiquement.
Tous les défauts injectés ont été détectés.

D’une façon générale, l'approche proposée représente une amélioration
significative au-dessus des approches de essai courantes des GUI basées sur la
Captation/Rejoue des outils, puisqu'ils automatisent seulement l'exécution et
l'enregistrement des cas d'espèce.

Resumo
Os sistemas de software possuem normalmente uma interface gráfica com o
utilizador. Este tipo de interface tornou-se a forma mais comum e importante de
interagir com o software e a sua qualidade é um factor determinante na decisão de
o usar. O teste de interfaces gráficas com o utilizador é difícil, moroso,
dispendioso e dispõe de poucas ferramentas e técnicas.

Esta dissertação trata o problema do teste de interfaces gráficas com o utilizador.
Tem por objectivo introduzir uma maior sistematização e automação no processo
de teste de interfaces gráficas com o utilizador aplicando métodos de teste
baseados em especificações formais. Os métodos baseados em especificações
formais possibilitam a geração automática de casos de teste, com os dados de
entrada e também os resultados esperados, e têm sido aplicados ao teste de
software através de APIs. No entanto, estes métodos ainda não estão
suficientemente desenvolvidos para testar software através da interface gráfica
com o utilizador.

Na fase inicial do processo de teste de interfaces gráficas com o utilizador
constrói-se o modelo e, em seguida, os casos de teste são gerados a partir do
modelo e executados na implementação. Os resultados obtidos a partir da interface
gráfica são comparados com os resultados derivados da especificação. Todos os
erros de conformidade detectados são documentados.

A abordagem apresentada nesta dissertação propõe um conjunto de orientações
para modelar interfaces gráficas com o utilizador. As interfaces gráficas com o
utilizador são representadas por conjuntos de módulos ou classes por razões
relacionadas com a escalabilidade e a reutilização do código. Além de se
modelarem as acções atómicas do utilizador e o seu efeito na interface a testar,
ainda é possível modelar acções compostas (sequências de acções atómicas),
vistas (ex.: mapa de navegação) e cenários de utilização.

Os casos de teste são sequências de operações que modelam as acções do
utilizador intercaladas com operações que verificam os resultados dessas acções e
são gerados automaticamente em dois passos. No primeiro passo, constrói-se uma
máquina de estados finita, por um processo de exploração do modelo da interface
gráfica com o utilizador, e no passo seguinte, geram-se as sequências de teste, a
partir da máquina de estados de finita, de acordo com determinados critérios de
cobertura (por ex. a cobertura total de transições). O processo de exploração
calcula o conjunto de métodos disponíveis em cada estado (pré-condição
verdadeira) e invoca-os com valores apropriados dos parâmetros retirados dos
domínios fornecidos pelo utilizador (aquele que está a testar).

A qualidade/adequação da máquina de estados finita gerada é avaliada de acordo
com o grau de cobertura dos elementos do modelo (acções, cenários e vistas) e
condições de teste adicionais fornecidas pelo utilizador (aquele que está a testar).
De modo a reduzir o número de casos de teste, desenvolveu-se um algoritmo para

Resumo

x

reduzir a máquina de estados finita removendo estados e transições considerados
redundantes relativamente aos objectivos de cobertura de teste definidos.

Conceptualmente, o teste baseado em especificações executa os casos de teste nos
dois níveis, especificação e implementação, e compara os resultados obtidos. Para
isso, é necessário relacionar acções abstractas definidas na especificação com
acções concretas em objectos concretos da interface gráfica com o utilizador. Para
automatizar este processo, desenvolveu-se uma ferramenta "GUI Mapping Tool"
que permite relacionar interactivamente as acções abstractas com objectos
concretos da interface gráfica com o utilizador. A ferramenta também gera
automaticamente o código dos métodos que simulam as acções do utilizador sobre
a interface e relaciona esses métodos com as acções abstractas para execução dos
testes.

A abordagem proposta nesta dissertação é ilustrada e validada por dois casos de
estudo sobre duas aplicações de software distintas: o editor de texto Notepad,
disponível em conjunto com o sistema operativo Microsoft Windows, e a
aplicação Address Book que está disponível dentro da plataforma Eclipse. Apesar
de ser usada já há vários anos, foram detectados dois erros na aplicação Notepad
relacionados com sequências não comuns de acções do utilizador. Uma vez que o
código da aplicação Address Book está acessível, aplicou-se uma técnica de teste
baseada em mutações para avaliar a capacidade de detecção de erros dos testes
gerados automaticamente. Todos os erros injectados foram detectados.

Em conclusão, a abordagem proposta representa uma melhoria significativa sobre
as abordagens correntes de teste de interfaces com o utilizador baseadas em
ferramentas "Capture/Replay", uma vez que estas só automatizam a execução e
gravação dos casos de teste.

xi

Acronyms
ACP – Algebra for Communicating Processes
API – Application Program Interface
ASM – Abstract State Machines
AsmL – Abstract State Machines Language
AUT – Application Under Test
BNF – Backus-Naur Form
CCS – Calculus of Communicating Systems
CIO – Concrete Interaction Objects
CIS – Complete Interaction Sequences
CSP – Communicating Sequential Processes
CTL – Computation Tree Logic
CTT – ConcurTaskTrees
DFA – Deterministic Finite state machines Automata
DNF – Disjunctive Normal Form
DTD – Document Type Definition
FSM – Finite State Machine
GUITAR – GUI Testing Framework
GUI – Graphical User Interface
HCI – Human Computer Interaction
HFSM – Hierarchical Finite State Machines
HyTech – The Hybrid TECHnology Tool
IDATG – Integrated Design and Automated Test Case
Generation
IDE – Integrated Development Environment
LTL – Linear Temporal Logic
MC/DC – Modified Condition/Decision Coverage
MVC – Model-View-Controller
NFA – Nondeterministic Finite state machines Automata
ObCS – Object Control Structure
OCR – Optical Character Recognition
OSU – Oregon Speedcode Universe
PAC – Presentation-Abstraction-Controller
RAISE – Rigorous Approach to Industrial Software
Engineering
RSL – RAISE Specification Language
SYNGRAPH – SYNtax directed GRAPHics
SMV – Symbolic Model Verifier
SWT – Standard Widget Toolkit
TAG – Task-Action Grammar's
TCTL – Timed CTL
UI – User Interface
UIMS – User Interface Management System
VDM – Vienna Development Method

Acronyms

xii

VEG – Visual Event Grammar
VFSM – Variable Finite State Machine
WYSIWYG – What You See Is What You Get
XIML – eXtensible Interface Markup Language
XML – eXtensible Markup Language
XSL – eXtensible Stylesheet Language

Contents

xiii

Contents

ABSTRACT..V

RESUMÉ..VII

RESUMO .. IX

ACRONYMS .. XI

CONTENTS... XIII

LIST OF FIGURES ... XVII

ACKNOWLEDGMENTS..XXI

CHAPTER I...1

INTRODUCTION...1

1.1. THE CHALLENGE...2
1.1.1. Formal Methods ..3
1.1.2. Specification-based testing..5
1.1.3. Specification-based GUI testing..6

1.2. RESEARCH GOAL...8
1.3. METHODOLOGY..8
1.4. CONTRIBUTIONS ...10
1.5. OVERVIEW OF THE DISSERTATION...11

CHAPTER II ...15

GUI DEVELOPMENT AND TESTING...15

2.1. TYPES OF USER INTERFACES...16
2.2. DESIRED QUALITIES AND COMMON DEFECTS IN UIS..................18
2.3. GUI CONCEPTUAL ARCHITECTURES..20
2.4. GUI DEVELOPMENT PROCESSES AND TOOLS.............................22

2.4.1. Non model-based tools ..22
2.4.2. Model-based tools ...24

2.5. GUI V&V...27
2.5.1. Manual GUI testing...29
2.5.2. Static analysis..30
2.5.3. Automated GUI testing approaches39

2.6. CONCLUSIONS...48

CHAPTER III..51

SPECIFICATION-BASED GUI TESTING ...51

3.1. GUI TEST AUTOMATION CHALLENGES......................................52
3.2. FORMAL GUI SPECIFICATION...54

3.2.1. Grammars..54
3.2.2. Finite state machines...58
3.2.3. Model-based specifications ...60
3.2.4. Property-based ..62
3.2.5. Behaviour-based..63
3.2.6. Hybrid approaches ..67

Contents

xiv

3.3. SPECIFICATION-BASED TEST CASE GENERATION....................... 68
3.3.1. Test data generation.. 69
3.3.2. Generation of expected test results 70
3.3.3. Coverage analysis ... 71
3.3.4. Test generation from grammars.. 73
3.3.5. Test generation from FSMs... 73
3.3.6. Test generation from model-based specifications 75
3.3.7. Test generation from property-based specifications 76
3.3.8. Test generation from behaviour-based specifications......... 76
3.3.9. Test case generation from GUI models............................... 77

3.4. CONFORMITY CHECK.. 78
3.5. CONCLUSIONS.. 80

CHAPTER IV ... 85

SPECIFICATION-BASED GUI TEST AUTOMATION 85

4.1. GUI TESTING PROCESS... 86
4.1.1. Spec# System... 89
4.1.2. Automated model-based testing with Spec Explorer 90

4.2. GUI MODELLING WITH SPEC# AND SPEC EXPLORER................ 93
4.2.1. Modelling GUI structure and behaviour............................. 94
4.2.2. Modelling scenarios.. 99
4.2.3. State machine views .. 101
4.2.4. Obtain complete models from navigation maps and

dialog views... 107
4.2.5. Independent dialogs .. 113

4.3. TEST CASE GENERATION.. 115
4.3.1. Overview of test case generation with Spec Explorer....... 115
4.3.2. Domain definition ... 117
4.3.3. Test coverage and adequacy criteria on the FSM............. 118
4.3.4. FSM reduction... 122

4.4. GUI MAPPING TOOL... 124
4.5. CONCLUSIONS.. 132

CHAPTER V ... 135

CASE STUDIES.. 135

5.1. NOTEPAD APPLICATION.. 136
5.1.1. Model .. 136
5.1.2. Scenarios... 142
5.1.3. Testing goals ... 145
5.1.4. Choosing domain values for adequate testing 145
5.1.5. State filtering... 149
5.1.6. FSM generation and reduction ... 150
5.1.7. FSM validation.. 150
5.1.8. Test case generation and execution................................... 158
5.1.9. Test results .. 158
5.1.10. Metrics .. 160

5.2. ADDRESS BOOK APPLICATION... 161
5.2.1. Model .. 161
5.2.2. Scenarios... 164
5.2.3. Testing goals ... 167
5.2.4. Choosing domain values for adequate testing 167
5.2.5. State filtering... 170
5.2.6. FSM generation and reduction ... 170
5.2.7. FSM validation.. 170
5.2.8. Test case generation and execution................................... 178
5.2.9. Capacity of detecting errors.. 178

Contents

xv

5.2.10. Metrics...179
5.3. CONCLUSIONS...180

CHAPTER VI..183

CONCLUSIONS AND FUTURE WORK...183

6.1. SUMMARY OF CONTRIBUTIONS..183
6.2. SUMMARY OF EXPERIMENTAL RESULTS..................................185
6.3. FUTURE WORK..185

BIBLIOGRAPHY ...189

APPENDIX A ..205

A.1. NOTEPAD SPECIFICATION...205
A.2. ADDRESS BOOK SPECIFICATION...217
A.3. WINDOW MANAGER AND FILE MANAGER227

Contents

xvi

xvii

List of Figures
Figure 1: The morphism of abstraction. ..6

Figure 2: Form Master/Detail..16

Figure 3: Seeheim architecture..21

Figure 4: Arch model ..21

Figure 5: MVC model ...21

Figure 6: PAC model...22

Figure 7: Model Checking...31

Figure 8: a) linear time; b) branching time..32

Figure 9: York Interactor...33

Figure 10: Models PiE and RED-PiE..36

Figure 11: Relation between windowed data and scroll bar (taken from
[37])...37

Figure 12: Model-based testing process..43

Figure 13: Visual test development environment (taken from [147])44

Figure 14: IDATG test process (taken from
www.qualityscope.com/28.html) ..45

Figure 15: GUITAR process (taken from
www.cs.umd.edu/~atif/GUITARWeb/guitar_process.htm)......................46

Figure 16: Event-Flow Graph for WordPad --> Connect to Printer
(taken from www.cs.umd.edu/~atif/GUITARWeb)..................................46

Figure 17: Integration Tree for WordPad (taken from
www.cs.umd.edu/~atif/GUITARWeb) ...47

Figure 18: Petri net..63

Figure 19: ObCS notation (taken from [16])...64

Figure 20: Symbolic execution tree example ..70

Figure 21: Testing flow (taken from [10]) ..74

Figure 22: Conformity tests model..79

Figure 23: Overview of the GUI modelling and testing process...............87

Figure 24: Spec# system ...89

Figure 25: Boogie static verifier..90

Figure 26: State variables of a textbox..95

Figure 27: Find Next pre-condition...95

Figure 28: Find dialog inside Notepad software application.....................95

List of Figures

xviii

Figure 29: Probe action example extracted from the Notepad's GUI
model .. 96

Figure 30: Window manager .. 97

Figure 31: Message box of acknowledge ... 97

Figure 32: Message box with different possible answers 98

Figure 33: Open file scenario within the Notepad application 100

Figure 34: Navigation map obtained from focus property of the
windows.. 103

Figure 35: Navigation map obtained from the enabled windows'
property... 104

Figure 36: Navigation map obtained from opened windows abstracting
away the message boxes ... 104

Figure 37: Open dialog view obtained from the projection onto the
interactive object with the focus in each moment................................... 105

Figure 38: Open dialog view obtained from the projection onto the
manipulated variables ... 106

Figure 39: Changes in the set of enabled actions inside Find dialog...... 107

Figure 40: State machine of an application with dialogs D1 (action
A1) and D2 (actions A3 to A6)... 109

Figure 41: State machines of dialogs D1 and D2 projected from the
FSM depicted in Figure 40. Dotted lines represent test cases 110

Figure 42: HFSM with three levels... 111

Figure 43: Dependent dialogs... 115

Figure 44: Test case generation .. 116

Figure 45: Open scenario view... 120

Figure 46: Coverage analysis of a special case condition 121

Figure 47: GUI modelling and testing process 125

Figure 48: Architecture of the GUI Mapping Tool................................. 126

Figure 49: Front-end of the GUI Mapping Tool..................................... 126

Figure 50: Selection of menu options... 127

Figure 51: Examples of methods implemented in the GUI test library .. 129

Figure 52: Excerpt of the code generated automatically for the
Notepad example .. 130

Figure 53: Test execution ... 132

Figure 54: Notepad main window .. 136

Figure 55: Open dialog ... 139

Figure 56: File not found message box... 139

Figure 57: File manager module... 140

List of Figures

xix

Figure 58: Find dialog...141

Figure 59: Find scenario within Notepad application142

Figure 60: Replace scenario within Notepad application........................143

Figure 61: Open file scenario within the Notepad application................144

Figure 62: Save scenario within Notepad application.............................144

Figure 63: Navigation map obtained from focus property of the
windows ..151

Figure 64: Open dialog view...152

Figure 65: Find dialog view ..153

Figure 66: Navigation map obtained from the enabled windows'
property ...154

Figure 67: Open dialog view obtained from the projection onto the
manipulated variables..155

Figure 68: Save scenario view...156

Figure 69: Find scenario view...156

Figure 70: Coverage analysis of a functional dependency......................157

Figure 71: Coverage analysis of a special case situation "several
occurrences overlapping each other"...158

Figure 72: Address book main window ..161

Figure 73: Contact dialog of the Address Book......................................163

Figure 74: Find dialog of the Address Book ...164

Figure 75: Navigation map view of the Address Book software
application ...171

Figure 76: Open dialog view...172

Figure 77: Save dialog view..172

Figure 78: Contact dialog view ...173

Figure 79: Find dialog view ..175

Figure 80: Close scenario view ...176

Figure 81: Find scenario view...176

Figure 82: Open scenario view..177

Figure 83: Save scenario view...177

Figure 84: GUI Mapping Tool relating model action of the Address
Book application with interactive controls..178

xxi

Acknowledgments
I would like to thank my supervisor, Professor Raul Fernando de Almeida Moreira
Vidal, from Engineering Faculty of Porto University, for his guidance, determined
search of resources, unforgettable mentoring and encouragement that made this
dissertation possible.

A special thank is due to my co-supervisor Professor João Carlos Pascoal de Faria,
also from Engineering Faculty of Porto University, for his inputs, enthusiasm and
his invaluable perceptiveness in the discussions we had that enriched my
perspective.

It was a privilege to have the co-supervision of Professor José Nuno Oliveira,
from Minho University, to whom I would like to express my earnest thankfulness
for being actively interested in my work.

I am indebted to Eng.º Vitor Santos from Microsoft Portugal for introducing me to
the Foundations of Software Engineering group within Microsoft Research in
Redmond, USA.

I am also grateful to the Department of Electrical and Computer Engineering, in
the person of Professor Silva Matos, and to the Informatics Section, in the person
of Professor Eugénio Oliveira, for having financially supported the airplane travel
of my first visit to the Microsoft Research in Redmond in which I established
contacts and planed collaborations that were undoubtedly important for my
research work as a guide to the real problems felt by GUI testers.

My overwhelming thanks goes to the coordinator of the Foundations of Software
Engineering group in Microsoft Research in Redmond, Wolfram Schulte, for the
interest on my work, for supporting my stay in the first visit to Redmond, and for
inviting me and supporting all the expenses of my second visit to Microsoft. I also
want to thank Wolfram Schulte and Microsoft for the unconditional financial
support to this research work that will foster future collaborations.

I owe special thanks to Nikolai Tillmann, researcher of Microsoft in Redmond, for
the suggestions, feedback, the time we spent working together, and the talk he
gave here in Engineering Faculty of Porto University. In particular, I want to
thank him for his help in structuring the presentations of the research papers in the
conferences ASM'05 and ICFEM'05.

During my visits to Microsoft, in Redmond, I had the privilege to meet many
researchers to whom I wish to thank for their disinterested comments on my
research. Among others, to Wolfgang Grieskamp, Margus Veanes, Lev
Nachmanson, Colin Campbell, and Yuri Gurevich for being so kind and gentle to
me.

I would like to thank Isidro Ramos Salavert, from "Departamento de Sistemas
Informáticos y Computación of the Universitat Politècnica de València", and

xxii

Pedro J. Molina for behing so kind with me during my visit to the University of
València.

I wish to express my gratitude to my parents, Silvério Paiva and Albertina
Ramada, for all their support, comprehension, and love. Thank you.

Finally, I thank my husband, João, for his encouragement, patience, support, and
love, and my dear son, Rui, for being so sweet and for giving me only moments of
joy.

xxiii

to my parents
Albertina e Silvério

to my husband João and
my dear son Rui

1

Chapter I

Introduction

This chapter gives a general introduction to the main subjects of
this dissertation: formal methods in software engineering, the
application of formal methods to software testing, and, more
precisely, the specification-based testing of graphical user
interfaces (GUIs). The problems with current practices in GUI
testing and how formal methods applied to software testing can
help to overcome those problems are briefly pointed out. It also
describes the objectives of the research work and the
methodology used, presents the main scientific contributions, and
gives an overview of the dissertation structure.

Our society is becoming more and more dependent on software systems. They are
present in virtually all parts of modern society: airplanes and cars have computer
boards, we do payments electronically, our identity information is registered on
databases, we do shopping on the Internet, among others. This growing
implantation of software systems makes our daily life more dependent on their
functioning without errors. The correct functioning depends on the exact,
unambiguous and complete capture of the customer requirements. It is well known
that problems resulting from a misunderstanding of the customer requirements are
the most expensive to correct, and there is a need to validate requirements as early
as possible with the customer.

One of the most widespread activities to increase the confidence in the correctness
of software systems is testing. Testing a software system involves executing that
system with a set of inputs and evaluate whether the outputs obtained match the
ones expected. There are different kinds of tests: white-box (also called structural

Chapter I

2

testing) and black-box tests (also called functional testing). In white-box testing,
the knowledge of the source code is used to derive a set of test cases that cover the
source code to a specific degree (all statements, all decisions, etc.). In black-box
testing techniques, the software system is seen as a closed box that receives inputs
and produces outputs. Test cases are derived from requirements or models of
varying degrees of formality (implicit, explicit but informal, explicit and formal).
When system models are used to derive test cases, the technique is called
(black-box) model-based testing. Although semi-formal models (e.g., based on
UML diagrams) can be used to derive test cases, in this dissertation
"specification-based testing" will always mean that formal models are used. In
addition, "model-based testing" will refer to testing techniques that use models
which are not necessarily formal.

The use of formal models enables a rigorous approach to software developing and
testing and a higher degree of test automation.

1.1. The Challenge

Today's software systems usually feature Graphical User Interfaces (GUIs). GUIs
have become an important and accepted means of interacting with today's
software. They can be a crucial point in the users' decisions to either use or not use
the system.

However, GUI testing is difficult, extremely time-consuming, and costs a lot of
money, with very few tools and techniques available to aid in the testing process.

Currently used GUI testing methods are almost ad hoc and require the test
designer to manually develop test cases, identify the conditions to check during
test execution, determine when to check these conditions, and evaluate whether
the GUI software is suitably tested. There is no guarantee of adequate coverage
according to some criteria, and the evaluation decision whether the GUI is
properly tested is taken based on the developer's experience without theoretical
justification. Applications are becoming bigger and more complex and manual
testing of GUIs is becoming an even more difficult activity. When the GUI is
modified, the developer needs to redefine the test suite and run the tests again.

There have been efforts to automate the GUI testing process. Some tools, called
Capture/Replay tools (www.testingfaqs.org/t-gui.html), are commercially
available. They can be used to record user interactions and replay them later.
Among other problems [199], these tools still require too much manual effort and
postpone the testing activity to the end of the development process when the GUI
is already constructed.

Introduction

3

1.1.1. Formal Methods

Formal Methods are "mathematically based techniques for describing system
properties" [197]. They can be seen as the applied mathematics of software
engineering, providing the notations, theories, models and analytical techniques
that can be used to control and analyse software designs. Formal Methods can be
helpful to increase the confidence in the correctness of software by proof,
refinement and testing (both at the specification and at the implementation levels)
[115]. Proof, sometimes called formal verification, involves a rigorous
demonstration (usually involving deductive logic) that an implementation matches
its specification. Refinement is the development of implementations that are
correct by construction (a specification is rigorously transformed to derive an
efficient implementation). An introduction to the subject can be found in [69,139].
Testing at the specification level involves executing (animating) the specification
to verify (i.e., detect internal inconsistencies and problems) and validate (i.e.,
assure that customer requirements are correctly captured) the specification.
Testing at the implementation level involves executing an implementation with
some input and comparing the actual results to the ones expected. In the case of
specification-based testing or conformance testing, the results expected are
obtained from the specification, thus reducing the effort required to prepare them.

There are two different ways of performing formal verification: theorem proving
and model checking.

Theorem proving may be supported by interactive reasoning tools based on proof
systems with a set of axioms and inference rules, like simplification, rewriting,
and induction. The proofs are constructed in a traditional mathematical way as a
sequence of steps. The implementation and the specification are expressed through
the same formal language and the goal is to verify that the implementation
performs the specification. The logical implication or equivalence relation
between the implementation (I) and the specification (S) is written as a theorem
(I → S or I � S) that has to be proved.

Model checking is a technique intended to prove automatically that a logical
property, P, holds of a system behaviour, S, specified as a finite state machine.
Properties are expressed in temporal logic that allows reasoning over the possible
execution paths. In order to verify that the property holds, S

�
P, the entire state

space of the finite state machine may be exhaustively analysed. State space
explosion is the main drawback of the model checking technique. SPIN
(spinroot.com), and SMV (Symbolic Model Verifier)
(www.cs.cmu.edu/~modelcheck/smv.html) are examples of model checking tools.
The main advantage of these techniques is the fact that the proof is automatically
evaluated. The main drawback of model checking techniques is the incapability to
deal with infinite state spaces.

A formal specification allows capturing the customer requirements in an exact,
unambiguous and complete manner. The high level of abstraction frees us from
thinking about implementation and platform details focusing the attention on the
real problem. Formal methods can be generically classified as model-based,

Chapter I

4

property-based, and behaviour-based. Model-based specifications describe the
states of the system explicitly by using mathematical constructions like sets, lists,
maps, etc. Examples of model-based specification languages are VDM [158], and
Z [179]. In property-based specifications, the data types are modelled implicitly
and the behaviour of the system is modelled as a set of properties. Examples of
property-based specification languages are OBJ [76] and Larch [82].
Behaviour-based specifications describe systems as a sequence of possible states
and are normally used to model concurrent and distributed systems. Examples of
behaviour-based specification languages are Petri nets, Calculus of
Communicating Systems (CCS), and Communicating Sequential Processes (CSP)
[94].

Formal methods are rigorous and systematic. Nevertheless, the use of formal
methods in the industry is still quite limited. Some of the reasons for such
difficulty are:

− Limited tool support : Existing tools usually cover only specific tasks
and aspects, and the integration of different tools is difficult due to
different notational rules.

− Lack of integration with other methods, like IDEs (Integrated
Development Environments), with a higher degree of acceptance in
industrial environments.

− Complexity and unfamiliarity with formal notations : Formal
notations are based on simple mathematical concepts, but some of
them may seem unfriendly to software engineers.

− Incomplete life-cycle coverage: There is a lack of models and
notations that support all the activities of software development
(specification, implementation, verification and validation).

− Limited application of Formal Methods to the development of
graphical user interfaces (GUI): Nowadays, a considerable part of
the time spent in application development is consumed by the user
interface. Formal specification of user interfaces is important to find
errors and inconsistencies during the initial phases of development
and to prove desired properties. In spite of the research work in
applying Formal Methods to user interfaces, this area is not yet a
common area of application.

Although formal methods are not widespread in common industry environments,
it is possible to find some examples of companies that use formal methods to
develop their projects all over the Europe : ATX Software in Portugal
(www.atxsoftware.com); B-Core in the UK (www.b-core.com); Cinderella in
Denmark (www.cinderella.dk); Clearsy in France
(www.clearsy.com/html/clearsy.htm); Escher Technologies in the UK
(www.eschertech.com); IFAD in Denmark (www.ifad.dk); Praxis Critical Systems
in the UK (www.praxis-his.com); Prover Technology in Sweden
(www.prover.com); Sidereus in Portugal (www.sidereus.pt); Telelogic in Sweden
(www.telelogic.com); and Trusted Logic in France (www.trusted-logic.com).

Introduction

5

In addition, it is also possible to find a considerable number of successful
industrial experiences on the application of formal methods to real projects [45].
One example, very well know in Portugal, was the application of formal methods
to solve the problem of assigning teachers to available places in high-schools. In
2004, the Portuguese government contracted a software company to develop a
software system to solve the teacher's assignment problem. The problem was that
the software system was not able to construct a correct solution for the problem:
teachers with low priority were assigned to places that should be occupied by
teachers with a higher priority. The software company that developed the software
couldn't fix the problem and high-school lectures didn't start on time. Then,
another company, ATX Software, developed an efficient algorithm that could
solve the problem. This company used formal method to prove that the algorithm
developed by them was able to finish and produce a correct solution for the
problem.

The interest on formal methods from academic environments is far from ending. A
list of conferences on this topic can be found in vl.fmnet.info/meetings and can
easily illustrate the academic interest on this subject.

Because of its inherent rigor, formal methods have been well accepted when
applied to critical systems. The same cannot be said about formal methods being
applied to common systems. In this case, formal methods were the subject of
severe critics. One of the critics were related to the fact that formal methods were
too far away from the software development methods used in industry. It is known
that testing is the most widespread activity to increase the confidence in the
correctness of software systems in industries. But, testing and formal methods
were traditionally totally apart activities. Today, these two methods can be seen
together in software projects, complementing each other.

1.1.2. Specification-based testing

Software testing is laborious, cost intensive, and almost empirical. Formal
methods, on the other hand, are systematic and have always been concerned with
the formal correctness of software. They introduce system models early in the
software development process with inherent advantages. Traditionally, formal
methods and testing were completely separated activities. Formal methods are
rigorous but not common in industrial environments. Testing activity lacks
systematization but is very common in the development of software systems. By
using formal methods and testing together, it is possible to systematize and
automate more the testing process [26].

Specification-based testing checks if a software system's implementation
conforms to the specification of the same system. Formal specifications can be
used as input to generate test cases that fulfil a given criteria, to generate input
data, and as an oracle to calculate the expected results. If requirements change
along the software project, the specification can be modified and the test cases
generated again.

Chapter I

6

The characteristics of the specification language used will influence the
techniques used to generate test-cases within the specification-based testing
process. Formal specification can be executable or not. When the goal is to
automate the testing process, the latter can turn that goal into a more difficult one
to reach.

Figure 1: The morphism of abstraction.

Conceptually speaking, specification-based testing runs related operations on both
levels, implementation and specification, and compares the results obtained from
both in each run step. The specification operations are abstract so, to automate the
conformance checking, a map (r) needs to be defined between concrete operations
and states of the implementation and abstract operations and states of the
specification [4] (Figure 1). An error is reported every time the concrete and
abstract states or results after executing each step do not match.

One of the main problems with specification-based testing is that software systems
are typically infinite or have a huge unmanageable number of states. This problem
is known as state space explosion problem and it usually happens because the set
of possible values for a particular type is boundless. For instance, the domain of
possible values for an integer is only limited by the hardware constraints. In a
system of 64 bits, an integer can get values from 0 to 264-1. The challenge is to
reduce the state space of the system to a manageable size and still describe the
system in a level of abstraction without losing relevant behaviour from the tester
perspective. There are several techniques that can be used to reduce the state space
of the systems. One of those techniques restricts the domain of possible values for
the variables. Even so, this technique may not be sufficient.

1.1.3. Specification-based GUI testing

It is known that nowadays a considerable part of the time spent in application
development is consumed by the user interface [141] and that the user interface
can be a determinant point in the decision of the users to use or not use the system.
So, it is important to develop a systematic process to help reaching higher quality
user interfaces.

Specification-based testing has been applied to the testing of software applications
through their API (Application Program Interface), but it is not so commonly
applied to the testing of software applications through their GUI. To perform GUI

A' A

C' C

r r

Abstract Op

Concrete Op

Introduction

7

specification-based testing, a GUI model has to be constructed. The GUI model
can vary on the level of abstraction either modelling atomic user actions (like
clicking on a button); or composed actions constructed as a sequence of atomic
actions (like "drag and drop" which is the sequence of pressing the mouse button
in the origin point, dragging the mouse to the destination point and releasing the
mouse button); or modelling high level properties of the GUI (like GUI navigation
map); or modelling scenarios that describe how the user should interact with the
GUI to achieve a specific goal. The level of abstraction of the GUI model should
be the best suited for the testing goals.

The construction of the GUI model may be quite laborious. However, GUIs are
constructed by reusing interactive components or entire dialogs, so the GUI model
should promote the reuse of already modelled behaviour.

Depending on the nature of the GUI models, different techniques can be used to
generate test cases [19,53,159] from them. As soon as test cases are generated,
they can be executed on the GUI in order to verify the conformity between the
implementation and the specification. Test cases are sequences of operations to
manipulate the GUI interleaved with operations to read and verify the results
obtained after each operation performed on that GUI.

In order to automate the conformity check, a map needs to be defined between
methods and states of the GUI and its specification. This can be relatively easy
when the source code (or an API) of the GUI under test is available and structured
as a set of operations that correspond to the actions that can be performed by a
user on the GUI. However, sometimes, the only interface available is the GUI
itself. In this case, some intermediate code needs to be constructed to interact with
the GUI simulating the user. This intermediate code will be mapped to operations
of the specification to be run in steps and results compared after each step. This
intermediate code can be built based on available libraries (e.g., Win32 API,
Abbot (abbot.sourceforge.net), and Jemmy (jemmy.netbeans.org), etc.) that allow
to simulate user actions interacting with the GUI. However, the manual
construction of this intermediate code may involve too much work which can
compromise the application of GUI specification-based testing techniques.

The state space explosion problem is even more challenging when talking about
GUIs. GUIs increase even further the number of possible states because there are
several different modes of interacting with a GUI, like a mouse and a keyboard,
different ways to achieve one goal, and there is no restriction on the sequence
according to which parameters can be given.

The process of writing a specification can also be useful to find user interface
errors and inconsistencies during initial phases of development and to prove
desired properties that can result in time and money savings. Examples of these
properties are: absence of deadlock, predictability of a command, ability to
reinitiate, availability of a command, succession of commands, exclusion of
commands, bound of state variable and integrity constraints [152]. Also, the
construction of models enables the analysis of alternative designs without having
to code them.

Chapter I

8

In spite of investigation about Formal Methods applied to user interfaces, this area
is not yet a common area of application.

1.2. Research goal

The goal of this research work is to improve current GUI testing methods and
tools, taking advantage of formal behavioural models to enable the automatic
generation of test cases and the automatic conformity checking of the
implementation with respect to the specification, and hence, contribute to the
construction of higher quality graphical user interfaces.

As a side effect, one wants to stimulate the use of formal methods in industrial
environments. Also, with the construction of formal specifications of graphical
user interfaces, we give a contribution to the construction of unambiguous
documentation that can be used for other purposes besides testing. Formal
specifications can be used, for instance, by code generators in such a way as to
transfer legacy systems to more recent technologies.

1.3. Methodology

According to Zelkowitz and Wallace, in [200], research methodologies can be
classified into scientific, engineering, empirical, and analytical. These research
methodologies can vary on the type of problem they try to solve and on the type of
solution they propose to solve the identified problem. A scientific method
identifies a phenomenon without a scientific explanation and tries to develop a
theory to explain it. An engineering method formulates a hypothesis and tries to
develop and test a proposed solution. An empirical method uses statistical
methods as a means to validate a given hypothesis. An analytical method develops
a formal theory. The characteristics of the problem research at hand, the research
question, and the solution proposed (e.g., method, methodology, theory, or tool)
influence the research approach and the techniques used to validate and evaluate
the approach.

The above mentioned research methodologies can be applied to science in general,
but software engineering research may require specific methodology combining
diverse research approaches from different research fields due to the fact that
software engineering may combine several different issues, such human,
organizational, and referring to computer science, so the borderline between
software engineering and its scientific base is not clear defined. In [200],
Zelkowitz et al. present a list of twelve software engineering validation models
that are classified into three categories: observational, historical, and controlled.
Observational methods gather information considered relevant during the
development of the project, e.g., project monitoring, case study, assertion, and

Introduction

9

field study. Historical methods gather existing information about projects that
have already been concluded, e.g., literature search, legacy data, lessons learned,
and static analysis. Controlled methods are the classical methods of experimental
design used in other scientific disciplines and they gather information from
different instances of an observation for statistical validity of the results, e.g.,
replicated experiment, synthetic environment experiments, dynamic analysis, and
simulation. In addition, validation methods can also be classified according to
another dimension which results in a separation between quantitative, qualitative,
and hybrid evaluations [111]. Quantitative methods measure some property (or
properties) of the software product or system that is expected to change as a result
of the use of the approach to evaluate. Qualitative methods use "feature analysis"
to describe a qualitative evaluation. Hybrid approaches combine features of the
previous methods.

The research methodological difficulties of software engineering research have
not (yet) been solved so the researcher has to choose a research approach which is
suitable for his problem at hand [166].

The scientific area of this research work is software engineering. The research
process consisted of four phases: information gathering; hypothesis definition;
approach development; approach evaluation. Throughout these phases, different
methods, the ones considered the best adapted, were used.

Information gathering

The information gathering was the initial phase of the research work. Collect,
study, and synthesize information on the main topics for the problem defined
considered relevant were the main activities involved at this stage. The goals were
(1) to gain knowledge about the theory related to the research area, (2) to identify
the remaining open issues, and (3) to indicate the direction for research. The
information gathered was structured in an easy access database and consisted
mainly of scientific papers published in magazines, journals, and conference
proceeding, books, and websites. The main topics subject of investigation were:
currently used approaches for developing and testing GUIs; formal methods and
more precisely formal specification of GUIs; and specification-based testing. The
research methods used in this phase were essentially historical methods as it is the
case of literature search.

Hypothesis definition

After having gathered, studied, and synthesized the information the hypothesis
was formulated:

"The use of GUI formal behavioural models enables
improving GUI testing process in terms of higher de grees
of automation and systematization".

Higher degrees of automation can be achieved by generating test cases
automatically from formal models, and executing those tests automatically

Chapter I

10

checking conformity between specification and the GUI under test. By executing
test cases automatically, it is possible to run more tests more often.

By using formal methods and testing together it is possible to increase the
systematization of the testing process. Formal methods introduce models early in
the software development process from which conditions to check during test case
execution as well as the moment when these conditions should be checked may be
inferred. In addition, formal models can be used to evaluate if the GUI software is
adequately tested.

Approach development

After formulating the hypothesis, the approach was developed. The approach
entails the development of a method to specify GUIs using a model-based
specification language, called Spec#; the constructing of an algorithm to reduce
the state space and the size of the test cases; and the construction of a tool to
reduce the manual work required to perform conformity tests between a
specification of a GUI and its implementation. The research methods used in this
phase were observational ones.

Interaction with Microsoft researchers and testers was crucial in this phase of the
research process to understand the real needs and problems of the GUI testers and
as a way to discuss and exchange ideas.

Approach evaluation

Once constructed the proposed solution for the identified problem, observational
methods, like case study, and controlled methods, like replicated experiments,
were conducted to validate the solution.

The results obtained during the research work were presented and discussed in
international conferences after being approved in its reviewing processes.

1.4. Contributions

The main contributions of the research work spread over the three identified GUI
testing problems:

1. GUI modelling problem

− A GUI modelling approach that provides a set of guidelines for
modelling GUIs for testability and reusability (GUI components are
specified as reusable classes or modules).

2. State space explosion problem

− An algorithm to reduce the state space of the GUI model and
consequently the size of the test suite based on a hierarchical structure
of the GUI model [151].

Introduction

11

3. Model-to-implementation mapping problem

− A tool to automatically construct the code needed to interact with a
GUI simulating the user [149]. The main goals of this tool are:

o to reduce the manual work required to test an application
through its GUI;

o to bridge the gap between a model written in a high-level
modelling language and the simulation of user events;

o to test GUI applications even if their source code isn't
available.

These contributions (1-3) were described in the following papers presented in
international conferences after being approved by a reviewing process:

− (1) (3) – "A Model-to-implementation Mapping Tool for Automated
Model-based GUI Testing" presented at the 7th International
Conference on Formal Engineering Methods (ICFEM'05), 2005.

− (1) (2) – "Modelling and Testing Hierarchical GUIs" presented at the
12th International Workshop on Abstract State Machines, 2005.

− (1) – "Automated Specification-based Testing of Interactive
Components with AsmL" presented at the 5th edition of the
international conference QUATIC (Quality: the bridge to the future in
ICT), 2004.

− (1) – "Specification-based Testing of User Interfaces" presented at
10th DSV-IS Workshop - Design, Specification and Verification of
Interactive Systems, 2003

− (1) – "Métodos Formais na Especificação de Interfaces com o
utilizador: a linguagem VDM++ e o tratamento de eventos" presented
at the "3ª Conferência da Associação Portuguesa de Sistemas de
Informação", 2002.

Each paper is preceded with numbers within round brackets that identify the
contributions described in each one of them.

1.5. Overview of the dissertation

This dissertation is structured into three main logical sections. The fist one
presents a review of the several approaches to develop and test GUIs. It is spread
over Chapters I, II, and III. Chapter II presents techniques and tools to develop
and test GUIs without the support of formal methods. Chapter III presents
techniques for specification-based testing of GUIs. The second section presents
the approach proposed in this dissertation in Chapter IV, which is validated and
evaluated in Chapter V. The third part presents conclusions and future work.

Chapter I

12

Chapter I

This chapter gives a general introduction to the main subjects of this dissertation:
formal methods in software engineering, the application of formal methods to
software testing, and the specification-based testing of graphical user interfaces
(GUIs). The problems with current practices in GUI testing and how formal
methods used in combination with software testing can help to overcome those
problems are briefly pointed out. It also describes the objectives of the research
work and the methodology used, and presents the main scientific contributions.

Chapter II

This chapter begins by classifying the different kinds of user interfaces and their
desired qualities and common defects. After that it gives an overview of the
current practices in the GUI development process and presents their main
problems. An overview of the current practices for testing GUIs is presented and
compared with other approaches to promote the quality of GUIs. The main
drawbacks of each described approach are then pointed out.

Chapter III

This chapter opens with the presentation of the main challenges of Graphical User
Interface (GUI) testing either when compared to Application Programming
Interface (API) testing or when one wishes to automate the test process. After that
it presents a survey on the work related with GUI specification-based testing. It
begins by describing different ways of modelling GUI using different kinds of
formal specification languages and then presents different techniques used to
generate test cases from those different formal specifications. At the end, different
strategies of performing automatically verification of the test results (conformity
check) influenced by the kind and style of the specification used are presented.

Chapter IV

This chapter presents a new approach to model and test GUIs. The model is
written in Spec# and structured in a hierarchy. The methodology followed and the
decisions taken to model GUIs are explained in detail. The hierarchical structure
of the model is used by an algorithm to reduce the number of states of the model
and contribute to diminish the state space explosion problem. At the end of the
chapter, a tool prototype to support the specification-based GUI testing is
described. This tool is an extension of the specification-based testing tool, Spec
Explorer, developed at Microsoft Research that already supports automatic
generation and execution of test cases for API testing, but still requires too much
work to test software applications through their GUI.

Introduction

13

Chapter V

This chapter presents and discusses the results of the case studies used to evaluate
and validate the specification-based testing approach proposed in this dissertation.

Chapter VI

This chapter presents the main achievements of the research work described in
this dissertation and points out topics which deserve future attention.

14

15

Chapter II

GUI development and testing

This chapter gives an overview of the current practices in the
GUI development. It starts by classifying the different kinds of
user interfaces and their desired qualities and common defects. It
then offers an overview of the current practices for GUI testing.
Other approaches to promote the quality of GUIs are presented,
compared, and their main drawbacks pointed out.

User interfaces (UIs) are mediators between users and systems. Users interact with
user interfaces to perform tasks. A UI is a crucial part of an interactive system in
the sense that it determines how system is. It can then be a determinant point in
the decision on whether to use or not to use it. A UI provides ways of controlling
the system through inputs and ways to observe the system through outputs. There
are different modalities in which inputs and outputs can be sensed, for instance,
vision and audition. Different modalities can be combined in the same system and
for the same task there can be a multiplicity of different modalities available. For
instance, a user can see outputs of the system in a computer monitor and send
inputs to the system through sensors or devices like keyboard, mouse, and touch
screens. The ways in which these modalities are implemented give origin to
different interaction styles.

Chapter II

16

2.1. Types of User Interfaces

There are two main user interface styles: command-line and graphical user
interfacing (GUIs).

Command-line interfaces (CLI) are examples of synchronous and sequential user
interfaces. The dialog between the system and the user is established as a
sequence of questions and answers. At each execution step, the system waits for
the user command, processes it, writes the output, and moves on to another
execution step. An example of this type of interfaces is the Unix Shell.

Graphical user interfaces (GUIs) are richer CLIs in the sense that they can
support other kinds of interaction-styles like form fill-in, menu selection, and
direct manipulation. A GUI may have multiple windows on screen with
interactive objects, like menus, and buttons, mixed with text in a graphical display
which creates a more pleasant environment than text-only terminals. Windows
allow users to switch among multiple tasks, or multiple parts of a single task.
Typically, the user can resort to the mouse as a pointing device to select a
command from the menu, rather than type the equivalent command in a command
language, click on a button, select an item, or drag and drop an item.

When interacting through GUIs, the order in which tasks are performed is
arbitrary. In particular, users can interrupt one task to interact with another
window/dialog, e.g., to get information from a database, and then return to
complete the first task, e.g., by using the information previously read from the
database. The concept of "multi-threaded dialog" is used for this kind of
interaction [175].

It is common to let information exchange among sub-dialogs of the same
application and among related data. One example for the latter case is a dialog that
shows information gathered by two different tables, A and B, of a database
associated by an one-to-many relation (Figure 2). Typically these dialogs have a
master/detail structure that allows one to select a particular object of the first table
(A), as master, and shows the detailed information of that particularly master
gathered from table B. Every time the user changes the selection, the detailed
information should be updated accordingly.

Figure 2: Form Master/Detail

Department: Marketing

Employees:

John Smith

Carl Cooper

Peter Dix

GUI development and testing

17

Another particularity of GUIs is semantic feedback. Semantic feedback refers to
outputs made visible to the user that are application-specific. For instance, a
graphical editor of entity relationship diagrams may display a message warning
users whenever trying to connect two relationship objects, which is a meaningful
and not allowed operation [175].

There are different kinds of GUIs: hypertext, web-based, form-based,
direct-manipulation, rich client, multi-modal, and virtual reality.

Hypertext is a non-linear way of presenting information to the user. The
information is structured as a network of nodes and links in which readers are free
to navigate and create their own reading order. This kind of user interfaces does
not support the drag and drop interaction style.

Web-based user interfaces provide a way to access infra-structures and
applications from remote computers using internet or intranets. They accept input
and provide output by generating web pages which are transported via the internet
and viewed by the user using a web browser program.

A form-based interface is an independent graphical window, with a set of
embedded controls. It can be seen as electronic version of a paper form that
common public services ask clients to fill-in. Form-based user interfaces allow for
typing information and pointing with the mouse.

With a direct manipulation interface, the user seems to operate directly on the
objects visible on a graphical display using actions more similar to the actions in
the physical world. Examples of direct-manipulation are window resizing or
changing the directory of a file by dragging and dropping the icon that represents
it on the new location.

Rich client or smart clients are software applications that can work online or
offline whether connected or disconnected from the internet. Microsoft Outlook is
an example of this kind of software applications. It can only check for new mail
messages when connected to the internet but it allows reading previously received
messages even when disconnected from the internet.

Multi-modal systems are a sophistication of standard GUIs. The goal of these
systems is to make communication with machines easier. They intent to extract
meaning from the different possible ways of communication among humans, like
speech, gestures, and visual recognition, and use such modal inputs as inputs to
the system.

Virtual reality user interfaces are examples of concurrent and real-time
interfaces. They use computer-generated graphics to simulate a real or imagined
environment with three dimensions of width, height and depth for the user to
enter, explore and interact with. The user can manipulate more than one device at
a time to achieve a goal which may vary from common devices like keyboard and
mouse to more sophisticated ones like data gloves and head-mounted displays.
Computer games are examples of this kind of user interfaces.

The focus of this research work is on form-based, direct manipulation, and rich
client GUIs.

Chapter II

18

In the sequel, GUI means form-based, direct manipulation, and rich client user
interfaces. When there is a need to mention other kinds of GUIs, they will be
individually cited.

2.2. Desired qualities and common defects in
UIs

Regardless of its type, the quality of a given UIs can be evaluated from two
different perspectives: the user's perspective (external), and the software
engineering's perspective (internal) [77].

External perspective

The user's perspective is more concerned with the so called usability properties of
the system. These properties, which are indicators of how easy it is to use the UI,
can be classified as follows:

− Satisfaction – this is related to the user's subjective view of the
systems, e.g., how pleasant, comfortable, intuitive, consistent it is.

− Reliability – from the user's perspective, this refers to the errors a user
can do when using the system. This property is closely related to the
degree of flexibility of the system. A flexible system gives more
freedom to the user and more opportunities to fail while a rigid system
gives less freedom to the user but less opportunities to fail.

− Learnability – this refers to the time users take to learn how to work
with the system and how much the users recall when redoing a task.

− Efficiency of use – this refers to how efficient the user can be when
performing a task using the system. This can be measured by the time
taken and/or the number of actions needed to perform a task. An
inefficient UI can be usefulness.

Internal perspective

From the software engineer perspective, UI quality is judged in a way similar to
other parts of the system, as follows:

− Code – assess its readability, logical structure; easiness of
maintenance, style, etc.

− Architecture – represents systems in terms of abstract components
with external visible properties and relationships. The architecture of a
system can influence the degree of manageability and scalability.

− Run time efficiency – time needed to underlying the execution is
closely related to the complexity of the algorithms.

GUI development and testing

19

− Correctness – There are different ways of defining software
correctness [160]: the software is correct if it meets its specification,
also known as verification, and either specification or software is
correct if it meets the requirements of its users, also known as
validation. Breaks in the contract established with the user are
detected during validation process. Errors or discrepancies between
the calculated/computed and expected values are detected during the
verification process. Both processes are important to increase the
confidence in the correctness of the UI.

GUI errors

A GUI can increase the number of errors or failures of the underlying application
of a software system. The different types of GUI errors/failures can be classified
as follows:

Usability errors or failures are related to the difficulties the user has to overcome
when using the system. They can be due to problems of communication between
application and users, confusing command structure and entry, and feedback
missing [108]. There are errors in the communication between the application and
the user whenever the user is expecting information which is missing to continue
his task or, for instance, when messages shown to the user are not clear or have
spelling errors. The user can easily get lost when the command structure and entry
is confusing like when there are inconsistencies with names, menu positions and
command entry style. System feedback should be complete and understandable to
the user in order to make them easier to use. However, there may exist problems
in the output of certain data, it can be impossible to redirect output, and it may be
difficult to control output layout (e.g., colours, font, scaling graphs, etc).

Usually, to detect errors from an external perspective, the system is tried out by
real users in controlled environments. Information is gathered by asking the users
to fill in forms, or by gathering information about the time spent to achieve a
given goal, or time spent in redoing a previously performed task, or the number of
steps needed to perform a task. The information gathered is then analysed and the
system is improved accordingly.

Functionality errors or failures are related to the tasks or functionality the system
should support. Problems or errors are detected when the system behaves
unexpectedly; or performs in an awkward or incomplete manner; or even when it
does more than it was expected to. Functionality may be missing because there are
commands missing or existing commands are either not available or do not work.
The system does not do what was expected when, for instance, it does not ensure
data validation, provides incorrect field defaults, when it does not enforce
mandatory fields, when wrong fields or wrong number of rows are retrieved by
queries, when windows have incorrect modality, when derived values are not
updated or wrongly calculated, and so on.

To detect functionality errors, one need to know before hand what the intended
functionality of the system is, that is, what its expected behaviour is. This can be
kept in the developer's head only, in an informal requirements' document or in a

Chapter II

20

formal specification. The way in which requirements are kept bears a strong
impact on which technique to use to find errors.

Performance errors/failures are non-functional errors. These errors are related to
the efficiency of the system. They can be measured in terms of the time taken to
perform a task, or the amount of resources consumed. Errors are detected when
the system takes too much time to perform a given task, like, for instance, the time
taken to show a message to the user or the time taken to move the cursor to the
end of a text file.

Sometimes, performance testing is combined with stress testing to check what
happens when a load bound is exceeded. Usually, performance errors are detected
with the help of tools that are capable of measuring how performance varies, for
example, with the load number of users vs. response time. An example of this kind
of tools is Compuware Corporation's QACenter Performance Edition
(www.compuware.com/products/qacenter).

A main concern of this work is on finding functionality errors or failures. By
testing a software application through its GUI it is possible to detect defects
related to the underlying application and also related to the GUI itself.

2.3. GUI conceptual architectures

The GUI model-based development process comprises requirements such as
capture, design, implementation, verification/testing, and maintenance. However,
tools that support GUI development process present deficiencies on the modelling
and verification phases. Typically, models only exist in the programmer's head
and the verification phase is restricted to the realization of manual tests without
systematization concerns.

Among the first attempts to make UI development more systematic, we find
UIMS (User Interface Management Systems), which are based on conceptual
architectures that make a clear distinction between the presentation and the
application. The goal was to increase the portability (degree of independence
between the presentation level and the underlying application) and adaptability
(the capacity of the systems to deal with changes, e.g., requirements' changes,
system improvements and correction of errors) of the systems. These architectures
can present a layered or an object oriented structure. Examples of these
architecture models are Seeheim (Figure 3), Arch (Figure 4), MVC (Figure 5), and
PAC (Figure 6) models.

The Seeheim model was inspired in linguistic systems. It splits the system into
lexical, syntactic, and semantic aspects that correspond to presentation (P), dialog
(D), and application interface (AI) respectively (Figure 3).

The box at the bottom is a controller. It receives messages from AI and D, and
sends messages to D and P.

GUI development and testing

21

The presentation layer describes the interactive objects and the data presented by
them. The dialog layer gets input data and determines how they should be treated.
The application interface describes the services available to the user.

Figure 3: Seeheim architecture

The Arch model adds more structure to the Seeheim model by refining the
Seeheim presentation component into interaction toolkit and presentation adapter
component, and refining the Seeheim application interface into domain-specific
component and domain adapter component. The adaptors contribute for the
improvement of the code reusability, portability, and modifiability [51].

Figure 4: Arch model

With agent-based models, the interactive systems are structured as a collection of
agents. These active agents, also called interactors because they communicate
directly with the user, are capable of producing and reacting to events.

Figure 5: MVC model

The MVC (Model-View-Controller) model splits the system into a model (M) of
the objects of the domain, a view (V) for making instances of the objects visible to
the user, and a controller (C) to deal with the dada received from the user. The
view is notified whenever the information kept by the model changes.

M

V

C

Display
output

User
input

Application
objects

Dialog Presentation
adapter

Interaction
Toolkit

Domain
adapter

Domain-specific

P D AI Application User

Chapter II

22

The PAC (Presentation-Abstraction-Controller) model splits the interactive system
[51] into presentation for implementing the perceivable behaviour of the agent
(interactor appearance), abstraction for the competence of the agent (functional
core), and control for linking the abstraction part of the agents to its presentation
and maintenance of the relationship of the agent with other agents.

Figure 6: PAC model

The main differences between MVC and PAC models are the way in which
synchronisation of related interactors is achieved, and the location of input and
output responsibilities [96].

These architectures split the interactive software systems into the application and
the user interface. Although this separation has its merits, it also leads to serious
adaptability problems when functionality of the software system has both
application and user interface aspects that cross the application-interface boundary
[63].

2.4. GUI development processes and tools

Myers and Rosson [141] estimate that an average of 48% of the application code
and 50% of the time spent with implementation are dedicated to the user interface.
To increase the productivity of user interface (UI) development teams, some tools
have been developed to aid the construction of user interfaces. These tools can be
classified into two major groups: non model-based tools, and model-based tools.
Interface builders with toolkits on top of window managers, IDEs (Integrated
Development Environments), and markup languages are included in the former
case. In the latter group, it is possible to include tools that automatically generate
the final GUI from the model (MB-UIDE – Model-based User Interface
Development Environments, Pattern-based, and CASE – Computer-aided
Software Engineering tools), tools that generate automatically the model of an
existing GUI by a reverse engineering process, and prototyping tools.

2.4.1. Non model-based tools

These tools are widespread in industrial environments. They are characterized by
not requiring an explicit GUI model and for being used to build the interface itself

P A

C P A

C

P A

C

GUI development and testing

23

and nothing else. Examples of these tools are interface builders, IDEs (Integrated
Development Environments), and scripting languages like Tcl/tk, XML and XSL.

User interface builders

User interface builders provide UI components or widgets from a toolkit that the
developer can use as building blocks in the construction of new graphical user
interfaces. The developer can manipulate those widgets in an interactive
environment to graphically construct the layout of the screens and automatically
generate part of the interface code. These tools work on top of window managers
and are WYSIWYG (What You See Is What You Get) oriented. Whenever GUIs
change dynamically, these tools are useless. Dynamic changes must be
programmed manually. Even so, there are studies saying that these tools can
reduce to half the time spent with GUI development [140]. Examples of these
tools are Nextstep [122], and Visual Basic [132].

One of the problems with interface builders is that they do not support modelling
and verification phases. In addition, they entail an early commitment to the
concrete interaction objects (CIO), physical properties and details of the display.

IDEs

An Integrated Development Environment (IDE) seems like a single tool where all
the development is done. Typically these environments integrate a source code
editor, a compiler and/or interpreter, build-automation tool, and a debugger.
Examples are: Microsoft Visual Studio [133] and Eclipse (www.eclipse.org). On
behalf of using interface builders, these tools are also limited to handle only the
static parts of the interface. The dynamic behaviour has to be programmed
manually.

Visual programming environments are a special case of IDE where the software
application is constructed graphically as building blocks of code.

Although IDEs are widespread over industries, they lack on their support for the
UI development process. They also have a weak support for the modelling and
verification phases.

Markup languages

Nowadays, the growing diversity of devices makes it more and more common to
find the development of software applications for multiple-platforms. However, it
is difficult to construct those applications without duplicating the development
effort.

XML (eXtensible Markup Language) technology makes a good separation
between content and presentation aspects of a user interface. They import
concepts from conceptual architectures described in section 2.3. XSL (eXtensible
Stylesheet Language) is concerned with the style and layout while XML is
concerned with data. The same XML file can be associated with different XSL

Chapter II

24

producing different web UIs or HTML files for different devices, languages, or
connections. Even so, XML and XSL do not capture the essence of user interfaces
like user interface description languages try to do [8,178,187]. These languages
describe the user interface at different levels of abstraction trying to address
different purposes such as device, platform, modality, and context independency.
Examples are AAIML (Alternate Abstract Interface Markup Language), AUIML
(Abstract User Interface Markup Language), XIML (eXtensible Interface Markup
Language), XUL (eXtensible User Interface Language), XAML (Microsoft
eXtensible Application Markup Language), UIML (OASIS User Interface Markup
Language), UsiXML (USer Interface eXtensible Markup Language), etc. Most of
them can be found in (xml.coverpages.org/userInterfaceXML.html).

2.4.2. Model-based tools

Different from the previous tools, these are characterized by requiring a GUI
model in which aspects of the user interface design are represented. The aim of
these tools is to support the systematic and efficient development of user
interfaces providing the developer with better methods for constructing UIs.

MB-UIDE – M odel-Based User Interface Development Environment

MB-UIDE (Model-Based User Interface Development Environments) appeared as
an improvement of the user interface management systems (UIMS) driven by the
goal of executing UIs from declarative models [171]. The focus of the first
model-based generation tools was on automatic generation of preliminary user
interfaces from declarative models while the second generation of tools focused
on supporting user interface design by the involvement of the users in the
development process [186].

Typically, the kind of models used by the first generation of tools was based on
domain models with weak expressive power. From these models, it was possible
to generate form-based user interfaces with a simple menu. This kind of UI could
work for restricted situations, like data driven applications, or form-based user
interfaces, where tasks are mainly related to data maintenance such as create,
retrieve, update, and delete (CRUD), but not for the wide spectrum of UIs.
Examples of this kind of tools are: UIDE [17]; MECANO [161] (predecessor of
MOBI-D [163]); AME [118]; and JANUS [13]. Other systems increase the
expressive power of their models which allow them to generate richer user
interfaces, e.g., ITS [195,196], and generate additional features like help and
redo/undo sub-systems, as it is the case of the HUMANOID tool [182].

The second generation of model-based tools was targetting at getting input from
the users in order to improve the usability and usefulness of the systems. This is
called the user-centred design paradigm (UCD) which places the user at the centre
of the UI development process. The design is driven by an iterative prototyping
process based on a "trial-and-error" evolution [50]. The focus is on cognitive
issues such as perception, memory, learning, problem-solving, etc. In addition,

GUI development and testing

25

some of these tools, such as TRIDENT [25] and DON [110], also evaluate models
for various qualities. Other examples of tools from the second generation are:
ADEPT [117]; MASTERMIND [183] (which is a continuation of the previous
work on HUMANOID and UIDE); TADEUS; GENIUS [100]; FUSE [113];
MOBI-D [163] (successor of MECANO); Teallach [80,81]; and DRIVE [134].

Typically, the interface model used by the second generation of tools is structured
into many declarative models, like domain, user, task, dialog, and presentation
models [167]. The most crucial model in supporting a user-centred design
philosophy is the user-task model [162]. The user model describes the
characteristics and abilities of the users. The task model describes the significant
tasks that the users have to accomplish. These descriptions are then used to
determine which tasks the system should support.

There are different notations in the literature to describe task models [193]. In
particular, most of the grammar-based models are descriptions of the user's tasks.
UAN (User Action Notation) [90] and ETAG (Extended Task Action Grammar)
[84] are examples of these notations. Other examples are CTT (ConcurTaskTrees)
[154] and TKS (Task Knowledge Structures) [104].

Pattern-based

A pattern can be defined as a reusable solution for a recurring problem that occurs
in a certain context of use [172]. Patterns enclose a significant amount of reusable
knowledge and can be an effective way to transmit experience about recurrent
problems in UI development domain [172]. Sinnig et al. describe a model-based
framework with models constructed from a generic notation of patterns and tools
to integrate those patterns into the development framework [172]. Patterns are
defined dynamically with variables that are replaced by concrete values for a
particular context of use during the pattern adaptation process [173]. Tasks can be
grouped in dialog views. Dialog views and transitions from them can be saved in
XIML. A first abstract prototype can be generated from the dialog description.

Molina, in [135,136,137], describes a set of conceptual patterns for business
applications' user interfaces. The concepts and patterns are then used to model
object-oriented user interfaces in a graphical notation where interaction units are
represented as boxes and navigation between units as directed arrows. The pattern
language (which is independent from implementation technology) is precise, and
non-ambiguous. The models built in this language can be read by code generators
for several different target implementation languages.

CASE – Computer-Aided Software Engineering

The aim of Computer-Aided Software Engineering (CASE) tools is to automate,
manage, and simplify the software development process. Examples of these tools
are Oracle Designer (www.oracle.com) and Rational Rose (www.ibm.com).
However, these tools present a very long learning curve.

Chapter II

26

Considering only the domain of applications supported by CASE tools, and after
overcoming the initial learning effort to work with them, the construction of new
applications can be very fast. These tools can also be useful to construct
prototypes. The problem is that many users do not overcome the initial obstacles.

Reverse engineering

The world is full of legacy systems. The technology is in constant change and
some companies need to update their old systems. Reverse engineering tools can
be used to build the model of existing applications that can be used by UIMSs to
generate new GUIs with the same functionality of the older ones, but implemented
in more recent technologies, or to be accessed from other computer platforms with
specific characteristics.

One common example is the migration of legacy user interfaces to web-accessible
platforms in order to support e-commerce activities. Stroulia et al. describe the
CelLEST system within which a new process for migrating legacy systems for the
Web was developed [180,181].

Vanderdonckt et al. describe a reverse engineering process of Web user interfaces
[190]. The goal is to extract models of Web applications that were not constructed
using a model-based approach and then use those models to generate UIs for other
computer platforms, like palms, pocket computers, and mobile phones, without
losing the effort deployed in the construction of the initial application.

Prototyping tools

Prototypes are visual representations which may or may not be animated. The
animated prototype must be capable of generating an interactive environment
which accurately emulates the intended system operation.

Prototypes can be discarded after implementation of the final product (throwaway
prototype) or used in an evolutionary scenario where it suffers changes until it
becomes a final product (evolutionary prototype).

Throwaway prototypes can be developed manually using paper and pencil or with
the help of a tool (like HyperCard and Director [157]). Prototyping tools, like
HyperCard and SuperCard (supercard.us), provide an interface builder with which
it is possible to drag and drop widgets (abstracted as cards) onto a black window
where the author can manipulate them. However, to do something, the authors
must leave the interface builder shell and write code in a sample script language,
like Hypertalk.

Evolutionary prototypes can be constructed using tools such as Visual Basic [132]
from Microsoft and PowerBuilder (www.retrosoftware.com/12016.html) from
PowerSoft (www.powersoft.it).

Another approach in rapid prototyping is the so called Abstract Prototype from
Larry Constantine [49]. Abstract prototypes can represent the contents of a user
interface without showing how it looks like. The goal is to abstract from

GUI development and testing

27

implementation details and detect usability problems during the modelling phase.
This approach is based on usage-centred design. Usage-centred design is focused
on the "usage" as opposed to "user" on which user-centred design is focused. It is
based on three abstract models: a role model (describes the users' roles in relation
to the system), a task model (describes the structure of the users' work), and a
content model (describes the content and organization of the user interface needed
to support the identified tasks).

Problems with GUI development processes and tools

The tools described so far were very useful to increase the productivity of UI
development teams. However, they have some problems due to the fact that they
do not support all the activities of the UI development process, namely:

− Interface development tools were developed to reduce the time spent
with UI development but they have no concerns with systematization
of the process. They do not support modelling, verification, and
maintenance phases.

− Model-based tools make UI development more systematic but they are
also subject of critics:

o Poor UIs generated based on standardized interface
elements.

o Suited for specific UIs but useless for not directly
supported interfaces.

o Most of them do not take dynamic semantics of the
application under consideration.

o The developers are not given enough control over
interface details.

o It is difficult to relate characteristics of the model with
final UIs generated from the model and there is little
control over the look and feel of the final UIs.

o Developers have to learn one more language: the specific
language of the tool.

o Verification and evaluation phases are not supported.

2.5. GUI V&V

The verification and validation (V&V) phase of the software life cycle may
consume around 50% of the total time of the project [20,26,164]. It can be
performed by static or dynamic analysis. In the former case, instead of executing
the application under test, methods like code review and formal analysis like
model checking and formal proofs are used. In the latter case, the analysis is

Chapter II

28

performed by executing the application under test, e.g., specification-based testing
and beta-testing.

Although there have been improvements in static V&V techniques such as model
checking and theorem proving, testing is still the most widely used technique to
evaluate the quality and increase the confidence on software systems. It can be a
very effective way to show the presence of bugs, but it is hopelessly inadequate
for showing their absence [56].

One of the problems with testing is the lack of systematization. Most often, tests
are performed manually without coverage criteria, based only on the good sense
and sensibility of the tester. However, the complexity of software systems is
growing and having to deal with several different input values and different
possible outcomes manually is becoming an unmanageable activity. In addition,
without defining coverage criteria, determining when to stop testing and
evaluating the tests performed is almost ad hoc, once again, based only on the
experience and sensibility of the tester.

Every time the software suffers changes, tests have to be run again. Tests
performed in the software after being changed are referred to as regression tests.
The goal of these tests is to assure that:

− the source code added or modified didn't introduce new errors;

− the program still acts in accordance with requirements; and

− the unchanged code was not affected by the modification.

Another problem with these tests is that they are delayed to the last phases of the
software development process. This happens with so-called white-box testing
techniques which need knowledge of the programming code to select test data. At
this point in time, when the code is already constructed, the errors detected are the
most costly to correct which can have impact on the estimated conclusion date of
the project.

There is another kind of testing techniques in which the software is regarded as a
black-box. The only thing needed by these techniques to construct test cases is the
specification of the program describing the expected outputs for different inputs.
In this case, the test cases can be constructed sooner than with white-box testing
techniques. When the specification is formal, the construction and execution of the
test cases can be automated and the overall process becomes more systematic.

In general, testing strategies applicable to API testing can also be applied to GUI
testing. However, GUIs testing raises specific challenges due to time constraints,
test case explosion problems, the need to combine testing techniques, and test
automation difficulties. This will be explained in more detail later on in section
3.1.

Very few tools and techniques are available to aid the GUI testing process. By
contrast, GUIs are getting more and more established in our daily lives which
make us more dependent on their correct functioning. GUIs are becoming more
and more complex, which makes manual GUI testing unpractical. Like in API

GUI development and testing

29

testing, the GUI testing process can be automated although, current practices in
GUI testing is still a manual activity.

2.5.1. Manual GUI testing

Manual GUI tests are useful in exploratory/initial testing. Also, manual tests are
especially well adapted for being performed by real users. Beta releases are tested
by real users for a couple of weeks in order to find errors. This approach, also
known as random human testing, lacks systematization and offers no guaranties of
covering all the functionalities of the application.

There are other kinds of manual tests, more systematic, in order to find GUI
problems. Whenever they are performed by trained specialists it is possible to find
more bugs per test case executed and bugs found can provide hints to find other
bugs, i.e., the tests can be adapted to look for bugs similar to the ones found
(adaptability). These can be classified into inspection, inquiry, and usability tests.

Inspection

A group of specialists examines the user interface regarding a set of guidelines.
Those guidelines can vary from detailed characteristics about physical properties
of the UI to board principles based on usability studies for making interfaces more
intuitive, learnable, and consistent, e.g., how to organize the display and the menu
structure. Examples of inspection methods are heuristic and cognitive
walkthrough [74].

Heuristic Methods

A group of specialists studies the interface in order to find usability
problems. These problems are detected when the elements of the user
interface do not follow the usability heuristics used to guide the evaluator
through the inspection process. Whenever problems are detected, they are
written down and classified in order of severity.

Cognitive walkthrough

The developers walk through the interface in the context of core tasks a
typical user (not an expert) will need to accomplish. The actions and the
feedback of the interface are compared to the user’s goals and
knowledge, and discrepancies between user’s expectations and the steps
required by the interface are noted.

Inquiry

The users have opportunity to experiment the software system and then answer
questionnaires about their experience. Questions can vary from subjective to

Chapter II

30

objective, for instance, "do you think the system is nice?" or "what would you
change in the system?" or questions about screen features and system information
provided, like error messages.

Usability tests

The interface is studied under real-world or controlled conditions (real users), with
evaluators gathering data on problems that rise during its use [101]. The
interaction characteristics are measured and weaknesses are identified for
correction. The data gathered has information about time (the time a user takes to
complete a task), accuracy (the number of mistakes the user makes), recollection
(how much the user needs to recall when redoing a task), and emotional response
(how does the user feel after completing a task).

Manual test disadvantages

The results/errors found by manual tests are very dependent on the capabilities of
the tester. Manual testing is monotonous, frustrating, and affected by human
errors. Too much effort is required to construct, execute, and analyse the results of
the test cases. Manual tests may be difficult to reproduce/repeat and when
software is updated the test cases need to be run again given that there is no
support for regression testing. The errors found by manual tests are dependent on
the expertise of the specialists, who are difficult to find. Also, manual testing is
based on weak coverage criteria.

Manual tests are appropriate for finding usability problems and making general
assessments about usability but not for predicting usability measures [99]. For
that, software engineering practices like model-based development and simulation
are more appropriate. Examples of models used to predict usability are ETIT
(external/internal task mapping), TAG (task-action grammar), GOMS, PUM, CLG
(command language grammar), ETAG (extended task-action grammar). They are
classified according to the different aspects they are able to predict in [99].
Simulation methods simulate the user's interaction with the interface reporting
performance measures and interface operations [99].

2.5.2. Static analysis

Static methods analyse the code or specification of a software system in order to
find constructs that break certain correctness criteria. These methods do not
involve the execution of the software under test.

Static analysis performed on code, code inspection, can provide feedback to the
developer, for instance, when common errors are found, when guidelines are not
followed, and when UI components are not used appropriately, e.g., a button
without a Click event handler.

GUI development and testing

31

Static analysis performed on a formal specification is called formal static analysis.
Model checking and theorem proving are the basic types of formal verification.
They both have advantages and drawbacks as we will see next.

Model checking

Model Checking is a formal verification technique that has been successfully
applied to hardware, communication protocols, and also reactive systems.

The system is modelled as a finite state machine (FSM) and properties that the
model should obey are written in temporal logic (see Figure 7). Model checkers
are then used to prove automatically by exhaustive analysis of the entire state
space of the system that those properties hold in the model of the system. This can
be expressed mathematically as: S

�
P, meaning that property P holds in the

system S (specified as a finite state machine).

The result obtained by a model checker can be either true (the properties hold) or
false in which case a counter-example may be provided. The counter-example is a
path, sequence of states, within the transition system that shows the property
failing.

Figure 7: Model Checking

Examples of model checking tools are: Spin (spinroot.com/spin), SMV –
Symbolic Model Verifier (www.cs.cmu.edu/~modelcheck/smv.html), HyTech –
The Hybrid TECHnology Tool (embedded.eecs.berkeley.edu/research/hytech/),
Kronos (www-verimag.imag.fr/TEMPORISE/kronos/), and UPPAAL
(www.uppaal.com).

Temporal logic is a class of modal logic. It extends propositional logic to
incorporate time operators, in the sense that formulas can evaluate to different
truth values over time.

Model
Checker

Property: G(x→Fy)

x = T, T, F, F,...
y = F, F, F, T,...

Yes No

System model
 (FSM)

Chapter II

32

The use of temporal logic to model systems is straightforward. Each state
corresponds to a possible state of the program and moving from one state on to the
next corresponds to the execution of one step of the program. This representation
of the system corresponds to a transition system in which temporal formulas can
be tested.

There are different types of temporal logic that correspond to different views of
time (branching vs. linear, discrete vs. continuous, past vs. future). With a linear
time model (Figure 8a), each instant has only one successor. With branching time
(Figure 8b), each instant can have one or more instants as successors. Examples of
temporal logic formal languages are Linear Temporal Logic (LTL), and
Computational Tree Logic (CTL) [7].

Figure 8: a) linear time; b) branching time.

In linear temporal logic (LTL) it is possible to express properties about one state,
about a sequence of states (path), about the past, and about the future. The
standard LTL set of operators is: � (always in the future); � (always in the past);

�

(eventually in the future); � (eventually in the past); pUq (p until q); pSq (p since
q); � (next time); and � (previous time).

In branching-time logic the temporal operators quantify over the paths that are
possible from a given state. It adds two operators to the linear set of operators
which are E (for some path) and A (for all paths).

Temporal logic can be a powerful tool to express safety, liveness, and fairness
properties about a system. Safety properties state that "something bad does never
happen". Liveness and fairness properties state that "something good will
eventually happen". Fairness can be seen as a special case of a liveness property
and can be used to express, for instance, that a scheduler does never ignore a
process.

While a violation of a safety property can be detected by a finite sequence of
executions steps in the system, a violation of a liveness property may be detected
only by an infinite execution of the system.

a)

b)

GUI development and testing

33

The main drawback of Model Checking has to do with the state explosion
problem. The size of the finite state machine needed to specify a given system
may be so huge that analyzing the entire state space becomes unpractical. There
are some techniques available to diminish this problem:

− Abstraction – The model of the system is replaced by a simpler one in
which irrelevant low level details are removed [198].

− Bounding the state space – the domains of the state variables are
bound to a certain number of possible values [39].

− Partial Order Reduction (POR) – POR is based on the fact that the
order in which concurrent transitions are executed does not influence
the result, so just one of the possible execution sequences is
considered and the other ones ignored [47].

− Symbolic model checking – use of symbols implicit representations
of potentially infinite states and transitions that model the system
[198].

− Binary Decision Diagrams (BDD) – A special case of symbolic
model checking techniques where the implicit representation of the
states and transitions is based on Boolean formulas [198].

There are some examples in the literature of applying model checking techniques
to the verification of properties of interactive systems.

The interactor concept [60] is the basis for the specification of interactive systems
used by Campos [41]. The interactor model was developed at York and applies
general purpose specification languages to interactive systems.

Interactors describe the interactive system as a composition of independent
entities. These unitary abstractions can be thought of as a software architectural
abstraction similar to objects in object-oriented programming. Each interactor
consists of an internal state which is reflected through a rendering relation (rho)
onto some perceivable representation (P) (Figure 9).

Figure 9: York Interactor

Campos, in [41], adapts (deontic) modal logic to specify interactors which are
composed of state, behaviour, and rendering. Modal logic is a branch of logic in
which sentences are quantified by modalities. He adds two deontic operands to
reason about permission (per) and obligation (obl):

State

P

rho

events

Chapter II

34

− per(ac) means that action ac can happen next, and

− obl(ac) means that action ac is obliged to happen in the future.

These operands work as quantifiers over the actions in a given state. An
interactor's specification has attributes to model the state, and actions and axioms
to model the behaviour. Attributes and actions can be prefixed with quantifier vis
meaning that they are visibly perceivable.

The i2smv tool [41] translates interactor's specifications to the SMV input
language. The properties are described by computation tree logic (CTL) formulas
and checked automatically by the SMV model checker.

Paternó at al. [155] use ConcurTaskTrees (CTT) specifications to formalize task
models structured in a hierarchical way where the lower levels refine the upper
ones. These specifications use a semantic extension to LOTOS [27] in order to
define temporal relations between tasks:

− T1 ||| T2 – interleaving tasks;

− T1 |[]| – synchronized tasks;

− T1 >> T2 – the end of task T1 enables task T2;

− T1 []>> T2 – task T1 enables task T2 and passes information on to it;

− T1 [> T2 – task T2 deactivates task T1;

− T1 * – iteration of task T1;

− T1(n) – finite iteration of task T1 (n steps);

− [T1] – optional task.

CTT specifications are translated to LOTOS which can be accepted as input
language by model checking tools, e.g., CADP [155].

Berstel [21] translates his VEG (Visual Event Grammar) formalism into the
Promela language of the Spin model checker (spinroot.com/spin).

Abowd et al. [3] use Propositional Production Systems for specifying user
interfaces. The specification is then translated into the SMV input language and
analysed using CTL (Computation Tree Logic) formulas.

Dwyer at al. [61] describes several abstractions that can be used to reduce the state
space of GUI models in order to make the application of model checking
techniques feasible to verifying system requirements expressed as properties in
computation tree logic. The model checker used is SMV. The problem with this
technique is the lack of guidance in choosing which abstraction to use and the
possibility of obtaining false results due to the abstraction. False results can be
obtained when abstraction is weakly preserved for model checking i.e., when
every property that holds on the concrete system also holds on the abstract one but
properties that hold on the abstracted system may not hold on the concrete system.
This may be due to three different reasons: a fault in the system; a mistake in the
specification; an imprecision due to abstraction (e.g., excessive abstraction).

GUI development and testing

35

The main advantage of model checking is automation. Even so, it exhibits
problems when applied to HCI mainly due to the construction of the model and
the formalization of the properties to check. The model must be meaningful while
abstracting from many low level details as possible. Properties are often difficult
to formalize in modal logic. In addition, the kind of errors/faults that model
checking is adapted to check are somehow related to sequences of states like the
ones mentioned by Palanque in [152]: absence of deadlocks; predictability of a
command; reinitiability; availability of a command; succession of commands;
exclusion of commands. Other kinds of problems/errors may need a different
technique to be detected.

Model checking techniques can also support the generation of test cases [9] as will
be explained in the following chapter.

Theorem proving

Theorem proving is a well established formal verification technique applicable to
verifying if a given implementation (I) conforms to its specification (S). This can
be expressed mathematically either by an implication (I → S) or by an equivalence
relation (I � S) between I and S as a theorem that has to be proved. Both
specification (S) and implementation (I) are expressed in the same formal
language. The formal proof is rigorously constructed as a sequence of steps based
on a set of axioms and inference rules, like simplification, rewriting, and
induction.

Unlike model checking, theorem proving can deal with infinite state spaces.
Induction proof techniques apply to proving properties about infinite domains.
The structure of the proof is split in two sub-proofs: the property is verified for the
initial state (n=1) first, followed by the induction step, which verifies the property
for every subsequent state (n+1).

There are also other proof techniques like deductive proof and proof by
contradiction. A deductive proof is straightforward. Given that a certain
hypothesis is true, a sequence of steps based on axioms and inference rules, is
constructed in order to a conclusion. In a proof by contradiction, the starting point
is the negation of the hypothesis (¬P) to be proved. Then, a deductive proof is
constructed. If the conclusion contradicts (�) the starting point then the original
hypothesis (P) is proven to be true.

There has been research in applying theorem proving techniques to GUI
verification [33,34,35,36]. Bellow we stress on experiments based on the abstract
models PiE and RED-PiE (Figure 10).

Chapter II

36

Figure 10: Models PiE and RED-PiE.

The PiE model and its successor RED-PiE [57] are abstract representations of user
interfaces. The goal of abstract models is not to lead directly to an implementation
of an application but rather to provide guidelines for future implementation
attempts. An interactive system receives a sequence of input commands, P, that
produce an effect, E, by applying the interpretation function, i, from P to E. With
this abstract model, it is possible to express general properties of the systems like
monotony or predictability

�

 p, q, r � P : i(p) = i(q) � i(p.r) = i(q.r)

and reachability

�
 p, q � P : (� r � P : i(p.r) = i(q))

Essentially, the predictability property states that the effect produced by sending a
command r to two systems with an equivalent current effect is the same.
Reachability means that it is possible to reach any state from any other.

However, the PiE model has some limitations when one wants to express the
effects produced in terms of rendering and output values. This limitation is
overcome by the RED-PiE model by adding a projection function from the effect
into representations of the results (R) and display (D). Other extensions to these
models can be found in [57]. They are used to express exception conditions and
undoing errors.

Bumbulies et al. [34] use HOL (Higher Order Logic Theorem Prover) to verify
properties about user interface specifications.

Butterword et al. [35] provides proof of usability properties about interactive
systems. They discover a problem with their system that could also be detected
using model checking techniques. However, they claim that with model checking
techniques they would not understand why the problem existed while with the
construction of the proof they can understand it.

Butterworth and Cooke [37] use the Temporal Logic of Actions (TLA) to specify
reactive and interactive systems. TLA is an extension of temporal logic in the
sense that assertions about a single state, S, are generalized to assertions about

 R

 i
P E

 D

 i
P E

GUI development and testing

37

actions (assertions about pairs of states, S×S). Actions specify allowed state
transitions. An action A allows a transitions s → t from state s to t iff A (s,t)
equals true. A state transition allowed by A is called an A-transition.

Figure 11: Relation between windowed data and scroll bar (taken from
[37])

The case study of Butterword and Cooke [37] is the scroll bar interaction object
and the related data structure within a window (Figure 11). At each instant, there
is a relation, rep, between the position of the scroll bar button and the windowed
data shown to the user. This can be expressed in temporal logic by

StrictReq � � (rep(win, sbar)

The user can perform two actions on the system, either altering the scroll bar
(alterBar) or altering the window position (alterWindow).

alterBar � enable: true
 sbar ≠ sbar' ∧ barAltered'

alterWindow � enable: true
 win ≠ win' ∧ windowAltered'

Each action has an enabling condition identifying the system states where the
action can occur. Variable names without dash refer to the start state before action,
while variable names with dash refer to the end state of the action.

After describing the user actions, the behaviour of the user interacting with the
system can be described by

user � alterBar ∨ alterWindow

Chapter II

38

meaning that the user can perform either of these actions.

Similarly, the kernel actions reacting to the user actions are

updateBar � enable: windowAltered
 rep(win,sbar') ∧ ¬windowAltered'

updateWindow � enable: barAltered
 rep(win', sbar) ∧ ¬barAltered'

The overall kernel actions are

kernel � updateBar ∨ updateWindow

The specification of the entire system is described by

specInit � rep(win,sbar) ∧
 ¬barAltered ∧ ¬windowAltered

spec � specInit ∧ � [kernel] ∧ � �user �

where �ac� mean that action ac is permitted and [ac] mean that action ac is
obligatory.

Doherty [58] provides another example of applying theorem proving techniques to
analyse properties about interactive systems. He starts with a VDM [158]
specification which is translated into PVS (pvs.csl.sri.com) notation for that
purpose.

Atif-Ameur [6] uses B to specify and prove properties about interactive systems.

Disadvantages of static analysis

The application of theorem proving techniques to an entire software system may
involve so much work and resources that it may be unfeasible to apply them
within software resource limits. Usually, this verification technique is performed
on a small part of the entire system. The parts of the system to prove formally are
selected either because they are critical parts of the system or because they are an
implementation of a non trivial algorithm.

Theorem proving requires a formal model of the system at target. Proofs can be
carried out with the help of a theorem prover. These tools can help in ensuring that
the steps of the proof are correct but give no support for the conception of the
proof.

With model checking it is possible to reach a higher degree of automation than
with the other two static analysis techniques but some properties can be difficult to
express in modal logic and therefore remain unverified.

GUI development and testing

39

Although static techniques can help in finding errors, there are errors that will be
very difficult to detect with these techniques. This is the case of errors that rise
only when the system is executed.

To verify GUIs with static analysis performed on specifications, one must build a
formal model of the GUI on appropriate formal language. Some formal languages
can be better adapted than others for that purpose. This will be the subject of
Chapter III.

Another problem related with static analysis techniques is that they are far from
current techniques used in industrial environments. Specification-based testing is a
way to reduce this gap. It combines formal models with testing, leading to more
systematic testing processes while automating most of the testing activities. This
will be the subject of the following Chapter III.

2.5.3. Automated GUI testing approaches

Although many tools are available for developing GUI applications visually (e.g.,
user interface builders), they provide support neither for specifying or modelling
GUIs including their functional behaviour at a higher abstraction level, nor for
testing them in an effective way. Yet, testing GUIs represents a significant amount
of the overall testing efforts at industrial level. To overcome this discrepancy,
several kinds of testing tools have been developed. These tools vary from those
that only support the automatic execution of test cases, to those that support test
case execution, test case generation, and construction of the GUI model by a
reverse engineering process.

Capture/Replay tools

In this kind of tools, test scripts are constructed by testers interacting with the GUI
that records their actions, like mouse motions and keyboard inputs, in order to
replay them later. These tools provide a record mode, in which every user action is
saved in a test script, and a replay mode, in which test scripts are executed.

These tools often provide a scripting language that engineers can use for
maintaining test scripts. They can, for instance, record a basic test script and
modify it later manually to make it more effective. Test script execution is
automatic and can be repeated several times. Test scripts can be constructed by
interacting with the application under test (AUT) but capture/replay tools give no
support for their design and coverage criteria analysis.

The problem with test scripts is their lack of structure which makes their
maintenance difficult. This problem is softened by adoption of methodologies that
entail more structure to the test scripts [105,107,199].

The data-driven automated testing methodology adds more structure to scripts by
keeping separate input data and results from the testing procedure. This is
accomplished by including variables in the test script that will get actual values
from an external data source, file or database. This increases reusability, makes

Chapter II

40

the script more modular and easier to manage. New test cases can be constructed
by adding new data to the data file without any changes to the original test script.

Keyword-driven testing increases reusability even further. The data file used in
data-driven testing is expanded with an additional keyword describing what the
test case does but not how it does it. The file constructed this way comprises the
test script. It is more abstract than the one used in the data-driven testing
approach. The detailed behaviour is described in an additional layer of scripts or
library function. At run time, a test driver interprets the keyword and calls the
corresponding detailed script/function in the function library.

Test scripts present a level of abstraction that does not impose knowledge about
the scripting language used by the tool, so they can be developed by experts on the
application domain who do not necessarily have knowledge about particular
details of the tool.

These tools can vary as to the way they identify GUI objects. They can identify a
GUI object by its position on screen or by capturing the object itself
(object-aware). The first ones run into synchronization problems, for instance,
clicking on buttons before they have appeared. Nevertheless, there are situations
where there is not really an object on screen, just a bitmap, and an interaction
based on screen point may be useful.

Advantages of Capture-Replay tools

These tools may have good observability capabilities, like optical
character recognition (OCR) and image processing techniques, and may
be helpful for regression testing and in other contexts such as:
demonstrations; remote support; analysis of user behaviour; macro
functionality; and educational scenarios. However, for testing purposes,
they are still subject to severe critics [92].

Disadvantages of Capture-Replay tools

− Tools of this kind defer testing to the final phases of the software
development process because they can only be used when the GUI, or
part of it, is already available.

− If during test scripts construction, the tester makes a mistake, for
instance, giving a wrong input field value, the test script must be
constructed right from the beginning. The same happens if the tool
gives an error. All that is being tested are things that already work
[199].

− These tools don’t provide any support to design test cases and to
evaluate them according to coverage criteria.

− Changes to the implementation usually require the re-capturing of all
affected test scripts.

GUI development and testing

41

− Scripts may contain hard-coded values, e.g., some of these tools store
information at a low level of abstraction, capturing mouse positions.
Representing the information at such a low level of abstraction makes
these tools very dependent on the physical properties of the user
interface. A small change on the layout of the user interface might
invalidate all test cases.

Examples of these tools are WinRunner (www.mercury.com) and Rational Robot
(www.ibm.com).

Random input testing

Random input testing is also referred to as stochastic testing or monkey testing
[143]. The latter designation is used to give the idea of "someone" without a brain,
or without knowing what he's doing, seated in front of a computer and interacting
randomly with the keyboard or mouse.

Microsoft reported that 10-20% of the bugs in their software projects are found by
monkey test tool [142].

Monkeys can vary in smartness. Ignorant or dumb monkeys don't know anything
about the current state of the software application nor about legal or illegal input
values. They generate test cases randomly and ignore any unexceptional outputs
of the system. The main problem with such monkeys is that they cannot even
recognize a software error, which is not very useful.

The goal of dumb monkeys is to crash the system under test. This category of
monkeys is not well suited to find defects related to incorrect behaviour, but it is
the most cost-effective for finding defects that crash the system. Rational's
TestFactory detects application crashes without user intervention using dumb
monkey method.

There is other another kind of semi-smart monkeys which allows them to
recognize a bug when they see one.

Smart monkeys have some knowledge about the application they are testing. They
have knowledge about states and know the legal steps to move forward in each
state. They can also check if the reached state is the one expected.

Smart monkeys are more costly to develop because they need a model or state
table. Dumb monkeys are easier to construct. For being "stupid", without
particular knowledge about applications, dumb monkeys can be used to test a wide
range of application types and they are independent of screen changes.

Smart monkeys can find more bugs but are more expensive to develop. They can
be useful for load and stress testing, particularly at system level, for instance,
using several monkeys interacting simultaneously with a multi-user software
system.

One of the problems with random input testing is their weak code coverage. In
every interaction, the tool has to choose an input value among the valid values in
the domain. For a domain ranging from 1 to 100, each value has a 1/100

Chapter II

42

probability of being chosen. If somewhere in the code there is a if branch like "if
(n � 50) ... else...", the else branch has 1/100 probability of being exercised.

Random human testing is performed by real users playing with some software
which is made available by their owners for a couple of weeks, with the goal of
catching errors. Although some errors can be found by this approach, it is rather
arbitrary and does not provide reliable coverage criteria [52].

Unit testing frameworks

Another possible approach is to program the test cases. Frameworks like JUnit
(www.junit.org) and NUnit (www.nunit.org) are of great help in organizing and
executing test cases, particularly for API testing, but not in generating those tests.
The test cases have to be constructed/programmed manually which gives a high
level of flexibility to the tester.

A popular approach in GUI testing is to code the test cases "manually" in which
unit testing frameworks can be helpful. Even so, the tester has a hard work to
adequately test the GUI behaviour. In the case of GUI testing, many bugs can only
be uncovered through particular sequences of actions, which might rise in the
daily use of the GUI. Unit tests, however, are usually a few hand-written
sequences of actions, which tend to be very short. Thus, there is a high probability
to miss these kinds of errors.

With these tools, GUI testing is treated like API testing. The tester has to write
code to simulate the user interacting with the GUI under test, while observing the
output, and to check if the result obtained is the one expected. Even using a GUI
library, like, for instance, Abbot (abbot.sourceforge.net/), or Jemmy
(jemmy.netbeans.org) that provides methods to simulate user actions and observe
the state of interaction objects, GUI testing using these tools requires a lot of extra
programming effort to be effective.

Model-based testing

The model-based tools discussed in section 2.4.2 were generically concerned with
automatic generation of user interfaces. Unless there is no trust on the code
generators, it is expected that the set of user interfaces that can be generated by
them is correct, so they do not provide support for the testing phase of the UI
development process. However, these tools present some limitations as far as the
type of user interfaces they are able to construct is concerned.

Model-based testing tools focus on the test automation process. They are used to
test the conformity between an implementation and its model. A high level of test
automation can be achieved with model-based testing tools given the fact that test
case generation, test case execution, and the comparison of the expected results
with actual results can all be automated.

A model-based testing process starts with the construction of the model of the
application under test (AUT) (Figure 12). The model is then used as input to

GUI development and testing

43

generate test cases according to given coverage criteria. Test cases are executed
over the AUT (application under test) and the results obtained and states reached
are compared with the expected results and expected states described in the model.

Figure 12: Model-based testing process.

The kind of model notations used can range from textual to graphical notations,
can either be or not be executable, and can vary in their degree of formalization.
Depending on the kind of the notation, different test case generation algorithms
and different coverage criteria can be used.

Conformity between actual and expected states can be checked after each
execution step in a "lock-step" mode, or at the end of the execution in which case
intermediate results must be saved for comparison.

The model captures the requirements of the AUT. When they suffer changes, the
model changes and the application must be tested to check if the new requirements
are fulfilled. Some model-based testing tools provide support for regression
testing by calculating the subset of the test suit that is affected by the requirements
modification and calculating the modifications that it must suffer in order to test
the new/changed functionality [123,177].

There are several examples of model-based testing tools for testing software
applications through their API. Examples of these tools are: TGV
(www-verimag.imag.fr/~async/TGV), AGEDIS [89] (www.agedis.de), Autofocus
(autofocus.informatik.tu-muenchen.de), QuickCheck [46]
(www.md.chalmers.se/~rjmh/QuickCheck), and Spec Explorer
(research.microsoft.com/SpecExplorer). The literature, however, is scarce in
model-based testing tools that test software applications through their GUI
[18,125,147]. Unfortunately, only one of them is freely available. Nevertheless,

��������	��

��
�

������������������

���
�������
����	�
���

���
����
�� ���
�������
�����
���

���	��
��������
����������	��	
�

����

Chapter II

44

the characteristics of these tools are described next and their main pros and cons
are pointed out.

Visual Test Development Environment

The work of Ostrand [147] combines capture/replay tools with model-based
testing concepts. The capture functionality is used to construct a preliminary
model of the GUI under test, which is converted automatically into a visual
notation model for generalization. This generalization is obtained based on two
main concepts: path variations and data variations. The former is used to model
alternative sequences of actions and iterations. The latter replaces fixed values
with variables that can take different values within a defined domain. The test
scenarios constructed using these concepts may represent several test scripts. An
independent test generation engine builds the set of test scripts represented by
scenarios and translates them into the scripting language used by the
capture/replay component of the test environment for being replayed and tested
over the GUI under test.

Figure 13: Visual test development environment (taken from [147])

Although this test development environment (Figure 13) overcomes some of the
capture/replay problems, it does not generate test cases automatically. This is still
done manually. The only help is the capture feature that enables the construction
of a preliminary test case.

IDATG – I ntegrating Design and Automated Test Case Generation

IDATG is an integrated design and automated test case generation environment
[18]. Test cases are generated from a model with three levels of abstraction: a
requirements specification, a task flow model, and a low-level specification. The
requirements specification is described in plain text. Then a task model is drawn
as a task flow graph which describes typical usage scenarios. The third level

GUI development and testing

45

captures information about the real GUI objects and details about each task step
like the expected result. Each task step is mapped to a real GUI object with a point
and click.

This system does not require a complete specification of the application to
generate test cases. They can be generated from part of the model covering all
edges in the task flow graphs and can be regenerated when the specification
changes. The test cases generated are stored in XML format and are displayed as
flow diagrams which can be edited graphically. The XML files can be converted
into other formats, like, for instance, WinRunner scripts, for replay.

The task flow graph can be structured into a hierarchy. Sub tasks can be reused
which reduces the effort for test maintenance.

Figure 14: IDATG test process (taken from
www.qualityscope.com/28.html)

The advantage of this tool (Figure 14), when compared with the previous one, is
the support for test case generation. Even so, this environment does not include
features for test case execution, which requires a change of environment for that
purpose, for instance, using WinRunner. It is also not clear whether the tool
integrates test input data or whether it leaves that for the test running tool used
[23].

GUITAR – A GUI Testing framework

GUITAR (Figure 15) is another example of a GUI model-based testing tool. The
GUI model from which test cases are generated is an event-flow graph and an
integration tree [129]. The first one captures the flow of events within a
component. It represents all possible interactions among events in a GUI
component. The second identifies interactions between components.

Chapter II

46

Figure 15: GUITAR process (taken from
www.cs.umd.edu/~atif/GUITARWeb/guitar_process.htm)

The event-flow graph for a GUI component has a set of vertices, V, and a set of
directed edges between vertices. An edge from v1 to v2 means that the event v2
may occur immediately after v1. This usually gives rise to a strongly connected
graph as illustrated in Figure 16.

Figure 16: Event-Flow Graph for WordPad --> Connect to Printer (taken
from www.cs.umd.edu/~atif/GUITARWeb)

The integration tree describes how GUI components are put together to form a
complete GUI. The model has a set of components represented as nodes and a set
of directed edges. An edge from c1 to c2 means the c1 invokes c2 (Figure 17).

GUI development and testing

47

Figure 17: Integration Tree for WordPad (taken from
www.cs.umd.edu/~atif/GUITARWeb)

Memon [129] defines intra- and inter-component coverage criteria based on these
two models and planning techniques from Artificial Intelligence to automatically
generate GUI test cases. He also proposes a solution for regression testing. The
original GUI test suite is partitioned into valid and invalid test cases. Invalid test
cases are repaired for reuse.

Memon claims that constructing a GUI model that can be used for test case
generation is difficult, so he develops an approach to reverse engineer a model
directly from an executable GUI [124]. This model represents the GUI's structure
as a GUI forest, and its execution behaviour as event-flow graph, and an
integration tree. The GUI ripping process opens automatically all the windows of
the GUI under test and extracts their widgets, properties, and values.

A problem may occur with the GUI ripping process when a subset of the
application functionality is protected by a key. In this case, the tool cannot guess
the key and consequently cannot construct the model for the protected part of the
GUI application. One solution to this problem could be to mix exploration with
interaction. In this case, the tester could manually drive the application until some
particularly state and automatically explore the application thereupon. However,
this feature is not supported by the tool.

Moreover, to reverse engineer a model from an untested GUI and then use that
model to test the same GUI seems useless. The model will describe the behaviour
of the GUI as it is, so it will also incorporate GUI errors! In his academic
experiences, Memon uses this ripping process on a correct GUI and then tests an
incorrect GUI based on the model extracted from the first one.

Chapter II

48

Nevertheless, GUI ripping can be useful. It can be used to extract a preliminary
model of the structure of the GUI and part of its behaviour and then complete it
manually with more behaviour and details. Also, some errors can be detected if
the algorithm used to construct the test cases from the model uses a traversal
algorithm different from the one used by the exploration. This process drives the
application through non-explored paths, which can find errors.

A problem with Memon's approach is lack of explanation about the structure and
the meaning of the models extracted by the ripping tool. So, it is complicated to
refine them. In [127], a model constructed by operators with pre-conditions and
effects is mentioned, but it seems there is no relation between these models and
the one extracted by the ripping tool. In particular, it is not clear how the models
automatically constructed deal with message boxes, neither how to know which
menu option opens a dialog, nor how to describe that an interactive control can
enable another.

In summary, the current versions of the tool developed by Memon seam not yet
sufficiently mature for being used outside academic environments.

2.6. Conclusions

Tools used in industry to build GUIs lack support for modelling, verification, and
maintenance phases of the GUI development process.

Model-based tools cut across the GUI development process phases but they are
still uncommon in industrial environments. In addition, the first generation of
model-based tools focused on GUI automatic generation but was limited as far as
the type of GUI they were able to generate is concerned. Some tools of the second
generation were able to evaluate the quality of the models and supported user
centred design. Even so, they impose a complete divorce with the current practices
for GUI development. Developers have to learn new modelling languages and
new practices, which explains why these tools haven't gained adepts in industrial
environments.

GUI testing can be performed manually or with the help of tools. Manual tests are
good for exploratory or initial tests, and for those tests performed by the end user.
They can find more bugs per test cases executed when performed by experts. Bugs
found can provide hints to find other bugs. Manual tests are particularly well
suited for usability tests performed by real users. One of the problems with some
approaches for manual testing is their lack in systematization. This problem can be
reduced by using checklists of standard tests and application of specific tests.
Even so, manual tests require too much effort while providing weak coverage
criteria. Test cases are difficult to reproduce and the success of test case execution
(number of errors found) is very dependent on the capabilities of the tester. In
addition, experienced test specialists are hard to find.

GUI development and testing

49

Automated testing is faster than the manual one. The increase of execution speed
makes it possible to run more tests in less time, more often, and covering more
functionality. One example is the testing of a strange sequence of events where
bugs can be found and that are usually not covered by manual tests. In addition,
automated tests may be reused and repeated every time a bug is found. Although
automated tests are more efficient in terms of time needed and better use of
resources, they may be a source of false sense of security. It is known that
"program testing can be used to show the presence of bugs, but never to show
their absence" [56].

Testing approaches can vary with respect to their support for the testing phases.
Some of them do not provide automatic support for any of the testing phases and
others provide automatic support for every test phase. This is the case of some
random testing tools. In between, one finds several degrees of automation: tools
that only provide support for test execution (unit testing frameworks); tools that
also assist the construction of test cases (capture/replay tools); and tools that
provide automatic support for test case generation and execution (model-based
testing tools).

Unit testing frameworks only provide support for executing the test cases which
must be programmed manually by the testers. In the case of GUI testing, a manual
test case construction can leave several parts of the application untested.

Capture/replay tools also do not provide support for designing test cases but they
provide a capture functionality that allows the construction of the test cases by
interacting with the GUI under test (assisted test case construction). The user
actions are saved in a test script that can be made more generic by programming
and replayed later. Whenever the tester makes a mistake or the software
application gives an error, the test case must be redone from beginning.
Maintenance of test cases remains a huge problem. This leads to a main criticism
to these tools, which points out that they can only be used when the software
application is working correctly. So, what is it being tested for? For GUI testing,
Capture/replay tools are not sufficient.

Model-based testing tools lead to a higher degree of automation. In addition to the
automatically generation of test cases, these tools also provide support for
automatically executing those tests. This requires a model of the application under
test. More time is spent with this activity when compared with the other
automated approaches but no time is spent on the generation of test cases since
they are calculated automatically. Some of these tools reduce the time spent in
constructing the model by reverse engineering existing applications. One of the
problems of these tools is test case explosion. Test case generation has to be
controlled appropriately to generate test cases of manageable size.

Random-input tools can vary from those that do not require a model of the GUI to
those that require a state table to generate test cases. The first kind of tools is the
one that requires the less effort for testing GUIs. However, these tools cannot
identify a bug so they are only adapted to find bugs that make the system to crash.

Chapter II

50

Although current testing approaches are still not satisfactory, they have points in
favour which deserve to be noted:

− Separation of logical names from physical properties of GUI objects
can be found in some capture/replay tools but could also be used in
other approaches. This is a positive aspect since both levels, logical
and physical, remain independent which makes it possible to change
one of the levels without changing the other.

− GUI test libraries can reduce the time spent in programming the test
cases manually like what is done with unit testing frameworks. They
can also be reused by model-based testing tools.

− Recording techniques are available in capture/replay tools. This
capability could also be useful to tell how high-level user actions
described in a model are mapped to concrete actions in the
application.

− Manual tests can be combined with automatic tests to drive the
application to a specific state from which other kinds of tests could be
run. This could be useful in regression testing when some
functionality remains unchanged while others are modified.

As will be seen in the remainder of this dissertation, some of these points in
favour will be taken into account by the testing approach proposed in this
dissertation, while others will be left for future work.

51

Chapter III

Specification-based GUI Testing

This chapter starts by presenting the main challenges of
Graphical User Interface (GUI) testing either when compared to
Application Programming Interface (API) testing or when one
wishes to automate the test process. Then it presents a survey on
the work related with GUI specification-based testing. It starts by
describing different ways of modelling GUIs using different
kinds of formal specification languages and then presents
different techniques used to generate test cases from different
formal specifications. At the end, different strategies of
performing automatically verification of the test results
(conformity check) influenced by the kind or style of the
specification used are presented.

The goal of specification-based testing is to check dynamically if an
implementation of a software system conforms to the specification (or model) of
that system. The specification captures the requirements and the conformity tests
check if those requirements are fulfilled by the implementation. Given an
executable implementation and a specification of a software system, the generic
activities involved in specification-based testing are test case generation (from the
specification), test case execution, and comparison of the actual results obtained
from the implementation with the expected results derived from the specification
(which plays the role of a test oracle). Test inputs and expected results are
generated from the specification.

Formal specifications (or models), in particular the executable ones, can be used
to automate the testing of software applications. In fact, an executable formal

Chapter III

52

specification can be used both as a test oracle and as a basis for the automatic
generation of test cases.

Although it is possible to achieve high levels of automation with
specification-based testing, it may be difficult to automate the entire process. In
particular, the specification of the system under test is most of the times
constructed manually. However, there are techniques to reverse engineer legacy
systems constructing a preliminary model in which details can be added to
perform specification-based testing. These techniques reduce the effort required
for constructing the specification of system under test.

The same applies to Graphical User Interface specification-based testing, but in
this case, the techniques should be specialized to deal with its particular
characteristics.

3.1. GUI test automation challenges

With GUI test automation it is possible to run more tests, more often, and explore
uncommon sequences of events where sometimes errors can be found and that
would be difficult to cover with manual tests. However, testing of graphical user
interfaces poses well-known challenges either when compared to API testing or
when one wishes to automate the test process.

Time

− GUIs respond slower than APIs. They have a time overhead due to the
rendering of the output to the user.

Test case explosion

− "Many ways in": GUIs may provide multiple ways to achieve the same
goal – e.g., mouse, keyboard, and different navigation paths to reach
the same state. Sometimes errors can only be detected in uncommon
sequences of events that are usually not covered by manual tests.

− GUIs are very different from command-based interfaces. GUIs neither
impose a particular order for performing the available tasks, nor a
fixed order for providing the inputs. The number of different
permutations of inputs and events increase the input space size and
makes even worse the state explosion problem and consequently the
test case explosion problem.

Controllability

− Controlling GUI actions can be difficult and involve several small
steps, for instance, drag and drop is split into three steps: press the

Specification-based GUI Testing

53

mouse button in the origin point; drag the mouse to the destination
point; release the mouse button.

− In automated testing, find the proper way to simulate the inputs from
the user (mouse, keyboard and other higher-level events that are
generated by the user) may be difficult.

Observability

− How to check the outputs to the user without excessive sensitivity to
formatting and rendering details? Sometimes, to observe GUI visible
state, image processing techniques like character recognition may be
needed.

− Observe GUI state may be tricky or almost impossible. For instance, to
observe a huge text through a small window a scroll bar is needed. If
there is no scroll bar it may be impossible to observe the entire text.

Testing techniques

− "Many ways out": Graphical characteristics make it more difficult to
determine the expected results of an operation (colours, fonts size, ...)
[115].

− GUIs have unique properties and errors that may require different
testing techniques to find all of them – e.g., display properties,
navigation properties, and usability properties.

Documentation

− The lack of appropriate documentation makes more difficult the
construction of GUI models as a basis for test automation. GUIs are
constructed by reusing interactive components. The documentation
supplied with those interactive components is usually scarce and not
rigorous enough for more advanced uses, such as advanced
customization and thorough testing. This usually leads to a
"trial-and-error" style of application programming and poor
application quality, and also complicates the design of test cases. For
example, from the documentation, it is difficult to know precisely:

o when are events signalled and by what order;

o what is the internal state of a component when it signals
an event;

o what is safe for an event handler to do;

o what interactions exist among events.

Some of the issues and challenges described in this section will be addressed by
our testing approach and discussed in the next sections.

This chapter will describe different approaches to specify formally GUIs, then
how to generate test cases from those models, and at the end different ways of

Chapter III

54

checking conformity automatically between a specification and an
implementation.

3.2. Formal GUI Specification

Formal methods are becoming more accepted in the development of software
systems but their applicability to the specification of user interfaces is not so
common. The user interface model is most of the times given as a prototype or
through other non-formal techniques. This can give rise to ambiguities and
misunderstandings that can lead to different interpretations among the
stakeholders and to the construction of a final useless UI. A formal specification
can help finding inconsistencies and problems before the implementation begins
which can result in time and resources savings.

Over the years, a number of formal models have been used for specifying user
interfaces. The kind of specification used depends on the characteristics of the
target user interface and the characteristics considered relevant from the modeller
perspective. Also, the set of tools available to support the formal method can be a
relevant point for the decision. Like other systems, user interfaces can be
sequential or concurrent, synchronous or asynchronous, and timed, timeless or real
time (see section 2.1).

The command-based interfaces were the subject of the first attempts to apply
formal methods to user interfaces development. The synchronous and sequential
characteristics of these interfaces allow the application of formal languages like
context-free grammars and state transition diagrams. The specification of these
interfaces can be constructed as an enumeration of the available commands and
the definition of its syntax.

GUIs are very different from command-based interfaces. They present a much
more complex structure and more complex event-driven behaviour.

We will go through each formal method describing, based on the literature, how it
can be used to specify user interfaces and more concretely GUIs, and which
techniques are available to generate test cases automatically from the
specification. At the end, different ways of checking the conformity between the
specification and the implementation are presented.

3.2.1. Grammars

A formal grammar can define precisely a formal language by a set of rules which
can be used to generate all possible strings in the language by rewriting steps from
a starting symbol (generative grammar), or to analyse if an input string is a
member of the language (analytic grammar).

Specification-based GUI Testing

55

A generative grammar can be defined formally by a quad-tuple (N, Σ, P, S),
where,

− N is a finite set of non-terminals;

− Σ is a finite set of terminal symbols, disjoint from N;

− P is a finite set of production rules;

− S is the start symbol (a non-terminal from N).

Generically, a production rule is of the form v → w, where v and w are strings of
terminals and non-terminals, formally v, w ∈ (Σ ∪ N)*. Non-terminals are
symbols representing language constructs. When the left-hand side of all
production rules of a grammar is a string formed only by a single non-terminal
symbol, that grammar is called Context-Free Grammar (CFG).

Backus-Naur Form (BNF) is an example of a notation used to describe
Context-Free Grammars. Each rule is composed of a more abstract non-terminal at
the left-hand side that is defined (:=) as a more specific term at the right-hand side.
Alternatives, succession and options are indicated by an "or" (|), an "and" (+), and
enclosed brackets ([...]) respectively. Several of the grammars that will be
described next are based on the BNF notation.

UI modelling with grammars

Context-Free Grammars were fairly common for command-based interfaces. They
specify textual commands or expressions that a program would understand. The
terminals in the grammar are input tokens generated by the presentation
component. These tokens represent the user's actions. The terminals are combined
by the productions in the grammar to form higher level structures called
non-terminals. The collection of productions in a grammar defines the language
employed by the user in his interaction with the computer.

GUIs present a more complex structure than command-based interfaces. Even so,
grammars can also be used to specify form-based interfaces where typically there
are several possible tasks available for the user at each time. To take that fact into
account, grammars can define different productions rules with alternative
sequences of the same symbols at the right-hand side. Another possibility is to use
A|B notation at the right side of the production rule to indicate that the input order
of A and B is irrelevant.

Hanau et al., in [86], use BNF to describe the dialog control of an interactive
picture drawing system. They also developed a set of prototyping and simulating
tools that are capable of generating snapshots of the system display for different
selected stages of the user/system dialog.

The Reisner's Action Language, presented in [165], extends Bachus-Naur Form
(BNF) to include cognitive actions, written in angle brackets (< >), and physical
observable actions, written in capital characters. Every action is associated with a
grammar rule. Whenever the rule applies to the input language stream (received so
far) the associated action occurs.

Chapter III

56

Shneiderman's multiparty grammars are another example of grammar-based
specifications (referred in [43]). They are an extension of the Reisner's Action
Language (the "psychological" BNF). The evolution is to add expressiveness for
representing the interaction decomposition regarding both elements involved in
human-computer interaction. They divide non-terminals into user-input, computer,
and mixed. Multiparty grammars allow direct association of interface feedback to
user inputs but they are not well adapted to model the variety of user actions found
in a direct manipulation interface.

Task-Action Grammar's (TAG) [78] goal is to describe the system tasks in the
closest way possible to the meaning they may have for the user so he can learn
easily how to use the system. TAG is a feature grammar. It does consider neither
the screen, nor the meaning of the features. The tasks are described by their
structure, which was not possible in the original versions of BNF. For example, to
represent character movements of a cursor, BNF representations would need four
rules (up, down, left, and right) whereas TAG would need only one by setting the
value of the parameter accordingly:

Move_Cursor[Direction] ::= Cursor_Key[Direction]

TAG specifications can be used as input to measure the consistency of the user
interfaces. The description of the task structures allow the measurement of the
degree to which the methods used to achieve goals share the same structure, and is
one of the factors that influence the learnability of the system.

Scott and Yap, in [169], extend Context-Free Grammars with two concepts to deal
with multi-threaded dialogs: fork productions and context attributes. The former is
used to cope with concurrency and interleaved conversations. It is implemented by
two new operators between productions: "parallel and" (&& – used when the
order of input is not important), and "parallel or" (|| – used when the production is
complete when one of the sub-productions succeeds). The latter is used to cope
with multi-window application. Two attributes are added to all tokens: value is
used for the type of the token; and context is used to distinguish inputs of the same
type but from a different source i.e., originated by a different window.

Iizuka et al., in [98], use Constraint Multiset Grammars (CMG) with actions to
describe a simple drawing editor. Chok and Marriott, in [44], use CMG
description for automatic construction of user interfaces. Another example of
automatic generation of a user interface from a grammar notation can be found in
[146]. In this case, Olsen and Dempsey describe a system called SYNGRAPH
(SYNtax directed GRAPHics) that uses an extended version of BNF to generate
automatically GUIs.

More recently, Campi developed the VEG (Visual Event Grammar) notation and a
tool for supporting the formal specification, verification, design and
implementation of graphical user interfaces [40]. The VEG specification abstracts
away presentation aspects of the GUI. It is only concerned with the description of
the dialog control of the GUIs by means of modular, communicating grammars

Specification-based GUI Testing

57

with a visual notation supported by a visual editor called Dialog Control Editor
(DCE).

UI analysis with grammars

Grammars provide a way to describe formally the aspects of a system in a level of
abstraction in which it is possible to reason about general properties without
concerns about implementation particular details. The formal description of the
system can be verified for completeness and consistency. Also, grammar-based
specifications of user interactions were commonly used for usability evaluation
[83] based on cognitive and psychological theories: task environment analysis;
analysis of user knowledge; user performance prediction; representation for
design.

Task environment analysis models the tasks in the real world environment and
the related task provided by a computer system. The complexity of the rules
mapping the two environments determines the difficulty of transferring knowledge
between them or the knowledge necessary for task reformulation, e.g., External
Task – Internal Task mapping (ETIT) [138].

Analysis of user knowledge aims to give an indication of how much the user has
to learn in order to perform his tasks through actions required to operate a new
system. The complexity of the formal rules describing the interaction language
between man and computer (or tasks and actions) is used as such indicator. The
complexity is measured by counting the number of rules, the depth of the
derivation of rules and the number of exceptional rules [85]. Reisner's Action
Language, Shneiderman's multiparty grammars, and Task-Action grammar (TAG)
are examples of specifications that can be used for that purpose.

In [95], Howes et al. show how consistency evaluators, written in Prolog, can be
used to predict the learnability of a system described by a TAG specification and
Brown, in [32], presents a method to identify learnability problems based on a
TAG specification of an interface.

User performance prediction models aim to predict user performance aspects at
an earlier stage in the development process. Examples are GOMS (Goals,
Operators, Methods and Selection Rules) firstly developed by Card, Moran and
Newell, and CCT (Cognitive Complexity Theory).

A GOMS model contains goals and sub-goals, methods and operators, and
selection rules. To achieve one goal, the corresponding sub-goals must be carried
out. Operators or actions are structured into sequences, named methods, which
accomplish a goal. There can be more than one method for each goal. Selection
rules are used to select one of those methods. For example, to delete more than
eight characters two methods are possible [102]: firstly select those characters and
then delete them (mark-and-delete method); or delete one character at each time
(delete-characters method).

GOMS techniques are used to predict the execution time needed to achieve one
goal, the sequence of operators or actions to achieve that goal, and the time

Chapter III

58

needed to learn the methods. There are different kinds of GOMS models for user
performance prediction [102]: Keystroke-Level model (KLM), Card, Moran, &
Newell GOMS (CMN-GOMS), Natural GOMS language (NGOMSL),
Cognitive-Perceptual-Motor GOMS (CPM-GOMS).

Cognitive Complexity Theory (CCT) models the complexity of the system from
the user perspective to predict the usability of that system. It uses two different
models: one to describe how the user understands one task, and the other to
describe the system task from a technical point of view. The relation between both
can be used for many purposes such as modelling errors [78].

The models used in "representation for design" describe the knowledge a user
must have about it in order to be able to perform tasks. Examples of these models
are ETAG (Extended Task Action Grammar) [84], and CLG (Command Language
Grammar) [138].

Disadvantages

Grammar based techniques are difficult to use for describing more modern
windowed and mouse driven interfaces, like direct manipulation interfaces, where
rigid sequences of required actions are almost always undesirable.

Grammars do not scale well, are not good at representing concurrency, and do not
support an explicit representation of state. In addition, grammars are difficult to
write and read.

Another problem with grammars is that the order in which production rules are
used depends on the kind of algorithm used by the parser. In the case of a
bottom-up parse, a production is used when all symbols on its right-hand side
have been recognized. In the case of a top-down parse, a production is used when
the first terminal that could be generated by the right-hand side is encountered.

That's why the use of grammars to model user interfaces tends to be rather scarce
recently.

3.2.2. Finite state machines

Finite State Machines (FSMs) (or Finite State Automata) are very widely used in
modelling system behaviour. The model is composed of states, actions and
transitions and can be represented using a state diagram. There are different kinds
of state machines: Deterministic Finite State Automaton (DFA), where for each
pair of state and input symbol there is a deterministic next state, and
Nondeterministic Finite State Automaton (NFA), where there may be several
possible next states for each pair of state and input symbol. In addition, FSMs can
have outputs determined only by the current state, in which case they are called
Moore machine, or they can have outputs determined by the current state and the
inputs, in which case they are called Mealy machines.

Specification-based GUI Testing

59

UI modelling with state machines

State machines are well suited to model reactive systems. GUIs are reactive
systems in the sense that they respond/react to user actions. Finite State Machines
can be used to model interactive systems. Typically, when an interactive system is
modelled by a deterministic Mealy Finite State Machine, it is expressed by a
sextuple <S, X, Y, � , � , s0>, where

− S is a finite set of possible states;

− X is a finite set of inputs;

− Y is a finite set of outputs;

− � is the state transition function S × X→ S;

− � is the output function S × X→ Y; and

− s0 ∈ S is the initial state.

Each transition is triggered by a user input. In response to the user input, the
system performs an action that can change the state and produces outputs to the
user.

Parnas was the first using State Transition Diagrams to specify user interfaces
[153].

One of the problems about modelling interactive systems with state machines is
the state explosion problem. This is due to the huge number of possible user
actions and input values. There are several extensions to finite state machines in
order to deal with that problem. In general, these approaches allow simplifying the
trasition state diagram and focus the attention on more relevant aspects of the
state. One of those examples is the Variable Finite State Machine (VFSM) [170].
VFSMs are FSMs with an added condition associated to each transition. The
transition can be expressed by:

name <state> <input> <next state> <output>

VFSM allows modelling systems with fewer states than an equivalent FSM.
VFSM augments FSM with global variables which can assume a finite number of
values. These global state variables are used to build Boolean expressions that are
associated with transitions:

@req <variable> <value_required>

This expression or pre-condition determines when the related transition can occur
and is written as a prefix of the transition name. Transitions can have also
associated post-conditions to update the value of the global variables:

@set <variable> <new_value>

Chapter III

60

In [170], it is possible to find an example of a user interface modelled with a
VFSM and modelled with a correspondent FSM. The former model has 20 states
while the latter requires 580 states to model the same interface.

Andrews, in [11], uses HFSMs (Hierarchical Finite State Machines) to model Web
applications and uses constraints to reduce the set of input values and to help
solving the state explosion problem.

Harel, in [87], describes the semantics of the Statechart formalism and how it can
be used to describe reactive systems like a Multi-Alarm watch. Statecharts extend
state-transition diagrams with hierarchy, concurrency and communication. These
extensions allow the description of complex behaviour in a compact manner at
different levels of abstraction which makes specifications manageable and
comprehensive.

Besides the approaches described above to reduce the state explosion problem,
there are also generic techniques for the same purpose. These techniques were
mentioned in section 2.5.2.

FSM and their variations are often used in specification-based testing as will be
described in section 3.3.5.

3.2.3. Model-based specifications

In model-based specifications, the state of a system is modelled explicitly by
mathematical constructions like sets, maps, functions, and relations. System
operations are specified by defining how they affect the state of the system.
Axiomatic set theory, lambda calculus, and first order predicate logic are the
standard mathematical notations used in this kind of specification languages.

Typically, model-based specification languages have states and operations that
change state. Invariants are Boolean expressions that restrict the set of valid states.
Operations can have pre- and post-conditions associated. Pre-conditions determine
the set of states where the operation can occur and post-conditions determine the
state reached after executing the operation (as well as the value returned by the
operation) or just restrict the set of states in which the system ends after executing
the operation.

There are different kinds and styles of model-based specifications. They can be
executable vs. non-executable, and explicit vs. implicit. An executable abstract
specification eases validation against informal customer requirements since tests
suggested by him can be quickly checked [68]. An implicit specification describes
functionality by means of operations/methods with pre- and (implicit)
post-conditions. An implicit post-condition allows checking the validity of the
result obtained from the specification method but does not allow calculating it. An
explicit specification describes functionality by means of explicit post-conditions
or algorithmic method bodies from which it is possible to calculate the result
expected.

Specification-based GUI Testing

61

The most widely used notations for developing model-based specifications are
VDM-SL (Vienna Development Method Specification Language) [66], Z [179],
and their object-orientation extensions VDM++ [67], and Object-Z [176]
respectively.

The VDM-SL language has its origins in the IBM Laboratory in Vienna. An ISO
Standard for the language was released in 1996 (ISO/IEC JTC1/SC22/WG19)
[158]. Z was developed by the Programming Research Group at Oxford
University in the late 1970s. The ISO completed a Z standardization effort in 2002
(ISO/IEC JTC1/SC22/WG19).

UI modelling with model-based specification languages

It is possible to find in the literature several examples of applying model-based
techniques to specify user interfaces. These specifications are not as abstract as
property-based specifications because the state is modelled explicitly.

Bowen, in [29], is one of the first to specify user interfaces in a model-based
formal notation. He provides an abstract model of a small part of the X windows
system with operations to create, destroy, and manipulate windows. Clement, in
[48], specify a window interface using VDM.

Abowd et al., in [1], present the PIE model (described in section 2.5.2) rendered in
the Z specification notation and then describes the model developed from it which
offers a bridge between the very abstract models, like the PIE model, and methods
such as formal grammars and state transition diagrams.

VDM and Z [59] have also been used to express the behaviour of interactors
(described in section 2.5.2).

Gieskens and Foley claim that attaching pre- and post-conditions to interface
objects can be useful because it provides a mechanism to selectively enable
controls, can be used for rapid prototyping, and can be used as a base to generate
automatically explanations and help text [75]. They describe an architecture
supporting pre- and post-conditions which can be integrated in different
environments.

Hussey et al. use Object-Z specifications for usability analysis of user interfaces
[97]. They model two different user interfaces, A and B, in Object-Z and then
analyse those specifications formally to access usability properties as task
efficiency, consistency, and flexibility, in order to select the best suited user
interface.

Model-based notations are good at representing the state but not so good at
representing behaviour. There are several examples in the literature that extend
model-based notations to overcome their limitations. Generally, they combine
behavioural notations, like CSP, with model-based notations. The former one is
used to describe the behaviour, and the latter to represent state. The inconvenient
of hybrid languages is the necessity to develop tools for supporting the

Chapter III

62

verification of the result obtained by the combination of the different languages.
These hybrid approaches will be subject of the section 3.2.6.

3.2.4. Property-based

With property-based specifications, systems are specified in terms of properties
that must be satisfied. It does not contain the model of the system like
model-based specifications do. Property-based systems can be classified into
axiomatic (where the operations on the system are defined by logical assertions)
or algebraic (where operations on the system are defined by collections of
equivalence relations).

An algebraic specification consists of a syntactic part, and a semantic part. The
syntactic part defines the syntax of the operations that is possible to perform on
the system. It is described by a signature

Σ = (S, C, F)

with a set of sort symbols, S, a set of constructor symbols, C, and a set of function
symbols, F. The semantic part characterises the behaviour of the system by
defining the semantic of its operations. This semantic is described by a set of
axioms, Ax, of the form t = r , where t and r are terms. Larch [82], and OBJ [76]
are examples of sequential algebraic specifications, while Lotos [27] is an
example of a concurrent one. Anna is an example of an axiomatic property based
methods (pavg.stanford.edu/previous_research/index.html#anna).

UI modelling with property-based notations

Cabrera et al., in [38], use GRAPLA which is an algebraic specification language,
to specify graphical user interfaces with windows, buttons, and menus. The
language is later enriched with such concepts as interactive objects, and user
actions [114].

Bernhard Bauer also uses an algebraic specification to model user interfaces [17].
He extends the notion of algebraic specifications distinguishing a subset of the
sorts S as observable sorts (obs-sorts) and a subset of the functions as interface
functions. The former set corresponds to conceptual objects which are observable
to the user. The latter set corresponds to the function symbols applicable to the
conceptual objects. The user interface algebraic specification is used to generate
the dynamic behaviour of the UI which in turn is the input for an existing UI
generator called BOSS (BedienOberflächenSpezifikationsSystem, the German
translation of "user interface specification system"). BOSS is a component of the
formal UI development environment, called FUSE (Formal User Interface
Specification Environment) [113]. This environment also gets a formal
specification of the user and tasks as input to generate the user interface.

Besides the mathematical properties of algebraic specifications and the implicit
definition of behaviour in the form of axioms without a commitment with a

Specification-based GUI Testing

63

particularly representation, the algebraic specification use is rather cumbersome.
In particularly, it is difficult to find a minimal set of axioms for a given
component and to evaluate when an algebraic specification is complete.

Algebraic specifications force a specific style of thinking that does not match well
with the imperative paradigm in which most programmers think and implement.

3.2.5. Behaviour-based

The main advantage of behaviour-based notations is that they allow applying
model checking techniques for verifying properties of user interfaces
automatically. This kind of specifications is well suited to model concurrent and
asynchronous systems. They specify software systems as possible sequences of
states. Examples of these notations are Petri nets, process algebras, and temporal
logic.

Petri nets

A Petri net consists of places (circles), transitions, and directed arcs (arrows)
(Figure 18). At each moment during its execution, places can hold zero or more
tokens (dots inside circles). A transition consumes tokens from the input states and
outputs tokens to output places. A transition occurs when its input places contain
the required number of tokens.

Figure 18: Petri net

Petri nets have a strong mathematical foundation on top of which several analysis
techniques have been developed to carry out general validations. The main
problem with Petri nets is that the "assembly line way of thinking" that
characterises Petri nets is not the normal way of thinking when dealing with user
interfaces. In addition, modelling complex systems using Petri nets can give rise
to models of unmanageable size.

Place

Transition

Token

Chapter III

64

UI modelling with Petri nets

There are variations of Petri net notations aiming to reduce the size of the models.
High level Petri nets like coloured Petri nets and annotated Petri nets are some of
those examples.

Keh and Lewis, in [109], use annotated Petri nets to model direct-manipulation
user interfaces. The annotations permit the specification of conditional flow and
execution order of concurrently activated objects and do not violate the underlying
Petri net theory. The model serves as the basis for the UIMS (User Interface
Management System) of OSU (Oregon Speedcode Universe) and can be translated
into the implementation language. The method described integrates the phases of
specification, simulation, verification, and rapid prototyping of the
direct-manipulation user interfaces.

Palanque, in [152], presents an object-oriented formalism specially designed for
the modelling of event-driven interfaces (Figure 19). This formalism, called
Interactive Cooperative Objects (ICO), is based on Petri nets. Each object is
composed of four components: data structure, operations, presentation, and
behaviour. ICO is used to describe the structural and static aspects of systems
while their dynamic or behavioural aspects are modelled by a high-level Petri net
with objects called Object Control Structure (ObCS). Transitions are labelled with
variable names that are bound to objects when the transition occurs. A transition
may occur when the input places are populated with required tokens (objects). At
that time, the related transition action is executed. Actions can generate new
objects, delete objects, and update objects. The modified and the new objects are
output to the output places. The places are typed, which means that the tokens
inside them should be of the same type.

Figure 19: ObCS notation (taken from [16])

cout << "Firing T1 with x == "<<
x <<" and y == "<< y << "\n;

x > y

P1 P2

<x> <y>

T1

Action

Pre-condition

Input places, each of
type <int>

Specification-based GUI Testing

65

Process algebras

Process algebras are an algebraic approach to describe the behaviour of concurrent
systems. The behaviour is described through processes defined in terms of
synchronous events and atomic communications between them and their
environment. The interaction is described through discrete points of connection
called channels. Parallel composition of two processes involves connecting their
interaction point by links, whenever they share the same name. Interaction
happens along linked channels by handshaking or synchronisation between a
sender and a receiver. The formal language also includes primitives for describing
sequential composition, nondeterministic choice, concealment, and recursion.
Examples of process algebras are Communicating Sequential Process (CSP) [94],
Algebra for Communicating Processes (ACP), and Calculus for Communicating
Systems (CCS).

UI modelling with process algebras

Process algebras are good for modelling behaviour but are not well adapted for
state modelling. This is the reason why process algebras are commonly used in
combination with model-based specification languages to model interactive
systems. Even so, it is possible to find at least two examples of a modelling
technique based on the process algebra CSP.

One of the examples uses CSP to model virtual environments that have concurrent
characteristics, for which process algebras are well adapted [168].

Abowd and Dix use extension of CSP, integrating status and event phenomena, in
formal specifications of interactive systems [2]. The goal is to construct a
specification language that supports input and output events and status
overcoming the limitations of the other specification languages that were object of
analysis in their work.

Temporal Logic

Modal logic is an extension of propositional logic with operators to express
different modes of truth. Temporal logic is a special kind of modal logic. It adds
operators to express time which allow expressions to get different Boolean values
over time:

− P or F P – Finally P, means that P will happen in the future;

− P or G P – Globally P, means that P is always true;

− P or X P – Next P, means that P will happen in the next time
instance;

− P U Q – P until Q, means that P happens until Q happens.

Chapter III

66

There are different kinds of time models: Linear Temporal Logic (LTL),
Computation Tree Logic (CTL), and Timed CTL (TCTL). In Linear Temporal
Logic, each time instance can have only one successor, while in Computation Tree
Logic each instance time can have more than one successor. In addition, CTL adds
two more operators to express properties about all possible successors (A -
Always), and to express properties about one path within all future possible paths
(E – Exists).

A specification in temporal logic can describe safety, liveness, and fairness
properties. Safety properties express the things that should not happen in the
system. Liveness properties describe things that should happen in the system.
Fairness properties are used to solve indeterminism.

UI modelling with temporal logic

Johnson and Harrison use temporal logic to specify interactive control systems
and as a means of analysing usability requirements [103]. They overcome the
previous weaknesses of the abstract specifications by capturing temporal
properties identified as crucial to the success or failure of interactive control
systems. They developed a tool called Prelog (Presentation and Rendering of
LOGic specifications) which combines a temporal logic interpreter with a
structured graphic system and high level device abstractions to support
prototyping of an executable subset of the formalism as a means of accessing the
qualitative "look and feel" of potential implementations.

Mezzanotte and Paternó, in [131], use Action Computation Tree Logic (ACTL),
which is a branching-time temporal logic, to express high level properties of user
interfaces like the possibility of performing a task at any state

AGEF <task_performance> true

and visibility

AG([user_actionx] EF<User interface appearance>true)

meaning that each user action will give feedback to the user by modifying the
presentation.

Butterworth and Cooke, in [37], use a notation based on Temporal Logic of
Actions (TLA) to model a window with a scroll bar. At each instant, there is a
relation, rep, between the position of the scroll bar button and the windowed data
shown to the user (section 2.5.2).

Although Temporal Logic allows reasoning about generic properties of interactive
systems and verifying properties automatically through model checking, it also
rises problems when someone wants to express more specific properties related to
particular aspects of some systems. Also, expressing properties in Temporal Logic
is not easy and programmers may resist doing so.

Specification-based GUI Testing

67

3.2.6. Hybrid approaches

The goal of hybrid languages is to combine characteristics of two or more
specification languages to construct a richer final language which combines the
better of the original ones. Like was already mentioned in previous sections, one
popular approach is to combine model-based specification languages with
behaviour-based.

MacColl and Carrington use a hybrid specification language constructed from
Object-Z and CSP to specify interactive systems [116].

Galloway and Stoddart present a new language called ZCCS constructed on top of
the Z and CCS specification languages [71].

Martins, in [120], presents a new formalism, called Interaction Scripts, to model
dialogue controllers. The formalism is compositional and powerful enough to
express both sequential and concurrent dialogs. Interaction Scripts and UI
presentational descriptions are the input language of a prototype system, called
GAMA-X [42], for the automatic generation of Assisted User Interfaces able to
communicate with the application prototype. Later, the developers of GAMA
studied the possibility of extending the system with UI adaptability characteristics.
The GAIA system was developed for that purpose [119].

There are three different types of interaction scripts: Decision (when a selection
among several options needs to be taken); Synth (to synthesize a command; these
scripts are used to update the state of the application); and ValSynth (scripts used
to call operations that query the state of the application). Other kinds of scripts do
not have an explicit type defined.

A script has a static block (GIDecls) to introduce all the identifiers used by the
script and a dynamic block (GIBehav) to describe the interactive behaviour
controlled by it according to the following syntax:

GIDecls:: [ValT: ValType]
 Symbol: SYM-set
 Type: GIType
 Args: IdVar -> IdType
 Var-UI: IdVar -> IdType
 Var-Apl: Ldecl: IdVar -> IdType
 Atribs: IdVar -> IdVar
 Extern: GIName-set
 SubGi: GIName-set

GIBehav:: Init: IdVar -> ExpValue
 Context: [BoolExp]
 EvSeq: ExprComp
 Trans: TrDescr
 Exec: [ExecDescr]

Interaction Scripts use CSP (or CCS) operators ("." – for sequence; "||" –
parallelism synchronous; "|" – parallelism asynchronous; "+" – alternative; "*" –
repetition) to model the order in which the arguments of an operation are read
(EvSeq clause within behaviour block).

Chapter III

68

The behaviour composition of different Scripts is described by Labelled Petri nets
with added expressive power:

− it is possible to associate a condition to a transition that determines
when the transition can occur;

− it is possible to interrupt the execution of a Petri net A so as to execute
completely another Petri net B at which time A execution can go on.

Although the most commonly examples are the ones that combine model-based
with behaviour-based specification languages, there are also examples that
combine other kinds of specification languages.

Bramwell combines behaviour-based with action systems. He uses CSP and an
action system [30].

The RAISE (Rigorous Approach to Industrial Software Engineering) uses the RSL
(RAISE Specification Language) which is another example of a hybrid
specification language (spd-web.terma.com/Projects/RAISE). It has characteristics
of the model-based languages, like VDM, algebraic methods, like ACT ONE and
OBJ, and process algebras, like CSP and CCS.

These new languages constructed from the combination of others have a rich
description power but require an additional effort to combine the semantic of the
sublanguages that were used to construct them.

Another drawback of these hybrid languages is that the new semantic may require
the development of new tools to support them.

3.3. Specification-based test case generation

Specification-based testing allows higher degrees of test automation. After
constructing the model, it can be used as input to a test case generator. The
technique used by the generator depends on the characteristics of the model. There
are several approaches to automate the generation of test cases from models.
However, there are some problems and challenges that cross all models: how to
determine when to stop the generation; and how to evaluate the quality of the test
suite generated. Coverage criteria can be used for both purposes. They can
determine when to stop the generation and can also be used to assess the quality of
the generated test suite. A good test suite should combine a good code coverage
with a good requirements (or specification) coverage.

When the source code of the software application is available, white-box testing
can be applied by analysing the source code and applying coverage criteria on the
implementation to measure the quality of tests. However, often source code is not
available, and black-box testing must be performed. In these cases, using
model-based testing allows to apply coverage metrics on the model as a quality
measurement. Although model-based testing can have many advantages like the
automatic generation of test cases, it also often suffers from the gap between the

Specification-based GUI Testing

69

modelling paradigm and the programming paradigm. In addition to absent source
code, often the access to the actual functionality of the software application is
barred by a GUI that represents the only interface to the software. Anyway, even
when GUI code is available, it may be interesting to test the system through the
same interface that is used by final users (as addition to the other test methods
used).

Besides the characteristics of the models, the test strategy used also influences the
test generation method used. The so called tests-to-pass are usually used as a first
iteration and check if the fundamental parts of the software work using valid input
values. Tests-to-fail are used in subsequent test iterations and try to break the
system using invalid inputs or valid inputs at the operational limits. Random
input generation algorithms and fault-based methods are examples of test-to-fail
methods. The random input generation goal is to drive the system to crash (see
section 2.5.3). Fault-based methods attempt to ensure that the software does not
contain certain types of faults (e.g., mutation testing).

3.3.1. Test data generation

An important issue related to the generation of test cases is the generation of test
data, that is to say, the input values of the test cases. The available methods for
this purpose can be implemented either statically or dynamically and classified as
random, goal-oriented (generate test data for an unspecific path), and
path-oriented (generate test data for a specific path) [62].

Random methods

Randomly test data generation is a relatively easy technique to implement but
results in weak coverage. It generates random values from the input domain of the
program.

Goal-oriented methods

Goal-oriented methods try to drive the system into a given goal by two different
methods [62]: the chaining approach and assertion-oriented approach. The first
one tries to find a path to the execution of a given goal node based on data
dependence analysis [65]. The second tries to find any path to an assertion that
does not hold.

Several goal-oriented methods use AI planning techniques. Mayhauser et al., in
[121], use an AI planner assisted approach to generate test cases based on high
level test objectives for testing a robot controlled tape silo. Memon et al., in [126],
also use AI planning techniques for generating automatically test cases for GUIs.

Chapter III

70

Path-oriented methods

Symbolic testing is an example of a path-oriented test data generation method. It
replaces program variables by symbols and calculates constraints that represent
possible symbolic execution paths. When a program variable is changed during
execution, the new value is expressed as a constraint over the symbolic variables.
A constraint solver system can be used to find, when possible, concrete values that
cause the execution of the path described by each constraint (Figure 20).

Figure 20: Symbolic execution tree example

Nikolai, in [185], describes a prototype tool for unit testing based on symbolic
execution and constraint solving. The tool can automatically find test cases that
cover all statements. Pretschner [159] translates an AUTOFOCUS specification
into Constraint Logic Programming and symbolically executes the resulting
system. Meudec, in [130], presents an automatic test data generator based on
constraint logic programming (CLP) and symbolic execution.

Other approaches combine symbolic execution with model-checking [12]. The
main idea is to use the model-checker to traverse the symbolic execution paths.
The test coverage criterion is encoded in the property the model checker should
check for.

3.3.2. Generation of expected test results

Test cases are sequences of methods with input parameters and results expected.
Formal specifications can be used to generate test data (input parameter values)
and also as a test oracle (to calculate the expected results). This is the main
advantage of specification-based testing when compared with techniques that

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x – y > 0)

 assert(false)
}

x = X, y= Y

X >? Y

[X<=Y] END [X>Y] x = X + Y

[X>Y] y = X+Y - Y = X

[X>Y] x = X+Y - X = Y

[X>Y] Y - X >? 0

[X>Y, Y - X<=0] END [X>Y, Y - X>0] END

Specification-based GUI Testing

71

generate test cases (sequence of methods and input parameters) from software
code but cannot calculate expected results.

However, there are different kinds of formal specifications (and different
specification styles) and it is not possible to calculate the expected results from all
of them.

Formal specification can be explicit or implicit. A specification is explicit if it has
the behaviour fully described allowing the exactly determination of the result
expected for each method call with input parameters as well as the next state. A
specification is implicit if it describes the behaviour of the system in a higher level
of abstraction, for example, as contracts with pre- and post-conditions (without
specifying the body of the methods), that allow checking if the results (and next
state) obtained from the implementation under test are valid but does not allow
calculating the expected results (and next state). For example:

Seq<int> Sort (Seq<int> arg)
ensures Forall {i,j in result.Indices, i<j;
 result[i]<=result[j]};
{}

The Sort method defined implicitly above does not describe how to sort a
sequence of integers. However, the post-condition (ensures clause) allows
checking if the sequence of integers provided as result is sorted, i.e., if it is a valid
result.

3.3.3. Coverage analysis

Coverage analysis aims to measure the extent to which a given verification
activity has achieved its objectives and can be used to evaluate the quality of the
test suite used and also determine when to stop the verification process. It is
usually expressed as a percentage referring to the accomplished part of an activity.

Coverage measures can be generally classified into requirements coverage and
structural software coverage. Requirements coverage analysis measures the extent
to which requirements have been verified while structural coverage analysis
measures the extent to which code structure has been executed [91].

Although in the literature coverage analysis is usually applied to code, it can also
be applied to the specification. For instance, requirements coverage of the
specification can be used to verify if higher level requirements are met in the
specification, and structural coverage on the specification can be used as a quality
evaluation of the test suit and as a stop criterion.

Requirements coverage

Requirements coverage analysis precedes structural analysis and is less systematic
because it usually does not contain a complete specification of the behaviour of
the system. One example could be a coverage criterion measuring the degree in

Chapter III

72

which use cases or scenarios were verified. Scenarios describe how the system and
the user should interact to achieve a specific goal. They usually refer to common
usages of the system and may not be a full description of the behaviour of the
system. Scenarios are not designed to cover the entire program so, scenarios
coverage is not a sufficient test coverage criterion [106].

Structural coverage

Structural coverage analysis is used to measure the degree to which code (or
specification) has been exercised. There are different types of structural coverage
criteria [91]:

− Statement coverage – every executable statement in the program is
invoked at least once during testing;

− Decision coverage – requires testing the expressions' outcome for true
and false evaluation. For instance, the Boolean expression (A or B)
must be tested for true, e.g., TF, and for false, e.g., FF. But, this
criterion does not guarantee testing the effect of all clauses within an
expression, e.g., the effect of B is not tested, it is always False.

− Condition coverage – requires that each condition within an
expression takes all possible outcomes, overcoming the problem of the
previous criterion. But, it drops the requirement that each expression
takes all possible outcomes. So, to test (A or B) two tests, TF and FT,
are enough.

− Condition/decision coverage – combines requirements of the two
previous criteria. The tests should be constructed in a way that all
possible outcomes of both decisions and conditions must be tested. So,
to test (A or B) two test cases are needed: TT and FF.

− Modified condition / decision coverage (MC/DC) – increases the
condition/decision coverage with an additional requirement that is to
show that each condition affects independently the outcome of the
decision. A condition is shown to independently affect a decision's
outcome by varying just that condition while holding fixed all other
possible conditions. Usually MC/DC requires n+1 test cases for a
decision with n inputs. To test (A or B) three test cases are needed:
TF, FT, and FF. This type of coverage criterion is considered
necessary for adequate testing of critical software.

− Multiple condition coverage – it requires that each possible
combination of inputs to a decision is executed at least once
(exhaustive testing). That is to say, 2n tests for a decision with n
inputs. This criterion is most of the times unpractical.

Although there are some general testing strategies (test case and test data
generation, and coverage analysis), there are also some testing techniques that are
closer to the characteristics of the specification from which test cases are
generated. We will go through each type of formal specification illustrating based

Specification-based GUI Testing

73

on the scientific literature the techniques available to generate test cases form
them.

3.3.4. Test generation from grammars

Grammars are often used for usability evaluation but they can also be used to
generate test cases by applying rewriting techniques. The idea is to apply rewriting
rules to generate valid sentences within the described language which can then be
used as a test case.

Sirer and Bershad, in [174], describe an experiment using production grammars
for generating test cases for testing the Java virtual machine. Production rules are
described in a domain specific language called lava.

3.3.5. Test generation from FSMs

Most of the test case generation techniques from FSMs are based on traversal
algorithms that calculate paths within the FSM to achieve a defined test coverage
criteria like transition coverage, transition-pair coverage, complete sequence, and
full predicate coverage (described by Offutt in [144]). The transition coverage
criterion is satisfied by a test case capable of testing every transition in the
state-based specification. The transition-pair coverage criterion is satisfied by a
test case that traverses all possible pairs of adjacent transitions. The goal of the
complete transition coverage criterion is to traverse paths that have some special
meaning to the tester based on his knowledge and experience. In the case of FSM
variants like VFSM (with guard conditions), the full predicate coverage criteria
ensures that every clause in a predicate are tested independently.

The size of the test suite is influenced by the coverage criterion used. In particular,
a test case that satisfies full predicate coverage criteria also satisfies transition
coverage criteria.

Model-checking

Model checking is a static analysis verification method performed on the
specification (see section 2.5.2). It is a technique for verifying properties
expressed in temporal logic, which is a kind of behaviour-based specification,
over a system described as a finite state machine and can also be used as a
technique to generate test cases. Whenever a property, expressed in temporal
logic, does not hold in a system described as a finite state machine,
model-checking tries to generate a counter-example. When a counter-example is
produced, it can be used as a test case. It is a sequence of transitions, or trace, in
the state machine with inputs and expected outputs. To be effective as a test-case
generation technique, the properties about the system should be described in such
a way that counter-examples produced by them can be used as test cases.

Chapter III

74

Model-checking and mutation testing

Model-checking in combination with mutation can be used as a fault-based testing
technique [10,24]. Mutation techniques introduce small changes (faults) by
applying mutation operators into the original specification. The changed
specifications are called mutants. The goal is to construct test cases that
distinguish each mutant from the original by producing different results. If that
happens, it is said that the test case has killed the mutant. A good test case should
be capable of killing the mutants because if it is able to detect the small
differences generated by the mutation operators it is expectable that it will be good
at finding real faults. One of the problems of mutation testing is the incapacity of
the technique to generate test data.

Black et al., in [24], use mutation analysis and model checking technique to
generate automatically tests from formal specifications. Okun et al., in [145],
describe two specification-based mutation testing methods that use a model
checker to guarantee propagation of faults to the visible outputs. Ammann, in
[10], is another example of applying model-checking and mutation techniques to
generate test cases (Figure 21).

Figure 21: Testing flow (taken from [10])

Mutation operators can be applied to the finite state machine or to the temporal
logic constraints. The former case is a failing test in the sense that a good
implementation should produce different result values from the corresponding
tests since the FSM is not a good description of the system anymore, it is mutated.
The latter case is a passing test because test cases are generated from a FSM that
models correctly the system so a good implementation should produce the same
results for the same inputs.

The main problem with FSMs is the state explosion problem. Most of the FSM
variations try to diminish that problem.

Specification-based GUI Testing

75

3.3.6. Test generation from model-based specifications

An approach to generate test cases from model-based specifications is called
equivalence class partitioning. Assuming that the program behaves analogously
for inputs in the same class, one test with a representative value from a class is
sufficient. A partition of some set, S, is a set of non-empty subsets SS1, ..., SSn,
such that each SSi and SSj are disjoint, and the union of all SSi's equals S. If a
defect is detected by one member of a class, it is expected that the same defect
would be detected by any other element of the same class. So, the test cases can be
significantly reduced depending on the granularity of the classes considered.
There are different techniques to split the input domain into classes. Dick and
Faivre, in [55], developed one technique to partition the domain by rewriting the
pre- and post-conditions of the specification into disjunctive normal form (DNF).
Each disjunction is used as an equivalence class. Hierons, in [93], presents an
algorithm that starts by rewriting the specification into the form ∨i (Pi ∧ Qi), in
which Pi represents a pre-condition and Qi represents a post-condition, to divide
the input domain into classes.

The problem that comes after the domain has been partitioned into different
classes is to generate input values for each different class. Instead of selecting
arbitrary/random values within a class, boundary value analysis tests boundary
conditions of equivalence classes choosing input boundary values. This technique
is based on the knowledge that input values at the boundaries or just beyond the
boundaries of the input domain tend to cause errors in the system.

A variation of equivalence class partitioning is type-based selection [189]. In this
case, the type of each input variable is used as suggestion of equivalence classes.
For example, for an input variable of the type set, the specification should be
tested with the empty set, one set with a single element, and a set with more than
one element. After having a partitioning of the domain, one test case for each class
should be constructed.

Aichernig [5] uses fault injection on the modelling level to generate test cases and
to validate executable models. The test case generation algorithm gets a
specification with pre and post-conditions D(Pre

�
Post) and its faulty design

D' (Pre'
�

Post') as inputs.

In other approaches, the user defines manually the input values and then test cases
are generated based on those defined domains.

Additional care must be taken so as to check if the input parameters calculated do
not forbid calling all the methods specified. This can happen when the input
parameters do not generate states where a pre-condition of one of the methods gets
the true value.

After defining (or generating) the input domains, test case sequences may be
constructed by essentially two different methods. One of those methods is called
test "on-the-fly" that evaluates after each method call the set of available methods
(i.e., the pre-condition is true) and calls one of those methods (arbitrarily selected)
with appropriate input values [192]. The other method explores completely the

Chapter III

76

specification, i.e., after each method call, it calls all the available methods with all
possible input parameter values. This process constructs a FSM that can be saved
and used later to produce test sequences that fulfil defined coverage criteria. These
two methods are supported by the Spec Explorer tool [39] which is a model-based
testing tool built by Microsoft Research. Besides supporting test "on-the-fly", it
also provides a way to translate AsmL or Spec# specification into a FSM [79] that
is subsequently used as a base to generate test cases that fulfil defined coverage
criteria.

3.3.7. Test generation from property-based specifications

Property-based specifications describe systems by a set of properties or axioms
that they must satisfy. Rewriting and constraint solving are techniques used to
generate test cases from these specifications. Given a set of expressions (logical
assertions or equivalence relations) and the set of variables within those
expressions, constraint solving techniques try to find an instantiation of the
variables which reduce the expressions to true.

Gannon et al., in [73], describe a system, DAISTS, where test cases are written as
axioms that are used to exercise the implementation. The system uses the axioms
to write the test drivers. After providing the values for the required inputs, the test
process is automated.

Dan at al. [53] propose an approach to derive test cases from a RSL (RAISE
Specification Language) specification using a combination of partition analysis
(used by model-based languages) and rewriting (used by algebraic languages) test
case generation techniques. This is particularly well suited for a RSL specification
due to its hybrid characteristics that combine features of both model-based and
algebraic specification languages.

DeMillo, in [54], combines the mutation technique and algebraic constraints that
describe how to find particularly types of faults to generate test data automatically.

3.3.8. Test generation from behaviour-based specifications

There are different examples of behaviour-based specification languages.
Temporal logic is one of those examples and can be used by model checking
techniques for test case generation, as described in the above state-based section.

There are also approaches which analyse the execution traces to generate test
cases. A trace in CSP is a finite sequence of events. Another example of test case
generation from CSP specifications is illustrated in [31]. The goal is to test
Universal Mobile Telecommunications Systems (UMTS). They start by
constructing a transition graph with all possible interleaving and parallel tasks.
Then, a test driver computes all paths through this graph that are used as test
sequences.

Specification-based GUI Testing

77

3.3.9. Test case generation from GUI models

There are several examples in the literature of generating test cases from formal
specifications of GUIs. In particular, FSMs and their variations are frequently
used to model GUIs and to generate test cases.

FSMs

Shehady, in [170], uses Variable Finite State Machines (VFSM) to model GUIs
and to cope with FSM scaling problems (see section 3.2.2). The VFSM is
converted into a FSM to generate test cases using the partial W algorithm [70].
The test cases are applied to the GUI and the results obtained are compared with
the results expected. The comparison is performed at the end of the test case
execution so that, even if the inconsistencies are found at the beginning of the test
cases, the execution of an entire case is required.

Belli, in [19], presents an approach to model the legal and the illegal behaviour of
GUIs using FSA, Finite State Automata, and regular expressions. Belli starts by
identifying all legal sequences of user system interaction and then expands the
model with illegal behaviour. The final model is used to generate test cases that
can bring the system into legal states, producing the desired system response, or
into a faulty situation, producing an error message.

Andrews, in [11], uses hierarchies of FSMs to model Web applications and uses
constraints to reduce the set of input values and to help solving the state explosion
problem. The Web application is divided into clusters and each of those clusters is
described as a FSM. These clusters are structured into a hierarchy with different
levels of abstraction. The bottom level of clusters corresponds to software
modules and Web pages. The top level of abstraction is the application finite state
machine where detailed clusters are represented as a single node. In this level, arcs
represent possible transitions between lower level FSMs. They can be annotated
with input constraints and propagated information. Test cases are generated from
detailed FSMs by applying transition coverage criteria which are then substituted
into the aggregate sequences for the aggregate FSM (the upper level).

White and Husain [194] identify complete interaction sequences (CIS) of GUI
objects and selections needed for invoking responsibilities which are activities that
produce an observable effect. Each CIS is described as a FSM that is subject to
several transformations to deal with the state explosion problem. One of the
transformations is an abstraction technique based on strongly connected
components and the other is a merging technique of the CIS states that are
structurally symmetric. Each identified component is substituted by a super-state.
Test cases are generated from the reduced FSM by traversing all paths in the FSM.
Every time a super-state is found, the test path of the corresponding component is
inserted into the test at that point. Each test path of a component should be
included at least once in the overall test suite. One of the problems of this
approach is the difficulty to identify strongly connected components and structural
symmetry.

Chapter III

78

Planning

Memon uses a model with a hierarchical structure in his work [128] to model
GUIs and to guide the generation of test cases, but not to reduce the size of the test
suite. He defines a set of operators organized in hierarchies that correspond to user
actions. The operators at upper levels are constructed from simpler ones at lower
levels. These simpler operators correspond to user actions. Each operator has a
pre-condition that must be true before executing the operator, and an effect.
Memon uses planning from Artificial Intelligence to generate test cases. Given a
set of operators, an initial state, and a goal state, a planner produces a sequence of
operators that will change the initial state to the goal state. He generates test cases
from the upper hierarchical levels of abstraction and then nested invocations to the
planner during abstract operator decomposition. Alternative test cases can be
obtained by substituting the different test cases obtained for the lower levels into
the high-level plan.

3.4. Conformity Check

The purpose of specification-based testing is to verify if the implementation is
conforming to the specification. This activity of the specification-based testing
process can be performed manually, which involves too much work, or
automatically. Conceptually, to compare the expected value with the one obtained,
an abstraction function from the implementation to the specification level
comprising one or two maps need to be defined:

− A mapping (R) from the state variables of the implementation to the
state variables of the specification, which describes how the abstract
states of the specification are represented in the implementation [4].
One implementation is adequate if it can represent all the states that
could be represented by the abstract specification. Since the
implementation is more detailed, multiple concrete states (at the
implementation level) may correspond to the same abstract state (at
the specification level).

− A mapping (T) from operations at the implementation level to
operations at the specification level (including input and output
parameters), so related operations can be run on both levels and results
obtained compared.

With these two maps it is possible to run related operations, at the specification
and implementation levels, comparing the results and also the initial and final
states. However, the map between state variables (R) can be dispensable if
additional methods are defined to observe the state (or some part of the state). This
is the approach followed by the Spec Explorer tool [39] that provides observable
methods to read state without performing any updates.

Let's assume the following execution model (both at the specification and
implementation levels) [148] to describe conformity tests:

Specification-based GUI Testing

79

− The system behaviour is described by transitions between states caused
by operations executed in response to user actions or events.

− The operations' effect may be described as a function F from initial
state S1, and possible input arguments FArgs, to final state S2, and
possible outputs FOut (assuming deterministic behaviour).

− The outputs produced can be a message or sequence of messages sent
to the user.

− The system state may be or not observable by the user. A specification
can describe behaviour of the user interface, from the user perspective,
by making internal state observable (with observable state variables or
by providing methods to read the state) or by sending appropriate
output messages to the user.

Figure 22: Conformity tests model

Assume that we start at a concrete state CS1 when we apply concrete function CF.
In consequence, at the specification level, we start at SS1, that corresponds to CS1
(SS1=R(CS1)), over which it is applied the specification function SF (equivalent of
CF, i.e., SF=T(CF)).

Figure 22 summarizes the several elementary tests, I to VIII and I' to VIII', that
may be performed to check the conformity between the specification and the
implementation.

SFResA

CF CS1 CS2

SF SS1 SS2A

CFArgs CFRes

Inv Pre Post

SFArgs

SFRes

SS2

=?

R

T

R

R

R

Inv

Inv

Inv' Post' Pre'

=?

Post

I' II' III' VIII'

II I III

IV

V

VIII

VI

Implementation

Specification

Inv'

VII

Chapter III

80

The characteristics of the specification that serves as test oracle determine the
subset of elementary tests shown in Figure 22 to perform. With a contract-based
specification (followed, for instance, in [75]), with implicit operation definition in
the form of post-conditions (see section 3.3.2), there are two possible situations:

− The post-condition is verified on the specification level after mapping
the state obtained from the implementation level onto the specification
level (test IV). Additionally, initial state invariant (I), pre-condition
(II), and final state invariant (VI) may be tested.

− The specified post-condition goes through a code generation process
for being tested at the implementation level (test III'). This approach
can be found in [4]. It is supported by VDMTools. Additionally, initial
state invariant (I'), pre-condition (II'), and final state invariant (VIII'),
all at the implementation level, may be tested.

With an executable specification with explicit operation definitions (called model
programs in Spec# and algorithmic bodies in VDM++) it is possible to compare
outputs obtained from both levels (V). When the internal state of the specification
is visible, it is possible to perform additionally tests: initial invariant (I),
pre-condition (II), and final states (VII).

Another issue related to conformity check is the execution model. The related
operations of both levels can be run in a "lock-step" mode in which results are
compared after each step, or in a batch-oriented way, in which case the test suite is
run as a whole in the specification level, and expected results are kept in memory
for later comparison with the results obtained from the execution of the
implementation (which is performed in a different execution time instant). One
advantage of the batch-oriented way is the need to execute the model only once
and not every time test cases are executed. The main drawback is the additional
need of memory to keep the results expected.

In particularly, the so called "on-the fly testing" combines in a single algorithm
the test case generation and execution and executes each operation as a lock-step
in each level comparing results after each of those execution steps.

3.5. Conclusions

In this chapter it was described the specification-based testing process. In
particular, different ways of modelling GUIs, different techniques available to
generate test cases from different formal specifications, and different ways of
conformity evaluation regarding the characteristics of the formal specification
used.

Grammars were very common to specify command-based user interfaces but they
are so not well adapted to model direct-manipulation and concurrency of the
modern windowed and mouse driven interfaces.

Specification-based GUI Testing

81

A grammar-based specification does not represent state explicitly. The state is
represented by an expression built as a sequence of operations/actions. Without an
explicit representation of state, it is difficult to represent the state observed by the
user.

One of the problems about modelling interactive systems with state machines is
the state explosion problem. This problem can be even worse when modelling
GUIs and the techniques available to diminish this problem may not be sufficient.
Even so, state-based specifications are well adapted to model GUIs and there are
several techniques to generate test cases from these specifications. Since state is
explicit in these specifications, a map between states of both levels, specification
and implementation, can be easily established to perform conformity tests.

Model-based notations are good at representing state but not so good at
representing behaviour. In particular, some model-based notations do not have
support for events which can be a major drawback when modelling GUIs. Even
so, the fact of modelling state explicitly by mathematical constructions like sets,
maps, sequences, tuples, and so on, facilitates establishing a map between
specification and implementation states which may be helpful for performing
specification-based testing or conformity testing automatically. In addition,
model-based specification languages are closer to the imperative paradigm of the
programming languages commonly used by programmers. This characteristic
makes them one of the best positioned candidates for being accepted in industrial
environments.

Furthermore, there are several test case generation techniques on top of
model-based specification languages (see section 3.2.3) that makes possible to
implement algorithms to generate test cases automatically from them.

A model-based notation can be conceptually seen as a sequence of states, and
transitions between those states that correspond to the methods described in the
model and that are responsible to evaluate the system from state to state. There are
algorithms that convert model-based specification languages into state-based
specification language representation, like FSM, which makes possible to apply
techniques and traversal algorithms developed of top of these languages for test
case generation (see section 3.3.5) and also apply static verification techniques
like model-checking that prove properties expressed in temporal logic
automatically.

Property-based specification languages do not represent state explicitly. These
specifications are good for modelling behaviour but not so well adapted for state
modelling. That's why they are commonly used in combination with model-based
notations to model interactive systems.

Algebraic specifications force a specific style of thinking that does not match well
the imperative paradigm in which most programmers think and implement.

Properties about interactive systems expressed in temporal logic can be verified
automatically by using model-checking techniques. Even so, it is difficult to

Chapter III

82

express properties in temporal logic and to express more specific properties
related to particular aspects of the systems.

Besides verifying properties automatically, model-checking techniques can also be
used to generate test cases. The properties in temporal logic must be constructed
in such a way that counter-examples produced can be used as test cases.

Considering that one of the goals of this research work is to promote the use of
formal methods in industrial environments, the specification language to use
should not force a complete divorce with the normal way of thinking of the
programmers. This requirement excludes grammars, and property-based
specification languages. The specification languages that can be, in our point of
view, more easily accepted by programmers are the ones more closely to the
imperative programming implementation languages commonly used by
programmers which are the model-based and state-based notations.

Another criterion followed to guide the decision of which specification language
to use in this research work was the expressive power of the language. It would be
desirable to use a language with

− explicit state – to model the state of the GUI, for instance, the content
of a textbox, and to facilitate establishing a map between states of the
specification and implementation to perform conformity tests
automatically;

− support for scenarios – to model some user visible function or
high-level requirement that achieves a user goal and model typical
ways of using the GUI;

The primary goal of this research work is to improve the current GUI testing
methods and tools. So, the specification language tool support is also important to
enable the experimentation and validation of the ideas developed. The tools
available were studied according to:

− facility to extend functionalities – the tool should have an API or
some other mechanism to facilitate extending its functionalities in
order to automate the activities involved in specification-based testing,
such as, test case generation, test case execution, and conformity
evaluation;

− test automation – the set of testing activities already supported and
automated by the tool.

A more detailed studied was carried out comparing two different tools,
VDMTools (www.csk.com/support_e/vdm/index.html) and Spec Explorer
(research.microsoft.com/SpecExplorer/), supporting VDM++ and Spec#
specification languages respectively.

The VDM Toolbox provides a Corba compliant API, which allows other programs
to access a running Toolbox. Thus, any code such as a graphical front-end or
existing legacy code may control any Toolbox component. So, it is possible to
program extensions to the tool to run a GUI, simulating user actions, and the
model of that GUI written in VDM++ and compare the results obtained from both

Specification-based GUI Testing

83

to evaluate conformity between the model and its implementation. This tool
enables the manual definition of a set of tests and check after running those tests,
the degree of specification coverage achieved by those tests.

Spec Explorer has support for test case generation, facilities to establish maps
between specification actions and implementation methods, support for test cases
execution, and conformity evaluation. It is well adapted for performing
specification-based testing of software applications through their code or API but
requires extensions for testing software applications through their GUI. It provides
an API that allows extending easily the tool functionalities.

After analysing all these aspects, the choice was the Spec# specification language,
developed by Microsoft Research in Redmond, and the model-based testing tool,
Spec Explorer. They will be presented in more detail in the next chapter.

Nevertheless, the aim is that the main ideas developed in this research work can be
applied in other environments following similar paradigms.

85

Chapter IV

Specification-based GUI Test
Automation

This chapter presents a new approach to model and test GUIs.
Models are written in Spec# and possibly structured in different
levels of abstraction, whether modelling atomic user actions,
scenarios, or high level properties. A FSM is extracted from the
model and validated according to standard test adequacy criteria.
Test cases are generated from the extracted FSM based on a new
test coverage criterion that ensures coverage of a particular level
of abstraction obtained from a navigation map view and other
views for each dialog within the GUI application under test. A
tool prototype supporting this kind of specification-based GUI
testing is described. This tool is an extension of the
specification-based testing tool, Spec Explorer, developed at
Microsoft Research, which already supports the automatic
generation and execution of test cases for API testing, but
requires too much work when testing software applications
through their GUI.

GUI testing is laborious, boring, and time and resource consuming. The
approaches and tools available to aid the testing process are not satisfactory (see
section 2.5). The goal of this research is to improve current GUI testing methods
and tools, taking advantage of formal behavioural models to enable the automatic
generation of test cases and the automatic conformity checking of the
implementation with respect to the specification. On the whole, we want to
contribute to the construction of higher quality graphical user interfaces.

Chapter IV

86

The contributions of this research spread over modelling (section 4.2), test case
generation (section 4.3), and test case execution (section 4.4). A prototype tool
was developed to support the overall testing process of software applications
through their GUIs based on a formal specification written in Spec#. It is an
extension to Spec Explorer, a model-based testing tool developed at Microsoft
Research, that already supports automatic generation and execution of test cases
for API testing, but requires that the actions described in the model are bound to
methods in a .NET assembly.

The Notepad application that is shipped with the Microsoft Window operating
system is used along this chapter as a running example to illustrate the approach.
It is a basic text editor that can be used to edit, view, and create or update simple
text files. This software application is also used as a case study to validate and
evaluate the specification-based testing approach proposed in this dissertation in
Chapter V.

4.1. GUI Testing Process

Specification-based testing checks if an implementation of a software system
conforms to its specification. The main activities of the GUI model-based testing
process proposed in this dissertation are presented in Figure 23.

The starting activity is the construction of the GUI specification/model. The
model may be constructed from the requirements, in a forward engineering
process, or from an existing application, by a reverse engineering process. The set
of modelling techniques proposed in this approach is suited for testing purposes,
and promote modularity and reusability (see section 4.2). The specification
captures the requirements and enables checking if those requirements are fulfilled
by an implementation. The model may be constructed at different levels of
abstraction whether modelling atomic user actions, high level scenarios, or high
level properties of the system. There is one module or class to describe each
window within the GUI under test.

Generically, there are two different kinds of actions in the model: actions to
observe the state of the system (e.g., actions that model the eyes of the user
reading the text shown by a textbox); and actions to control the system (e.g.,
actions that describe the user events sending text to a textbox). Inside Spec
Explorer [39], the former actions are annotated as probe while the latter actions
are annotated as controllable.

The model is written in Spec# and converted into a FSM that results from the
bounded exploration of the model. The exploration process, supported by the Spec
Explorer tool, infers the set of methods available in each state (pre-condition true)
and calls them with appropriate parameter values. Domains of such parameters are
defined manually by the tester and have a deep influence on the generated FSM. If
the FSM does not have the desired properties it may be regenerated with new

Specification-based GUI Test Automation

87

defined bounds (input domains). The quality of the generated FSM is assessed
according to adequate and coverage criteria based on the defined scenarios, high
level properties, and testing goals. The way to access the quality of the FSM will
be explained in section 4.3.3.

After generating the adequate FSM it is possible to calculate the test cases from it
based on FSM coverage criteria. However, executing all possible test cases
generated from this FSM may be not realistic due to the huge size of the FSM
generated and consequently the huge number of test cases.

Figure 23: Overview of the GUI modelling and testing process

A new algorithm will be presented in section 4.3.4 to reduce the FSM while
guaranteeing coverage of the intermediate level of abstraction defined by the high
level GUI properties described by the navigation map and dialog views. Once this
pruning technique reduces the size of the initial FSM, test cases may be generated
based on the full transition coverage criterion and then executed.

Requirements
Test
coverage
goals

Scenarios
and high
level
properties

Full model
of the system FSM

Test cases

Application
under test

Modified
application
with injected
errors

Errors
detected

Bounds

FSM
coverage
criteria

List of
typical
errors

Forward
engineering

Reverse
engineering

Report

OR

OR
V
A
L
I
D
A
T
I
O
N

Chapter IV

88

However, the generation process of the initial FSM itself may be unfeasible due to
memory space or time restrictions. In this case, different approaches (not
necessarily disjoint) can be followed:

− stop the generation of the FSM when all the identified scenarios and
test boundary conditions are covered by it, or

− build scenarios to drive the software application into test boundary
states if it is not possible to obtain a FSM that covers them within time
and resource limits, or

− split the software application into different sets of functionalities and
test them independently, or

− build scenarios to shortcut some functionalities where a exhaustive
testing is not needed, e.g., build a scenario to open a file kept in disk
avoiding exhaustive testing of the complete Open dialog.

Test cases are generated from the FSM model after selecting FSM coverage
criteria. Once generated, test cases are executed on the specification and on the
implementation (constructed software application or modified software
application with injected errors) and the results obtained are compared. The
specification plays the role of a test oracle describing the expected results. Every
time there is an inconsistency between results obtained from both levels they are
reported. Reasons for such inconsistencies are three-fold:

− test cases are tying to trigger events in a window that is not reachable
or is not opened (e.g., when a modal dialog is open and the window
we want to reach is behind the modal dialog);

− test cases are trying to interact with a control that cannot be found;

− the expected result was not displayed (e.g., a text box does not display
the expected content).

To execute test cases automatically over the GUI under test some intermediate
code to simulate the user actions is needed. This code is constructed automatically
by a tool (GUI Mapping Tool) developed on purpose and presented in section 4.4.

The GUI Mapping Tool extends Spec Explorer to automate the GUI testing:

− it adds the capability of gathering information about the physical GUI
objects that are the target of the user actions described in the model;

− it automatically generates a .NET assembly with methods that simulate
the user actions upon the GUI application under test;

− it automatically maps the methods in the generated .NET assembly to
the model of such methods described in the specification.

The capacity of detecting errors of the overall testing approach is evaluated by
using a modified application with a list of known injected errors as a GUI under
test.

The Spec# system and the automated model-based testing process with the Spec
Explorer tool are described in next sub-sections.

Specification-based GUI Test Automation

89

4.1.1. Spec# System

The Spec# programming system (Figure 24) developed at Microsoft Research lab
in Redmond, USA, consists of the object-oriented Spec# programming language,
the Spec# compiler, and the Boogie static program verifier (Figure 25) [15]. It is
an attempt to support more cost effective production of high-quality software and
is fully integrated into the Microsoft Visual Studio.

Spec# supports literate programming in allowing a Spec# program to appear
spread over several separate sections in a document along documentation like text,
tables, and diagrams. It uses a special style for the program (Spec# style) different
from the style/styles used for the documentation. The compiler and other tools can
extract the code from the document.

The programming language, Spec#, extends the existing object-oriented .NET
programming language C# with specification constructs like pre-conditions,
post-conditions, invariants, and non-null types; the compiler emits run-time
checks to enforce these specifications; and the verifier can check the consistency
between a program and its specifications [15].

Figure 24: Spec# system

Besides producing executable code from a program written in the Spec# language,
the Spec# compiler also serializes all specifications into a language-independent
format and attaches these serialized specifications to the program components in
which they were defined. Instead of working on source code, the Boogie static
program verifier works on top of the compiled code and can, for that, be used to
verify code written in other languages than Spec# as long as they provide a
process to attach contracts/specifications to the code.

The Boogie static verifier (Figure 25) translates the intermediate language, MSIL,
and metadata into its own intermediate language, BoogiePL. Then an inference
mechanism obtains properties such as loop invariants from this BoogiePL
language [14]. The BoogiePL program and properties derived go through the

Spec#
compiler

Boogie

Code +
contracts
in Spec#

Run time
exceptions

Compile-time
error messages

Static program
verifier

Chapter IV

90

weakest-precondition generator which performs a sequence of transformations till
ending as a verification condition that is then used by the automatic theorem
prover (Simplify).

Figure 25: Boogie static verifier

4.1.2. Automated model-based testing with Spec Explorer

Spec Explorer [39] is a software modelling and testing tool from Microsoft
Research. A formal executable model can be written in the abstract state machine
language (AsmL) (research.microsoft.com/fse/AsmL) or Spec# [15]. AsmL is an
executable specification language based on the theory of Abstract State Machines
(ASMs) [28].

A model written in Spec# describes a possibly infinite state transition system.
States are modelled by state variables. Some of the methods in the specification
are annotated as actions that represent the possible transitions of a transition
system. These actions can have pre-conditions, written as “requires” clauses that
define the states in which they are enabled. Thus, actions can be seen as the
guarded update rules of an ASM. It is important to note that the states can have a
very rich structure. In the case of GUIs, this allows to faithfully model the GUI’s
state from a user perspective. For example, a state variable can hold the textual
content of a field. Methods annotated as actions can be used to model complex
user actions (e.g., enter a string into a field, issue a command, load contents from
files, etc.) and describe its effect on the state of the system.

Inference
engine Translator

Weakest-precondition
generator

Theorem prover
(Simplify)

BoogiePL

Verification
condition

MSIL Boogie

Error messages

Specification-based GUI Test Automation

91

There are four different kinds of actions: observable, controllable, probe, and
scenario. Observable actions are asynchronous and describe the spontaneous
execution of an action in the AUT (application under test) possibly caused by
some internal thread. Controllable actions describe actions that are controlled by
the user of the modelled system. Probe actions describe actions that do not update
internal state of the modelled system but only read the state of the system. Probe
actions are invoked by the test harness in every state where they are enabled to
check whether the model and the implementation have the same characteristics in
a given state. Scenario actions describe sequences of sub-actions. A scenario can
be used to drive the system into a desired initial state.

From a Spec# model, it is possible to extract a Finite State Machine (FSM) by an
exploration process. This process will execute the actions of the model and, at
each action call, it will use values for the parameters taken from domain sets
defined manually by the tester. Besides some default values defined for specific
types like Booleans (true, and false), Spec Explorer does not provide any support
for the definition of parameters' domains. Even so, the choice of these domains
has profound impact in the characteristics of the generated FSM and is a crucial
point of the whole process. There are different ways to combine the parameters'
values so as to use them in each action call: Cartesian product, pair-wise
combination, and an enumeration of tuples.

Besides the domains' definition, one of the main difficulties in FSM extraction is
due to the fact that an ASM specification can have a huge, possibly infinite,
number of states, so a good pruning technique is needed to deal with the state
explosion problem. Griskamp [79] uses hyper-states as a form of abstraction to
extract a FSM from an ASM. In addition, Spec Explorer allows the user to limit
the exploration of the model in various ways [191]: definition of additional
pre-conditions; restrict the parameters' domains; definition of state filters;
definition of state groups; and definition of stop conditions. This will be explained
in more detail in section 4.3.1.

A state group is a set of expressions, G = g1, ..., gk, over one or more states. Two
different states, s and t, are in the same group, or are G-equivalent, if they evaluate
the expressions in the same manner (∀ 1� i � k · gi

s = gi
t). A group is a maximal

set of G-equivalent states.

The FSM and the expected results of each execution step that result from the
exploration of a given Spec#/Asml model are kept in memory. Once the FSM is
built, a test suite with a set of test segments (sequences of actions with input
parameters and results expected) is generated. Spec Explorer provides different
algorithms to generate test suites: full transition coverage; shortest path; and
random walk. This will be explained in more detail in section 4.3.1.

After constructing the test suite, test conformance between the specification and
the implementation can be performed. Conformance between model and an
implementation can be established by binding model actions to implementation
methods, executing the test suites on the implementation, and comparing the
results obtained with the expected ones kept in memory. Spec Explorer provides a

Chapter IV

92

mechanism that binds the action methods in the model with matching signatures in
the AUT. Whenever the map needs to be established between methods with
different signatures, the user must relate those methods one by one. The
implementation can be written in any language supported by the .NET framework.

To track observable actions, Spec Explorer instruments the AUT at the binary
(MSIL) level [191]. During execution, the instrumented AUT calls back into the
conformance engine, notifying it about occurrences of observable method calls.
These occurrences are buffered which allows them to occur even during the
execution of a controllable method in the implementation.

All inconsistencies detected are reported to the tester that can select any of the
reported errors and check the FSM path which gave rise to the error. This path can
then be analysed in order to correct the implementation or the specification.

Spec Explorer also supports "on-the-fly" testing. In this case, the test generation
and test execution are connected into a single algorithm [192].

Another functionality of Spec Explorer is the graphical visualization of the FSM
obtained by the exploration of the Spec# or AsmL models. Sometimes, the FSM
obtained is so huge that viewing it graphically can not be very useful. Besides
being used for pruning the exploration of the model, state groups can also be used
to define different views of the model. This feature can be helpful to define
different levels of abstraction of the same model and also to see some specific
features of a huge model that otherwise could not be analysed. For models with
scenario actions, graph visualization includes a property that controls whether the
graph will show scenarios in collapsed (sub-actions are hidden from the graph) or
expanded form (sub-actions are visible in the graph).

Spec Explorer is well adapted to test software systems through their API.
However, when the source code of an application is not available and the only
way of interacting with it is through the GUI it requires too much work [149].
This happens for two main reasons:

− As explained above, it is necessary to define a map between
specification and implementation actions so as to compare results
obtained at each execution step. When the only way to interact with a
software application is through its GUI, this map cannot be
established (the same happens when the source code of the software is
not available and it does not provide an API). To overcome this
limitation, it is necessary to build intermediate code to simulate the
user actions, for instance, clicking on a button, sending text to a
textbox, observing the text shown in a textbox that is the result of
some operation. The methods inside this code will be mapped to
specification methods and the related methods will be run step-by-step
and results obtained compared.

− The manual construction of the intermediate code is laborious and
takes so much time that may compromise the whole process.

Specification-based GUI Test Automation

93

The prototype tool developed in this research work is intended to overcome such
limitations of GUI black-box testing by automatically generating the mapping
code that allows interacting with a software application.

4.2. GUI modelling with Spec# and Spec
Explorer

State machines are well suited to model reactive systems. A state machine defines
a set of states and transitions between states caused by actions. GUIs are reactive
systems in the sense that they can respond to user actions. State machines can be
very useful to guide the testing of software applications [112].

A specification written in Spec# is executable. Besides invariants, pre-conditions
(written as requires clauses), and post-conditions (written as ensures clauses), one
can write executable method bodies (also called model programs) in a high-level
action language, with primitives to change the value of state variables, and even
call external methods defined in .NET assemblies. (The execution model of Spec#
is based on the formalism of abstract state machines [28]). This allows the
specification to be used as a test oracle: the expected effect of a user action can be
computed by executing the specification, and compared with the actual effect of
the same user action on the application under test. This process is currently
automated by the tool developed during this research work with the help of the
Spec Explorer tool and using an intermediate library to simulate user actions over
the implemented application.

In order to be effectively used as a test oracle, the specification should be written
for testability. That is, it should describe user requirements with enough detail and
rigor to allow a person or a machine to decide whether an implementation, as
perceived through its GUI, obeys the specification. In particular, names for actions
and state variables in the specification should be chosen in a way such that their
counterparts in the user interface of the implemented application can be found
straightforwardly (and automatically).

Another advantage of an executable specification is that it can be tested per se, to
validate it and check its internal consistency (check that method bodies do not
violate pre-conditions, pos-conditions and invariants, check explicit assertions,
etc.). However, this possibility will not be exploited here.

Besides being used as test oracles, formal specifications can further be exploited
to automatically generate test sequences (sequences of user actions and action
parameters). A common two-step approach, currently supported by the Spec
Explorer tool, is as follows: first, a finite state machine (FSM) is generated from
the specification, by exploring all the states that can be reached from a given
initial state or set of initial states (each state is a possible combination of values of
the state variables, and each transition corresponds to a user action with actual

Chapter IV

94

parameters); secondly, a test suite, comprising one or more test sequences, is
generated from the FSM, so that all states and transitions are covered.

Unfortunately, there are also common problems with this approach: the state
explosion and, ultimately, the test case explosion problem. The test case explosion
problem is particularly important in presence of interactive applications, because
of the slow response of GUI’s to user actions, when compared to in-memory
operations.

The challenge we address in the sequel is that of modelling GUIs in a way such as
to deal with the state explosion problem and automatically generate test suites of
manageable size that still guarantee adequate testing.

4.2.1. Modelling GUI structure and behaviour

The models used by Spec Explorer find their inspiration in the Abstract State
Machines (ASMs) formalism [28]. ASMs provide a way to model any system at
any level of abstraction. This is adequate for GUI modelling, because, depending
on the context, one may want to model user actions at different levels of
abstraction: at operating system level (where a click event is the sequence of
pressing and releasing the mouse button), at API level (where a click event is seen
as an atomic action), at user task level, etc.

Independently of the level of abstraction considered (lower level messages, or
higher level messages that correspond to sequences of lower level messages), a
GUI implementation places the messages in a queue and processes those messages
in order. This behaviour can also be adequately modelled as an ASM with guarded
actions which fire only when appropriate messages are fetched from the queue.

Using Spec#, one can build a formal specification of an interactive application,
describing the actions a user can perform at each moment (press a button, fill a
text box, etc.), and the expected effect of each user action, in terms of changes to
the state of the application (according to a model of the application state as
perceived by the user) and possible effects to the environment (e.g., write a file to
disk). The effect of user actions may depend not only on the current state of the
application, but also on environment conditions (e.g., existing files in disk).

The state of the application is described by means of state variables (static or
instance variables). Without restrictions, the state space S of an application
manipulating a set of variables { }||1 ,, VvvV �= will be the Cartesian product of
the domain values of the variables in the set V, i.e.,

)()(||1 VvdomvdomS ××= � .

4.2.1.1. Modelling windows' controls

Typically, windows are composed of several interactive controls with which users
interact. There are different kinds of interactive controls, e.g., buttons, text boxes,
check boxes, list/combo boxes, etc. The state of controls is modelled by state
variables. One or more variables are used for that purpose and depend on the

Specification-based GUI Test Automation

95

characteristics that are considered relevant from the modeller perspective. For
instance, the state of a textbox can be modelled by several state variables (Figure
26):

// a string keeping the text
string text = "";

//an integer keeping the position of the cursor
int posCursor = 0;

// a string keeping the text selected
string selText = "";

// a Boolean variable that tells whether the text
// has been changed
bool dirty = false;

// etc...

Figure 26: State variables of a textbox

In addition, the user actions interacting with each control are modelled by
methods. Methods have pre-conditions that determine the states where the
modelled actions are possible. Typically, pre-conditions include a clause that
checks when the window where the control is placed is enabled and possible
others that select among the first set of states the ones where the control is enabled
(Figure 27). For instance, the "Find Next" button inside the find dialog of the
Notepad application (Figure 28) is enabled whenever the dialog is enabled and the
text inside the "Find what" textbox of the same dialog is filled. Each
dialog/window is uniquely identified by a name, e.g., the find dialog is identified
by "Find".

namespace FindDialog;
//...
[Action] FindNext()
requires IsEnabled("Find") and FindWhat!="";
{ //... }

Figure 27: Find Next pre-condition

Figure 28: Find dialog inside Notepad software application

Chapter IV

96

To enable conformance testing of the outputs displayed to the user, methods
annotated as actions should also be provided to observe the state of the GUI that is
exposed to the users' eyes. A query method can be provided for each observable
state variable, with the name of the variable and a suitable prefix. Spec Explorer
refers to such actions as probes (Figure 29).

namespace Notepad;
//...
// keeps the state of the text inside the main wind ow
string text;

[Action(Kind=ActionAttributeKind.Probe)]
string GetText()
requires isEnabled("Notepad"); {
 return text;
}

Figure 29: Probe action example extracted from the Notepad's GUI model

A probe only observes the current state and does not change it. Probes are treated
differently from ordinary actions during test case generation, as we will see later.

4.2.1.2. Modelling windows

For modularity reasons, except for trivial applications, the top-level windows of
the application are better modelled in separate namespaces or classes.

Inside each module (namespace or class) corresponding to a top-level window,
state variables are used to model the abstract state of that window and the controls
inside the window, and methods annotated as actions are used to model the
possible user actions on that window and on the controls of the window. All the
actions inside each module, except the one that launches the application, have at
least one pre-condition: that the corresponding window is enabled.

Windows can be modal or modeless. When a modal window is open (e.g., the
Save and Open windows in the Notepad application), the other windows of the
application are disabled. Since this is a common feature of GUIs, a separate
reusable module − a window manager − was created to handle it (see Appendix
A.3.). The window manager is part of the model, and its state is part of the model
state.

The window manager provides the following self-explanatory helper methods:

namepace WindowManager;
void AddWindow(wndName, parentWndName, isModal)
void RemoveWindow(wndName)
bool IsEnabled(wndName)
void SetFocus(wndName)
bool HasFocus(wndName)

Specification-based GUI Test Automation

97

bool IsOpen(wndName)
string GetWindowWithFocus()
Set<string> GetEnabledWindows()

Figure 30: Window manager

When a method opens/closes a window it should add/remove that window to/from
the window manager. When a window is removed, all its child windows are also
removed. Message boxes are also registered in the window manager but are not
modelled as separate modules because of their simple structure. Message boxes
have a set of buttons (typically two or three) that correspond to different possible
answers to a question. Acknowledge messages are a special kind of message box
with only one button. Such button is pressed by the user as a way to acknowledge
the information displayed in it.

There is only one window with input focus, at each time, within the same
application. This is the window to which user actions are redirected to. The
window with the input focus must be in the set of the enabled windows. A
window is enabled when it is open and does not have a child modal window on
top. Typically, two modeless windows belonging to the same application can be
opened at the same time and it is possible to switch input focus between them.

The model of the GUIs can abstract the focus property of the windows. In each
moment, only the set of windows (GetEnabledWindows()) with which is
possible to interact with is relevant. This modelling technique will abstract all
"switch focus" transitions between modeless windows. When the focus property is
modelled, the pre-condition of each method inside a window (module) should
have a clause checking if that window has focus (HasFocus(windowName));
otherwise, the pre-condition should include a clause checking if the window is
enabled (IsEnabled(windowName)).

4.2.1.3. Modelling message boxes

As already mentioned above, message boxes are not modelled as separate modules
(namespace or class). Message boxes have a simple structure that only requires the
user to press one of the shown buttons. This can easily be modelled as a method
with a parameter carrying the user's answer.

There are two different kinds of message boxes: the ones that give some
information to the user and that ask the user to press an "ok" button. These are
called acknowledge messages boxes (see Figure 31 noting the "MsgAck" prefix);

[Action] void MsgAckCannotFindWord()
requires IsEnabled("MsgAckCannotFindWord"); {
 RemoveWindow("MsgAckCannotFindWord");
}

Figure 31: Message box of acknowledge

Chapter IV

98

and the ones that ask for input from the user and wait until the answer is chosen
from a set of available options (buttons) (see Figure 32 noting the "Msg" prefix).

[Action] void MsgSaveChanges (string option)
requires IsEnabled("MsgSaveChanges");
{
 RemoveWindow("MsgSaveChanges");
 // ...
 switch (option){
 case "y": //...;
 case "n": //...;
 case "c": //...;
 default: //...;
 }
 //...
}

Figure 32: Message box with different possible answers

4.2.1.5. Modelling communication between windows

Windows are modelled as separate modules (namespaces or classes) for
modularity reasons and to promote reuse. The designer of a reusable module
(window) defines its state and methods but does not know in advance which kind
of application will make use of them. Method calls between the reusable module
and an application that reuses it occur in both directions:

− The application (or test driver) may call methods of the reused module.
From the testing perspective, inputs are methods invoked with
parameters while outputs are the values returned by those methods.
This is the traditional situation in unit testing.

− The reusable module may generate events (originated from the user or
internally generated) that cause the invocation of methods in the
application (or test stub), by some kind of callback mechanism (event
handlers, or sub-classing and method overriding, or interface
implementation). Again, from the testing perspective, the outputs are
the events and parameters passed to the application, while inputs are
returned parameters.

Testing the second kind of interaction (callbacks) poses specific issues and
challenges, as already noted in [184]:

− An application method invoked in a callback may, in turn, invoke
methods of the reusable module (reentrancy situation) and have access
or change its intermediate state. Hence, the internal state of the
reusable module when it issues a callback is not irrelevant. Moreover,
some restrictions may have to be posed on the state changes that an
application may request when processing a callback.

− During testing, one has to check that: (1) the appropriate callbacks are
being issued; (2) when a callback is issued, the reusable module is put

Specification-based GUI Test Automation

99

in the appropriate internal state; (3) during the processing of a
callback, the application doesn't try to change the state of the reusable
module in ways that are not allowed.

Buttons are common in GUIs and are a good example to illustrate communication
between a reusable module and an application. Buttons usually have associated
methods that are called when users press them. These methods can communicate
with the other elements of the application where the module is being reused.

Another example are dialog windows that can be reused across several
applications such as Open and Save dialog windows that can be found, for
instance, in Microsoft Notepad, Microsoft Word and Microsoft Excel. In
Appendix A.1 it is possible to see one solution to model these windows promoting
reusability. Callbacks from the dialog window to the application that uses it (e.g.,
Notapad) are modelled by applying the Observer design pattern [72].

4.2.2. Modelling scenarios

It is also useful to model high-level scenarios that capture some user visible
function (or high level requirement) that achieves a user goal and model typical
ways of using the GUI. Scenarios are constructed on top of atomic actions.
Usually, independent scenarios are used to model normal and exceptional user
sequences of interactions. Parameterized scenarios model the external behaviour
of a specific user visible GUI functionality for all possible parameters' values
(Figure 33).

Scenarios can be used as a mechanism for structuring the GUI model in different
levels of abstraction; for testing purposes as a way to identify test conditions that
would be covered by manual tests and that can be seen as the minimum set of
conditions to automatically test; as a technique to drive the application into a
desirable specific state; as a technique to prune the exploration process; and to
guide the process to determine the parameters' domains of the model actions that
will be used by the exploration process to generate the FSM.

Spec Explorer has a mechanism that supports modelling scenarios. Scenarios are a
special kind of actions that are capable of invoking other model actions. Scenario
actions are enabled by their pre-conditions. However, unlike other kinds of
actions, when a scenario calls other actions, Spec Explorer records the
intermediate states. When test cases are generated, the scenario sub-steps (or
sub-actions) are used.

Let us first see which scenarios will have to be modelled in our Notepad
illustration:

OpenScenario: It is possible to load (open) data from a file in disk. If the text in
the main window was updated give an opportunity to save the content to a text file
before opening the new file. Inform the user if the name of the file to open does
not exist. This can be modelled in Spec# as shown in Figure 33.

Chapter IV

100

[Action(Kind=ActionAttributeKind.Scenario)]
void OpenScenario(string fileToOpen,
 string saveChanges,
 string fileToSave,
 bool overwrite)
requires IsEnabled("Notepad") &&
 saveChanges in Set{"y","n","c"}; {
 Open();
 if (IsEnabled("MsgSaveChanges")) // if dirty
 {
 MsgSvBfrOpen(saveChanges);
 if (IsEnabled("Save")) // saveChanges == true
 {
 SaveDialog.SetFileName(fileToSave);
 SaveDialog.Save();
 // file exists
 if (IsEnabled("MsgOverwriteFile"))
 {
 SaveDialog.MsgOverwriteFile(overwrite);
 if (IsEnabled("Save")) // overwrite=false,
 // so get out of
 // the cycle
 SaveDialog.Cancel(); // scenario end
 }
 }
 }
 //(saveChanges != c || !dirty)
 if (IsEnabled("Open")) {
 OpenDialog.SetFileName(fileToOpen);
 OpenDialog.Open();
 if (IsEnabled("MsgAckFileNotFound"))
 {
 OpenDialog.MsgAckFileNotFound();
 OpenDialog.Cancel(); // end of the scenario
 }
 }
}

Figure 33: Open file scenario within the Notepad application

SaveScenario: It is possible to save text (new or updated) to a text file (new or
existing). If the text file already exists, ask the user if its content should be
updated.

FindScenario: It is possible to search a string within a text:

− In a case sensitive or case insensitive way;

− By looking for the string backwards or forwards the current mouse
position.

EditScenario: It is possible to type, select, cut, copy, paste, and delete text. The
occurrences of a given string in a text can be replaced by another one all at once or
step-by-step. Inform the user whenever the string does not occur in the text.

Specification-based GUI Test Automation

101

4.2.3. State machine views

The Spec# specification can be viewed graphically as a FSM by a bounded
exploration process. The graphical view gives a more perceivable way to validate
the model and serves also as a basis for test case generation. However, for
non-trivial systems, the FSM obtained can be so huge that analysing it as a whole
may be unfeasible. To overcome this problem, it is possible to construct different
views of the same FSM by abstracting some properties. These views are smaller
FSMs which allow for validating the model and also defining different testing
objectives and test coverage criteria.

Without restrictions, the state space of a software application, S, manipulating a
set of variables, V

{ }.,, ||1 VvvV �= (1)

is the Cartesian product of the sets of values which can be assigned to the
variables in the set V.

.)()(||1 VvdomvdomS ××= � (2)

Consider a FSM described as a set of states, S as above, an initial state, sinit in S,
and transitions T = {(s, a, s')}, where s and s' are states in S, and a is an action.
Each action triggers transitions which drive the system from origin state s to
destination state s'.

State machine views are slices of the original FSM which affect different state
variable subsets (techniques for automatically identifying pieces of a program
which affect a selected subset of its variables are known as program slicing
[22,88]). State machine views are obtained by projecting the state onto the
variable within vi, PFSMvi, where vi is set of variables that are relevant to the
view/property to analyse. By using operators of relational algebra1 [188], these
projections (views/slices) are expressed by

})',,(|)',,{(TsassasPFSM vivivi ∈= ππ (3)

1 π - projection, e.g., πBT= (2,5); π2T = (2,5); πA,BT = �
�

�
�
�

�

54

21
;

 σ - selection e.g., σ A=1 T = (1,2,3)

T = A B C

 1 2 3

 4 5 6

Chapter IV

102

State machine views can also be obtained by projecting the state onto a set of
expressions over state variables.

There are some typical views that result directly from the structure of the GUIs.
One of them is the navigation map that describes how to open/close windows of
the application and also how to switch between the windows of the same
application. Other views are the ones that describe the behaviour of each dialog of
the application abstracting away from the behaviour of the other dialogs.

Although the size of the FSMs that describe each dialog independently is much
smaller than the original FSM, it may remain unmanageable. The challenge is to
determine views with a manageable size (to analyse and test) that still describe the
relevant behaviour of the system. So, other views for other higher level properties
can be defined as will be explained later on.

4.2.3.1. Navigation map view

The navigation map of an interactive software system modelled as explained
above, using the window manager and the focus property, can be easily obtained
from the GetWindowWithFocus() method defined within the window
manager (Figure 30). This view can be expressed mathematically as the projection
of the FSM states onto the variable that keeps the name of the window with the
focus (Figure 34).

.})',,(

|)',,{(

)(

()()

Tsas

sas

FSMmapNavigation

ithFocusGetWindowWithFocusGetWindowW

∈

=
ππ

(4)

The navigation map view can be obtained in Spec# by

string NavigationMap { get {
 return GetWindowWithFocus();
 }}

Specification-based GUI Test Automation

103

Figure 34: Navigation map obtained from focus property of the windows

The transitions visible at this level of abstraction are the switch focus transitions
between modeless windows opened at the same time (e.g., Find dialog and
Notepad main window) and transitions that open/close windows of the
application. All transitions that occur inside the windows/dialogs are abstracted as
one transition from the state group, representing the dialog, to itself.

When the model of the application abstracts the focus property, the navigation
map can be obtained from the method GetEnabledWindows() defined inside
the window manager module (Figure 30).

.})',,(|

)',,{(

)(

()()

Tsas

sas

FSMmapNavigation

WindowsGetEnabledWindowsGetEnabled

∈

=
ππ

(5)

In the presence of modeless windows, there may be more than one window
enabled at the same time, in which case, the method returns a set of more than one
window name. This is the case of the Find and Replace dialogs that appear in
states paired with the Notepad main window in Figure 35.

Set<string> NavigationMap { get{
 return GetEnabledWindows();
}}

Chapter IV

104

Figure 35: Navigation map obtained from the enabled windows' property

Message boxes are a special kind of windows. Showing them at this level of
abstraction may introduce too many details. It is possible to construct another
navigation map abstracting from those message boxes (Figure 36).

string NavigationMap { get{
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (IsOpen("Open")) return "Open";
 else if (IsOpen("Save")) return "Save";
 else if (IsOpen("Find")) return "Notepad/Find";
 else if (IsOpen("Replace")) return "Notepad/Repla ce";
 else return "Notepad"; }}

Figure 36: Navigation map obtained from opened windows abstracting
away the message boxes

Specification-based GUI Test Automation

105

Test cases generated from these views can be used to test all possible navigation
paths allowed by the modelled system.

4.2.3.2. How to obtain one view for each dialog/window

The state machine view describing the behaviour of each dialog i, PFSMDi, is
constructed by abstracting the states where the dialog i does not have input focus.
If the focus property of the windows is not modelled, the PFSMDi is constructed
by abstracting the states where the dialog i is not open.

Additionally, it is also possible to model the focus property of the interactive
objects inside each window. In that case, the view of the dialog behaviour can be
obtained by projecting the state of the dialog onto the state variable that points out
the interactive object with the input focus at each moment. The PFSMOpenDialog is
given by the 3 groups of states inside the rounded rectangle with dashed line
(excluding the groups that enclose the states where the Open dialog is closed and
the states where the Notapd is closed). (Figure 37).

Figure 37: Open dialog view obtained from the projection onto the
interactive object with the focus in each moment

When the focus property of the interactive objects is abstracted from the model, it
is possible to obtain the view of the dialog behaviour by projecting the global state
of the modelled system onto the variables that are manipulated (read or written) by
the dialog (Figure 38). The concept of manipulated variable will be explained and
formalized in the sequel.

As an example, the second level of the hierarchical structure of the Notepad model
for the Open dialog, PFSMOpenDialog, that is to say, the projection of FSMOpenDialog
onto the variables manipulated by the Open dialog, which are fileNameO (keeps
the name of the file to open), and dirO (keeps the directory of the file to open),
can be given by the expression:

Chapter IV

106

()
()

.}',)',,(|

)'

,,{(

)"("

)"("

)"("log

SssTsas

s

asPFSM

OpenIsOpen

OpendVariablesManipulate

OpendVariablesManipulateOpenDia

σ

π
π

∈∧∈

=

(6)

<string, string> OpenDialogGroup {
 get {
 if (IsOpen("Open")) return
 <"fileNameO="+fileNameO,"dirO="+dirO>;
 else return
 <"NotOpen", "NotOpen">;
}}

This view will have one state group grouping all states in which the Opendialog is
closed and other state groups (3) grouping all state instances of the dialog that
evaluate the expression in the same manner, that is to say, have the same values
for the manipulated variables and different values for the non-manipulated
variables (Figure 38). The PFSMOpenDialog is given by the 3 groups of states inside
the rounded rectangle with dashed line (excluding the group that encloses the
states where the Open dialog is closed).

Figure 38: Open dialog view obtained from the projection onto the
manipulated variables

4.2.3.3. How to obtain views showing currently enabled actions

Abstracting the behaviour outside each dialog produces a huge reduction in the
number of states of the overall FSM. Even so, this may be not enough. In this
case, it is possible to describe the system at a higher level of abstraction by
distinguishing, for instance, the states where the set of available actions is
different. This is helpful to check dependencies between interactive objects. In the
case of the Find dialog inside the Notepad application, it is possible to see clearly

Specification-based GUI Test Automation

107

with this view that after filling the text inside the "Find What" text box, the
"Find Next" button becomes enabled (Figure 39).

string FindCtrlsEnabledGroup { get {
 if (GetWindowWithFocus()=="Find") {
 if (FindDialog.findWhatF != "")
 return "Find Next enabled";
 else return "Find Next disabled";
 }
 else return "OutFind";
}}

Figure 39: Changes in the set of enabled actions inside Find dialog

These views can also be used as test criteria for checking whether dependencies
between interactive objects are correct.

4.2.4. Obtain complete models from navigation maps and
dialog views

From the navigation map (containing the transitions between the windows/dialogs
of the software application) and the dialog views (obtained by the projection of the
state onto the manipulated variables of each dialog) it should be possible to obtain
the complete FSM describing the software system. This means that this set of
views describes completely the behaviour of the system.

These two views (navigation map and dialogs) can be seen as two different levels
of abstraction of a hierarchical structure.

Recall the FSM state explosion problem. Hierarchical Finite State Machines
(HFSM) cope with this problem. A HFSM is a FSM whose vertices represent
single states or groups of states sharing a common characteristic (and transitions
between the members of the group). These groups of states (and transitions) are
themselves FSMs. Given a HFSM, it is possible to obtain a "flat" FSM by
recursively substituting each group of states by its associated FSM.

A HFSM is well suited to model the behaviour of a GUI: the hierarchical structure
of the HFSM can mimic the hierarchical structure of objects and dialogs of the
GUI. For example, a GUI might have a main window with a top menu (possibly
with sub-menus) allowing the user to open modal dialog windows. While a modal
dialog window is opened, user interaction with all other currently open windows

Chapter IV

108

of the same application is disabled. This very common structure can be modelled
by a HFSM exhibiting one group of states per modal dialog. Whether not
considering nested modal dialogs, each modal dialog can be seen as an
independent FSM.

Such two views of the HFSM and the method to obtain the complete behaviour of
the system from them will be formalized next.

The case of the navigation map and dialog views for test coverage criteria
purposes will be explained in section 4.3.4.

4.2.4.1. Variables manipulated by each dialog

Recall that without restrictions, the state space of the application, S, is the
Cartesian product of the sets of values which can be assigned to the variables
manipulated by that application:

.)()(||1 VvdomvdomS ××= � (7)

Consider an application with two dialogs, D1 and D2. From the complete FSM of
the application, FSMA, it is possible to obtain the subsets of FSMA that describe
each dialog FSMDi, by state grouping according to a criteria provided by the
developer. For example, FSMDi could correspond to the group of states where
dialog Di is enabled (and the transitions among those states).

Having delimited the state machine FSMD that describes the behaviour of a dialog
D, it is possible to automatically deduce which variables are manipulated (read or
written) by that dialog.

A variable vi is written by (or is affected by) a dialog D if there is a transition in
TD (transitions of FSMD) that changes the value of vi [64]. Formally,

[] .')',,(DbywrittenisvssTsas iviviD 	≠⋅∈∃ ππ (8)

A variable vi is read by (or influences the behaviour of) a dialog D if at least one of
the following conditions holds [64]:

− there are two transitions t and t' in TD and variable v, and vk in V (not

necessarily i � k) such that:

(i) the source states of t and t' are different only in the
value of vi;

(ii) t and t' have the same triggering action (action name
and arguments);

(iii) the destination states of t and t' have different values
of vk; and

(iv) at least one of the transitions (say t) changes the
value of vk;

Specification-based GUI Test Automation

109

− there are two states s and s' in S and a transition t in TD such that:

(i) s and s' are different only in the value of vi;

(ii) the source of t is s;

(iii) there is no transition t' with source s' and the same
action as t.

Formally,

()

()
.

'')'()(

')'('

)(',

)).(())'(())((

)'()(''

')'()(',

22

1

1

333

22

11

Dbyreadisv

ssijsstt

stTt

stTtSss

tsttVv

ttssijss

ststTtt

i

vjvjvivi

D

DD

vkvkvkvkk

vjvjvivi

D

	

	

�

�

�

�

�

�
�
�

�

�

�
�
�

�

�

=⋅≠∀∧≠∧=∧
∧=⋅∈¬∃

∧=⋅∈∃⋅∈∃

∨

�
�
�

�

�

�
�
�

�

�

≠∧≠⋅∈∃∧

∧=∧=⋅≠∀∧≠
∧=∧=⋅∈∃

ππππππ
π

π

πππππππ
ππππππ

ππ

(9)

Informally, this means that the response to user actions (and the actions available)
in the context of dialog D depends on the value of vi. In practice, this means that
any implementation of dialog D must read (or query) the value of vi when
responding to user actions (or when determining which actions are available).

Figure 40: State machine of an application with dialogs D1 (action A1) and
D2 (actions A3 to A6)

(0,0, a) (1,0, a) (1,1, a) (0,1, a)

A2

A1

(0,0, b)

(0,0, c)

(0,0, f)

(0,0, d)

(0,0, e)

(0,1, b)

(0,1, c)

(0,1, f)

(0,1, d)

(0,1, e)

A1

A1

A3

A4 A5

A6
A3

A4 A5

A6 A4 A4

A2 A7 A7

A1

FSMD1

FSMD2

Chapter IV

110

For instance, consider an application with state variables V={v1,v2,v3}, and two
dialogs D1 and D2 with the behaviour described by the state machine of Figure 40.
The state machine also includes transitions (labelled A2 and A7) that do not belong
to any of the dialogs, but allow switching between them.

Dialog D1 is enabled when v3=a. Dialog D2 is enabled when v3 � a and v1 � 0.
Given the transition),1,0(),0,0(1 aa A→ in D1, we conclude, by formula 8, that v2
is written by D1. This is the only variable manipulated by D1. From transition

),0,0(),0,0(3 cb A→ in D2 and formula 8, we conclude that v3 is written by D2.
From transitions),0,0(),0,0(4 db A→ and),0,0(),0,0(4 fc A→ in D2, we
conclude, by formula 9, that v3 is also read by D2. This is the only variable
manipulated by D2.

4.2.4.2. HFSM structuring based on Variables Manipulated by each Dialog

Under certain conditions, there is a relationship between the state variables
manipulated by each dialog Di and the structure of the FSM of the application
(FSMA), that allow us to structure FSMA into a HFSM (a sufficient condition is that
the enabling condition of each dialog restricts the domain of each variable
independently of the other variables).

Figure 41: State machines of dialogs D1 and D2 projected from the FSM
depicted in Figure 40. Dotted lines represent test cases

Let PFSMDi be the projection of FSMDi onto the variables manipulated by Di, as
illustrated in Figure 41. PFSMDi describes the behaviour of Di.

(b)

(c)

(f)

(d)

(e)
A3

A4
A5

A6

(0) (1)

A1

A1

PFSMD1 PFSMD2

A4

Specification-based GUI Test Automation

111

Figure 42: HFSM with three levels

In the opposite direction, FSMDi is the union of the instances of PFSMDi for all
possible combinations of values of the variables that are not manipulated by Di
(restricted to the enabling condition of Di). For example, FSMD1 (Figure 40) has 2
instances of PFSMD1 (Figure 41) with v1=0 ∧ v3=a, and v1=1 ∧ v3=a.

Given this, FSMA can be organized into a 3-level HFSM, as illustrated in Figure
42.

4.2.4.3. Obtaining the complete FSM from the projections

Consider an application with m dialogs, D = { D1,... , Dm}, manipulating a set of
variables.

 D1

[v3=a]

 D2

[v3
�

a ∧ v1=0]

A2

A7

(b)

(c)

(f)

(d)

(e)
A3

A4
A5

A6

(0) (1)

A1

A1

PFSMD1 PFSMD2

A4

First level

Second level

Third level

(0,0, a) (1,0, a) (1,1, a) (0,1, a)

A2

A1

(0,0, b)

(0,0, c)

(0,0, f)

(0,0, d)

(0,0, e)

(0,1, b)

(0,1, c)

(0,1, f)

(0,1, d)

(0,1, e)

A1

A1

A3

A
4

A5

A6
A3

A4 A5

A6 A4 A4

A2
A7 A7

A1

FSMD1

FSMD2

Chapter IV

112

{ }.,, ||1 VvvV �= (10)

Since there is a domain defined for each variable in V, the state space of the
application, S, considering the restrictions imposed by the application, is a subset
of the Cartesian product of the variables' domains:

.)()(||1 VvdomvdomS ××⊆ � (11)

Each dialog has an associated enabling condition, Ci, that restricts the set of states
where the dialog i is enabled:

.: BoolSCi → (12)

For all s in S, at least one enabling condition, Ci∈{ C1,...,Cm}, evaluates to true:

.)(},...,1{ sCmiSs i⋅∈∃⋅∈∀ (13)

The states in each dialog can be obtained by selecting the states of the application
where Ci is true.

)..1(, miSS Cii == σ (14)

Also, the states of the system are obtained from the union of states of all dialogs.

.
1
�
m

i
i SS

=
=

(15)

Let A = {a1, ... , ak} be the set of actions which can be performed in this software
application and T ⊆ S×A×S the set of transitions whereby. The system can evolve
from one state to another. For each dialog i, 1� i � m, we can compute the set of its
internal transitions Ti.

)..1(,}',)',,{(miSssTsasT ii =∈⋅∈= (16)

For a GUI defined as explained above, it is possible to partition the system so as to
obtain the navigation map that shows the transitions that switch between different
dialogs of the system, and one view describing the behaviour of each dialog
independently. The transitions, T(1), of the navigation map are given by:

.),...,1,..1(},)'()()',,{()1(mjmijisCsCTsasT ji ==≠∧∧⋅∈=
(17)

The states, S(1), of the navigation map can be obtained by:

.)()()1(
3

)1(
1

)1(TTS ππ ∪= (18)

Another partition of the system isolates the behaviour of each dialog
independently. The transitions, Ti

(2), of each dialog, i, shown in this view, are
obtained by projecting the transitions (source and destination states) of dialog i
onto the variables, vi, manipulated by that dialog:

Specification-based GUI Test Automation

113

)..1(,})',,()',,{()2(miTsassasT ivivii =∈⋅= ππ (19)

Accordingly, the states of each dialog i are obtained by projecting the states of the
dialog onto the variables manipulated by that dialog i:

)..1(,}{)2(miSS ivii == π (20)

Ti
(2) and Si

(2) correspond to the second level of the hierarchical structure shown in
Figure 42, PFSMDi.

From these two views, the navigation map (formula 17) and the dialogs (formula
19), it is possible to construct the entire system that corresponds to the third level
shown in Figure 42:

)..1(,
)'()(

))'(,),(()',,(

\\

)2(
)3(mi

ss

TsasTsas
T

viVviV

ivivii
i =

�

�

�

�
�

=
∧∈⋅∈=

ππ
ππ

(21)

.)()3(
1

)1()3(

..1
iinit

mi
i TtoSfrompathaisthereTTT π∧∪=

=
�

(22)

In view of the fact that it is possible to construct the description of the full
behaviour of the system from the description of the behaviour of the dialogs and
the navigation map, they will be used as test coverage criteria for the generation of
test cases to test the behaviour of the GUI. This is an interest test goal because
these views still capture the requirements of the system and have a much lesser
size than the complete FSM.

The following section analyses in more detail the size reduction that can be
achieved when considering the second level of abstraction as a test coverage
criterion instead of the third level.

4.2.5. Independent dialogs

Let's quantify the size reduction that is possible to achieve by considering the
second level of abstraction instead of the third level as a testing goal. There are
two different possible situations that result in two different size reductions: the
case of independent dialogs and the case of dependent dialogs.

Independent Dialogs

Given two dialogs, if the set of variables written by one of the dialogs is disjoint
from the set of variables manipulated by the other dialog, then they are
independent. Informally, two dialogs are independent if the behaviour of any of
the dialogs is not affected by the state and interactions that occur in the other
dialog.

For example, dialogs D1 and D2, in Figure 42, are independent.

Chapter IV

114

The existence of independent modal dialogs allows us to reduce the number of
states to consider. Assume we have an application with one main window,
described by a FSM with m states, and k independent modal dialogs D1, D2, ..., Dk
that can be accessed from the main window, each Di being described by a FSM
with ni states. If the dialogs were not independent (which could happen if they
were modeless), the total number of states of the complete application would be
the product m� n1� ...� nk (because a state of the application is a combination of states
of the main window and the dialog windows). Since we assume that the Dis are
modal, only one dialog can be open at each time. Assume that, in the state
machine that describes each dialog Di, there is one distinctive state that represents
the situation where the dialog is closed, and all the other ni-1 states represent
situations where the dialog is open. The possible states of the application can be
grouped as follows:

− a group representing the situation where all the dialogs are closed and
only the main window is active; this group will have m� 1� ...� 1 = m
states;

− for each dialog Di, a group representing the situation where dialog Di is
open and all the other dialogs are closed; this group will have
m� 1� ...� (ni-1) � ...� 1 = m� (ni-1) states.

Summing up, the total number of states of the application is m� (n1+...+nk -k+1).

In the case of an application with modeless dialog windows, a similar reduction of
the number of states cannot be achieved, because any number of modeless
windows can be open at the same time. But, if the behaviour of a modeless dialog
window is not affected by the state of another modeless dialog window, they can
be considered independent. Formally, given two dialogs, if the set of variables
written by one of the dialogs is disjoint from the set of variables manipulated by
the other dialog, then they are independent.

For testing purposes, it is not necessary to consider all the combinations of states
of the different dialogs, as will be explained in the next section. Basically, it will
suffix to fully test the behaviour of one dialog, for only one particular state of all
the other dialogs (an instance). Roughly speaking, this corresponds to consider a
reduced state machine similar to the one obtained in the case of modal dialogs, for
testing purposes.

Dependent Dialogs

Two dialogs, D1 and D2, are dependent of each other if they can be opened at the
same time and manipulate non-disjoint sets of variables. This behaviour is
illustrated graphically by Figure 43 where the states in each dialog result from the
projection of the states onto the variables manipulated by each dialog. The
illustrated situation means that there is at least one state in dialog D1 that is
possible to achieve by interacting with another dialog D2. In other words, in
Figure 43, the user leaves dialog D1, from state s1, interacts with dialog D2, and
when coming back to dialog D1 it will be in a state, s4, different from the one in
which he left the dialog, s1.

Specification-based GUI Test Automation

115

Figure 43: Dependent dialogs

Reducing the state machine with dependent dialogs as if it were a state machine
with independent dialogs may remove the behaviour between dependent dialogs
(actions A1 and A3, in Figure 43). This is not desirable because this behaviour may
be interesting for testing purposes. One way to overcome this situation is to
consider both dialogs in one group. So, the possible states of the application can
be grouped as follows:

− a group representing the situation where all the dialogs are closed and
only the main window is active; this group will have m� 1� ...� 1 = m
states;

− for each independent dialog Di, a group representing the situation
where dialog Di is open and all the other dialogs are closed; this
group will have m� 1� ...� (ni-1) � ...� 1 = m� (ni-1) states;

− for each set of dependent dialogs {Di,... ,Dj} a group representing the
situation where at least one of the dialogs of the set is opened and all
the other dialogs that do not belong to the set are closed; this group
will have m� 1� ...� [(ni � ...� nj)-1] � 1 = m� [(ni � ...� nj)-1] states.

Summing up, the total number of states of the software system is

m� (n1+...+ni-1 –i-1+[(ni � ...� nj)-1]+1).

4.3. Test Case Generation

Upon structuring the model as explained above, it is possible to reduce the FSM
so as to maintain one instance of each dialog that corresponds to a particular state
of all the other dialogs. This reduced FSM will in turn be used as input to a test
case generation algorithm.

4.3.1. Overview of test case generation with Spec Explorer

Spec Explorer automatically generates test cases from a Spec# or AsmL
specification in two steps (Figure 44). In the first step, a FSM is generated from
the given Spec# or AsmL specification. In the second step, test cases that fulfil
some coverage criteria are generated from the FSM.

S1

S4

A1

A2

PFSMD1 PFSMD2
S2

S3
A3

Chapter IV

116

The FSM is generated by bounded exploration of the state space of the model.
Some techniques available in Spec Explorer to prune this exploration are:

− state filters – Boolean expressions that determine which states to
explore. If the state does not satisfy the given filters then the transition
to a new state is ignored;

− additional pre-conditions – definition of additional pre-conditions to
limit the applicability of actions [191];

− restriction of the domains – the domains of actions' parameters are
bounded to a finite set of possible values;

− equivalence classes – this technique partitions states into equivalence
classes and prevents further exploration from any state of such a class
once a specified number of representatives has been reached. The
exploration algorithm can be configured so as to explore only n states
in each state group with m states;

− stop conditions – conditions over states that stop the exploration once
true;

− scenarios – allows substituting programmatically generated sequences
of actions into the test cases produced by the Spec Explorer in places
where a full exploration is not needed;

− on-the-fly exploration – combines test derivation from a model and
test execution [192] into a single algorithm. This solves
non-determinism by getting immediate feedback from the
implementation and avoiding the pre-computation of the possible huge
test case with all possible responses of the system under test.

Figure 44: Test case generation

The pruning of exploration becomes crucial when talking about modelling and
GUI testing. This is because testing an application through its GUI by simulating
user events entails a significant overhead and results in much slower test

Test suite

�

FSM generation
by bounded
exploration

Bounds

Coverage
criteria

Test case
generation

FSM

Spec Explorer

GUI model
(Spec# or AsmL)

Specification-based GUI Test Automation

117

execution than testing an application through its API. The main challenge is to
generate a test suit of manageable size while sill guaranteeing adequate testing.

As soon as the FSM is constructed, and the coverage criteria chosen, a traversal
engine is used to unwind the resulting FSM to produce behavioural tests that fulfil
the coverage criteria. The coverage criteria can be set to:

− Full Transition Coverage: the test suite generated covers all
transitions of the FSM. In addition, this algorithm can be configured
so as to generate test segments/paths that whenever possible return to
the initial state, and can also be pruned so as to generate test segments
bound by a given number of transitions;

− Shortest Path: the test suite generated is the shortest path (sequence of
transitions) that reaches a specified goal state;

− Random Walk: generates a test suite with a single sequence of
invocations. At each state, one of the outgoing transitions is randomly
selected.

Actions known as probes are checked in every state of the resulting tests, and do
not take part in coverage considerations.

4.3.2. Domain definition

Spec Explorer does not provide support for the definition of the domains of the
parameter actions. This has to be done manually by the user and it is a crucial
point in the testing process. Domains have deep impact in the FSM generated by
exploration of the model. A random definition of the domains may result in a FSM
that does not have relevant properties from the testing point of view. Generating
test cases from a FSM like this will not be very useful because it will not test some
relevant properties or, in the worst case, it will not test anything useful.

The high level scenarios, described in section 4.2.2, identify the main
functionalities of the Notepad application. They describe the requirements of the
application and can be used for requirement coverage analysis. One way to do it is
to apply structural coverage analysis on the scenarios' descriptions in order to
determine the domains' variables needed to achieve their full coverage. There are
different types of structural coverage criteria: statement coverage, decision
coverage, condition coverage, condition/decision coverage, modified
condition / decision coverage (MC/DC), and multiple condition coverage [91].
The scenarios identified are analysed so as to determine which domains to
associate to the variables to use. The criterion used in this analysis is a
generalization for non-Boolean variables of the MC/DC criterion by showing that
each input variable affects independently the functionality under test. The result of
analysing the scenario of Figure 33 with such coverage criterion, which we call
"full coverage of functional dependencies", is summarized by Table 1.

The variable domains needed to test the open and save effects described by
scenario in Figure 33 are the rows with grey shading in Table 1. This set of rows
show that each condition affects independently the outcome of the decision (save

Chapter IV

118

or open). The MC/DC criterion needs a minimum of n+1 test cases for a decision
with n input variables. In this case (Table 1), n+2 test cases are needed because
saveChanges can be set to three different values (Y, N, or C).

Domains are necessary to produce all the effects identified by the scenario but are
not sufficient. The FSM generated from the atomic actions may not explore states
or intermediate states that would be needed to produce the complete desired effect.
So, after defining the parameters' domains that are used in the generation of the
FSM (without scenarios), it is necessary to check if the FSM generated has the
properties considered relevant from the testing perspective. This is a process of
model validation that should precede the test case generation activity.

Inputs Effect

dirty Exists(fileToOpen) saveChanges Exists(fileToSave) overwrite Saved? Opened?

T T Y - T T T

T T Y F - T T

T T Y T F F T

T T N - - F T

T - C - - F F

F F - - - F F

T F N - - F F

T F Y - T T F

T F Y F - T F

F T - - - F T

Table 1: Conditions for testing the save and open effects inside the Open
scenario

4.3.3. Test coverage and adequacy criteria on the FSM

The definition of a good test criterion is important for scalability purposes.
Executing all possible test cases during software testing is not realistic due to the
number of test cases, meaning that we need to select test cases. Test coverage and
adequacy criteria are a set of rules that guide the generation of a test suite
determining when to stop the generation, whether enough testing has been
performed or further tests are needed, and provide an objective measure of the test
suite quality (adequacy for testing the software system). An ideal test criterion
would be capable of generating the smallest test suite that could find (if not all)
the maximum number of errors of a software system.

Spec Explorer provides a set of test coverage criteria to construct a test suite from
the generated FSM (transition coverage; shortest path; and random walk).
However, if the FSM from which test cases are generated does not have the

Specification-based GUI Test Automation

119

desired properties, these criteria can compromise the quality of the tests. A proper
choice of the parameters' domains is crucial but is not sufficient to assure a
generation of a good FSM. For example, it could be possible to have actions that
are allowed only in specific states (where pre-condition holds) that are not
possible to reach because the model does not allow it (model error), or because it
is not possible to reach them within certain time limits or within certain memory
limits. So, adequacy criteria must be defined on the FSM to evaluate its quality
(model validation) in terms of relevant properties from the testing perspective.

There are several adequacy criteria that could be used to evaluate the quality of
the generated FSM (from the previously defined domain's variables): specification
coverage; scenarios; functional dependencies; special case situations; and
projections of the state machine.

Some of these criteria can be easily checked with the current functionalities of the
Spec Explorer, others could be easily implemented as extensions to the tool like,
for instance, adding model checking techniques.

Specification coverage

Specification coverage criteria aim to evaluate if the generated FSM covers the
specification. This corresponds to applying white-box techniques on the
specification that are traditionally applied on code.

It is possible to define coverage criteria to cover more or less detailed aspects of
the specification. The minimum required specification coverage criterion would
be to assure that all the actions in the specification are within the generated FSM.

Other coverage criteria exist which aim, for instance, at covering all statements or
conditions within the specification. One way to evaluate these coverage criteria
with the current functionalities available in the Spec Explorer tool would be to
change the specification so as to construct one action for each of the statements or
conditions, with appropriate pre-conditions, and check if those actions are within
the generated FSM.

Scenario coverage

Scenario coverage criteria aim at evaluating if the generated FSM covers all
possible statements and branches in the specified high level scenarios that describe
the main functionalities of the system. One way to perform this check is to specify
FSM views so as to describe each scenario independently. Such views show the
windows and dialogs with which the user interacts with along the described
scenario. Then, each of those views are analysed (inspected visually) in order to
evaluate if all possible paths described by the parameterized scenario are present.

For instance, one way to check if the scenario described in Figure 33 is present in
the FSM generated by the atomic actions is to build the view in Figure 45.

Chapter IV

120

string OpenScenarioGroup { get{
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (IsEnabled("MsgSaveChanges") && svBfrOp en)
 return "MsgSaveChanges";
 else if (IsEnabled("Save") && svBfrOpen)return "Save";
 else if (IsEnabled("MsgAckFileNotFound"))
 return "MsgAckFileNotFound";
 else if (IsEnabled("MsgOverwriteFile") && svBfr Open)
 return "MsgOverwriteFile";
 else if (IsEnabled("Open")) return "Open";
 else if (dirty) return "Dirty";
 else return "NotDirty";
}}

Figure 45: Open scenario view

Another way to check if the scenario is present in the generated FSM, but
currently not supported by Spec Explorer, would be to express all different paths
of the scenario as high level temporal logic formula and use model checking
techniques to produce counter-examples showing that those paths are within the
model.

~E[�(IsEnabled("SaveChanges")-> � (IsEnabled("Open"))]
~E[�(IsEnabled("SaveChanges")-> � (IsEnabled("Save"))]
~E[IsEnabled("SaveChanges ")->
 � (IsEnabled("Save")-> � (IsEnabled("Open")]
...

Since the high level temporal logic properties are negated, should the model
checker find a counter-example for each of them then the scenario is fully within
the generated FSM.

Specification-based GUI Test Automation

121

Functional dependencies coverage

Functional dependency coverage criteria aim to evaluate if the generated FSM
covers all functional dependencies needed to show that all variables affect
independently the behaviour of the system. This coverage criterion is a
generalization for non-Boolean variables of the MC/DC criterion. The tables
constructed throughout the domain's definition may be used as a base to perform
this check.

Special cases coverage

Special case coverage criteria aim at evaluating if the generated FSM covers all
the identified boundary test conditions. Boundary test conditions correspond to
situations near limits of valid ranges where errors are most likely to occur. Some
of these situations may be covered only by huge FSMs and sometimes it may be
useful to define scenario actions to drive the application into such states, goal
states, where those boundary situations happen as a way to reduce the required
FSM size needed to cover them.

One way to check if the special cases are present in the FSM generated by the
atomic actions is to define different views of the model expressing those situations
as FSMs.

An example of a boundary test condition related to the find functionality inside the
Notepad application can be: "the cursor's position is in the middle of the word to
look for". This can be expressed in Spec# as:

string AtTheMiddleGroup { get {
 if (Exists{ i in Set{0..text.Length};
 posCursor>i && posCursor<i+findWhat.Length &&
 i==text.IndexOf(findWhat)})
 // IndexOf reports the index of the
 // first occurrence in this instanc e of
 // the findWhat word
 return "InTheMiddle";
 else return "NotInTheMiddle";

and visualized in the Figure 46.

Figure 46: Coverage analysis of a special case condition

Chapter IV

122

State machine projection coverage

State machine projection coverage criteria evaluate if the generated FSM covers
relevant projections of the system. One of these projections is the one that
describes the independent behaviour of the dialogs within the application and the
navigation map. The algorithm developed to reduce the complete FSM while
guaranteeing this coverage degree will be the subject of the following section.

These views are of interest as testing goals because they still capture the
requirements of the system and have a much lesser size than the complete FSM.

4.3.4. FSM reduction

A pruning technique, based on the state machine projections criteria, was added to
Spec Explorer to reduce the size of FSMs obtained from GUI models [151]. The
FSM is organized in a hierarchical structure (as illustrated by Figure 42) that is
used as input to the FSM reduction algorithm. Firstly, independent dialogs are
identified and highlighted in a HFSM built from the FSM. Then, the portion of the
FSM that describes each dialog is reduced. Spec Explorer generates test cases
from the reduced FSM, and tests the conformity between the specification and the
implementation. To evaluate the conformity between a specification and an
implementation/GUI, additional functionalities must be developed to observe the
GUI updates resulting from the interaction. The GetText() method to
observe/read the text in a textbox is one example of those functionalities (see
Figure 29 at page 96).

Using the transitions’ state coverage criteria to generate test cases from the state
machine of Figure 40 (with 18 transitions) we would get 4 test cases (paths) with
21 steps:

),1,1(),1,1(),0,1(),0,0(),0,0(),0,0(),0,0(117642 aaaedba AAAAAA →→→→→→
),0,0(),0,0(),0,0(),0,0(),0,0(5432 efcba AAAA →→→→

),1,1(),1,0(),1,0(),1,0(),1,0(),1,0(),0,0(764211 aedbaaa AAAAAA →→→→→→
),1,0(),1,0(),1,0(),1,0(),1,0(),0,0(54321 efcbaa AAAAA →→→→→

Since D1 and D2 are independent dialogs, they don’t need to be tested every time
variables on which they don’t depend change. Only one instance of each dialog
needs to be tested. To test dialog Di, the values of the variables that are not
manipulated by Di are fixed to a particular value, and the transitions’ state
coverage criteria is applied to the PFSM of Di to generate test cases. For example,
to test D1 we could fix v1=0 (v3=a is already fixed) and generate the test case
illustrated by the dotted line in Figure 41. To test D2 we could fix v2=0 (v1=0 is
already fixed). With this approach, only 7 transitions are exercised, instead of 21.
The instances of D1 and D2 that are tested are the ones shown on the left-hand side
of Figure 40.

To fully test the application, actions that do not belong to these dialogs, also have
to be exercised. This is the case of actions A2 and A7 in Figure 40. Applying the
same approach to each of these actions (each one can be regarded as a dialog with

Specification-based GUI Test Automation

123

a single action), we conclude that only one instance of each action need be tested
in this case. For example, we can exercise (test) the instances of A2 and A7 shown
as thick lines in Figure 40. Overall, the transitions that need be exercised are all
the transitions shown as thick lines in Figure 40. Three test cases (paths), with a
total of 10 steps, are enough to cover them. So the size of the test suite is reduced
from 21 steps to 10 steps:

),1,0(),1,0(),0,0(11 aaa AA →→

),0,1(),0,0(),0,0(),1,0(),0,0(7642 aedba AAAA →→→→
),0,0(),0,0(),0,0(),0,0(),0,0(5432 efcba AAAA →→→→

In some cases, it is not sufficient to test only one instance of each dialog. After
assuring that one instance is fully tested, a second instance may have to be
traversed (usually only in part, by the shortest path) in order to reach some state or
transition that has to be exercised. For example, assume that, with respect to
Figure 40, it is important to reach state (0,1,e), because it is the source of a
transition that has not been tested yet (not represented in Figure 40). In such case,
the path shown by the dotted lines of Figure 40 also has to be included in the test
suite.

In order to explain this FSM reduction algorithm, consider,

− S– set of all states of the software application;

− iD , where 1
�

 i
�

 m – dialog i (first level of Figure 42);

The algorithm starts by selecting one instance to test, ITTi, for each dialog/window,
i. Each dialog can have different instances that correspond to different values for
the non-manipulated variables of that dialog. In Figure 40 it is possible to see that
dialog D1 has two instances that correspond to two different values for the
non-manipulated variable (the first one) namely 0 and 1. The set of all instances of
one dialog i, I i, can be obtained by projecting its states, Si, onto the variables
non-manipulated by that dialog (V \ vi).

)..1(),(\ miSI iviVi == π (23)

The instance to test is selected from the set I i and corresponds to fixing the value
of the non-manipulated variables

)..1(, miII iTTi =∈ (24)

and then calculating the states to test in each dialog i (STTi), which are given by

{ })..1(,)(\ miIsSsSTT TTiviVii ==⋅∈= π (25)

The states not to test (the excluded states) in dialog i are given by,

)..1(,\ miSTTSSNTT iii == (26)

Chapter IV

124

The states that do not belong to any dialog are the states of the main window. To
ensure that those states are not excluded from the FSM another step is performed
in the algorithm: it selects all states of the main window given by

�

�

�

�
�

∪
= =
� �

mi mi
ii SNTTSTTS

..1 ..1

\
(27)

and ensures that there is a path to each of those states by calculating the minimum
path to reach them from the starting state. All states that are traversed by these
paths are added to the set of states to test (STT). It may be possible to add states
that were previously in an instance not to test.

It is important to have in mind that the exploration process may be stopped by the
user before ending. This means that the instances of the dialogs may not be
completed. So, instead of selecting randomly an instance to test, it is important to
test an instance, k, with maximum number of states, that is, which obeys

})({#})({#,..1 \\ kviVijviVii IsSsIsSskjIj =⋅∈≤=⋅∈∧≠=∀ ππ

(28)

Once FSM is reduced, an algorithm to calculate the test suite may be applied. In
general, the selection of sequences ensuring that all of the application’s behaviour
is exercised, is a problem as hard as deciding the reachability of a state. Partial
order reduction (POR) techniques used in model checking [156] address a very
similar problem: Given a property of the system, e.g., a temporal property
describing the reachability of a state, POR reduces the number of states that must
be explored in order to decide whether the property holds for the entire state
space. POR exploits redundancies of the state space like the commutativity of
enabled transitions.

4.4. GUI Mapping Tool

As already mentioned, to perform conformance tests with Spec Explorer, a
binding or mapping between the model actions and implementation methods in a
.NET assembly must be provided. When the implementation is a .NET
application, the mapping can be easily established since the model is written in a
.NET language as well. For APIs exposed by other means, some glue code might
be needed to map forth and back the data and method calls. However, when the
application’s functionality is only exposed through its GUI, then the application
must be driven through the GUI’s abstraction layer, by simulating the actions of a
user interacting with it.

Specification-based GUI Test Automation

125

Figure 47: GUI modelling and testing process

In previous experiences of using Spec Explorer to model and test GUI
applications [151], it was realised that, even in the case of simple applications
such as Notepad, the manual building of the GUI mapping code, the code that
maps forth and back the data and method calls, was unpractical and required too
much effort. To solve that problem, a GUI Mapping Tool was developed and
integrated with Spec Explorer (see Figure 47).

The GUI Mapping Tool assists the user in relating the model actions ("logical"
actions) to "physical" actions on "physical" GUI objects. A major difficulty solved
by the tool is the identification of the GUI physical objects that the model actions
refer to. The mapping code is automatically generated from high-level mapping
information and methods of the intermediate code are automatically bound to
related modelled actions of the specification. After all these steps, test cases can
be finally generated and executed and inconsistencies between the specification
and the implementation are reported. Further information about this tool will be
provided in the sections which follow.

Model-to-implementation mapping with the GUI Mapping Tool

The aim of the GUI Mapping Tool is to reduce the manual work involved in
model-based testing of software applications through their GUI.

As already mentioned above, the GUI Mapping Tool assists the user in relating
the logical actions described in the model to physical actions on physical GUI
objects of the application under test (AUT). This tool (Figure 48) has a front-end
(Figure 49) that shows the mapping information gathered so far and gives access
to the GUI Spy tool and the GUI Mapping Code Generator. The Spy tool is used
to get information about physical GUI objects in the AUT, in a way similar to the

GUI
modelling

GUI application
Under test

(binary executable)

��������

���
���

���

Test results

Test suite

Test case
generation

Spec Explorer

GUI mapping
code

Test
execution

Spec Explorer

�GUI model
(Spec# or AsmL)

GUI mapping
definition

GUI mapping
 tool

new

Chapter IV

126

Spy++ tool that ships with Microsoft Visual Studio. The code generator exports
mapping information to XML files and C# the mapping information gathered. The
C# code generated is based on calls to a reusable GUI Test Library. Further details
will be provided in the sequel.

Figure 48: Architecture of the GUI Mapping Tool

The GUI Spy tool

The GUI Spy Tool is accessible from the front-end of the GUI Mapping Tool (see
Figure 49). It allows the user to point out the physical GUI object that is the target
of each logical action specified in the model.

Figure 49: Front-end of the GUI Mapping Tool

GUI mapping
 tool

GUI Spy tool

Front-end

GUI
Mapping Code
Generator

GUI action/object
mapping (XML)

��������

���
���

���

GUI Application Under
Test (bin. exec.)

2: make GUI object visible

3: use to point
out GUI object

1: select model
action

GUI object mapping
(XML)

�GUI model
(Spec# or
AsmL)

GUI action
mapping code

C#

new

Specification-based GUI Test Automation

127

After selecting the logical action in the main grid (first column), the user drags
and drops the spy icon on top of the corresponding physical GUI object in the
AUT. If the desired GUI object is not visible, the user will have to interact also
with the AUT in order to make it visible. The physical properties of the GUI
object selected, as well as a logical name inferred by the tool (to be explained later
on), are then displayed in the grid (see Figure 49).

Figure 50: Selection of menu options

The Microsoft Visual Studio Spy++ tool can only gather information about proper
windows (or GUI objects with a window handle). Our tool goes a bit further: it
can also gather information about window menus. So, testers wanting to establish
a relation between a specification method and an item inside a menu, can drag and
drop the mouse on top of the window that contains the menu at which time
another window (at Figure 50) is opened with all the submenu options, allowing
then to choose submenu options ("SubOption" column of Figure 49). A similar
option exists for controls such as tab pages and toolboxes.

Logical names of GUI objects

Every physical GUI object is associated to a logical name. This keeps
specification and implementation levels independent and allows the generation of
code more readable and easier to construct manually, if desired.

Default logical names are automatically generated by the tool. The logical name is
equal to the namespace name followed by the name of the specification method
without prefix (Set, Get, etc.). In order to obtain the same logical name for all the
logical actions with the same target physical object, it is desirable that the names
of those actions are constructed with a different prefix and the same suffix.

Chapter IV

128

XML files generated

The mapping information captured is saved into two XML text files:

− a file with the mapping between model actions and the logical names
of the target GUI objects (GUI action/object mapping file in Figure
48);

<Action id="internal void MyNotepad.Open()">
 <LogicalName>MyNotepad.Open</LogicalName>
</Action>

− a file with the mapping between logical names and physical properties
of GUI objects (GUI object mapping file in Figure 48).

<GUIObject logicalName="MyNotepad.Open">
 <ClassName>Notepad</ClassName>
 <Caption>Untitled - Notepad</Caption>
 <SubClassName>menu</SubClassName>
 <SubOption>&Open...Ctrl+O</SubOption>
</GUIObject>

The mapping information needs to be gathered just once for each application. But
if the specification is changed and the mapping information has to be updated, the
XML files can be loaded by the GUI Mapping Tool for updating. The XML files
can also be changed directly by the user.

These XML files are also used for code generation and test execution, as is
explained in the sequel.

GUI Test Library

The C# code generated is based on calls to a reusable GUI test library that
provides methods to simulate the actions of a user interacting with a GUI
application and observe the content of GUI objects. This library was constructed
in C# extending a previous existing library to best fit the needs.

The GUI test library provides three kinds of methods (Figure 51):

− methods that act upon GUI objects simulating the user, like sending
text to a control that accepts text input (SendText). The target GUI
object is identified by its logical name. Each method may have
additional parameters with information needed to perform the action.

− methods that observe properties of GUI objects, like the text
(GetText), insertion point (GetInsertionPoint), and selected
text (GetSelectedText) of a text box. The target GUI object is
also identified by its logical name. The return value conveys the
information requested.

− methods that provide physical information about GUI objects
identified by their logical names in order to identify those objects in
the real AUT. This information may be loaded from a XML file.

Specification-based GUI Test Automation

129

// To act upon GUI objects
void Click(string GUIObjName);
void SendText(string GUIObjName, string txt);
void SelectText(string GUIObjName, int start, int e nd);
void SelectSubOption(string GUIObjName, string opti on);
void SelectCheckBox(string GUIObjName, bool check);
void SelectListIndex(string GUIObjName, int index);
void SelectMsgBoxOp(string GUIObjName, string optio n);

// To observe properties of GUI objects
string GetText(string GUIObjName);
string GetSelectedText(string GUIObjName);
int GetInsertionPoint(string GUIObjName);
bool GetCheckBox(string GUIObjName);
int GetListIndex(string GUIObjName);

// To map logical object names to physical objects
void LoadXMLObjMapping(string XMLFileName);

Figure 51: Examples of methods implemented in the GUI test library

Rules for mapping logical actions into physical actions

Besides identifying the physical GUI object that is the target of each model action,
it is also necessary to select the appropriate method from the GUI test library,
which will simulate a physical action of the user on that GUI object.

The GUI Mapping Tool automatically infers the appropriate library method based
on the type of the GUI object, and the signature of the model action.

Some required heuristic rules are:

− When the sub option is filled in the mapping information, it is assumed
that the logical action is modelling the action of a user selecting a sub
menu option, a tab option or a tool button inside a toolbox
(SelectSubOption method in the test library). This is the case of
actions Open, Close and Find in Figure 49.

− When the logical action is an inspection method, has a string as return
value and is mapped to a textbox, it is assumed that it is modelling the
eyes of the user looking at the content of the textbox, thereby
retrieving the text (GetText method in the test library). This is the
case of action GetText in Figure 49.

− When the logical action's name has set as prefix, is mapped to a
textbox, and has one parameter of string type, it is assumed that it is
modelling an action that replaces the content of the related textbox
with the contents passed in the parameter.

− When a logical action has a string parameter and is mapped to a
textbox, we assume that the action is modelling an event that sends
text (SendText method in the test library). This is the case of actions
InsText and FindWhat in Figure 49.

Chapter IV

130

− When the prefix of the modelled action's name is msg and the logical
action has one parameter of string type, it is assumed that the
specification action is modelling the interaction with a message box
window by pressing the specific button that has the caption passed in
the parameter.

− When the prefix of the modelled action's name is ack , it is assumed
that the specification action is modelling the physical action of
pressing the button of an acknowledge message box.

− When the logical action has neither parameters nor return value, and is
mapped to a button, we assume that physical action is to click the
button (Click method in the test library). This is the case of action
Cancel in Figure 49.

− When the logical action is mapped to a ComboBox and has one
parameter of type int, it is assumed that it is modelling an action that
selects the item from the list of items in the position given by the
parameter.

Code generation

Spec Explorer requires actions in the model to be bound to implementation
methods (in a .NET assembly) with identical signatures (identical return type,
number of parameters, and parameters' types). To fulfil this requirement, the tool
generates C# code with methods with the same signature as the model actions, as
illustrated in Figure 52. For each logical action, a method is generated with the
same signature, calling the method of the GUI Test Library inferred according to
the rules described before, with the logical name of the target GUI object as
additional parameter.

#region automatically generated code
 class GeneratedCode{
 public static void LaunchNotepad(){
 LoadXMLObjMapping("C:\\temp\\Notepad.xml");
 new App(@"Notepad.exe");
 }
 public static void Open(){
 UserEvents.SelectOption("Notepad.Open");
 }
 public static void InsText(string p0){
 UserEvents.SendText("Notepad.Text",p0);
 }
 public static string GetText(){
 return UserEvents.GetText("Notepad.Text");
 }
 //...
}
#endregion

Figure 52: Excerpt of the code generated automatically for the Notepad
example

Specification-based GUI Test Automation

131

The start function launches the application and reads the mapping information
between logical and physical GUI objects from the GUI object mapping XML file
(in Figure 48). Every function has one parameter with the logical name of the
interactive object where the action will take effect and possibly other parameters
with data needed for the action, e.g., text to send to a textbox.

Only one instance of the AUT should be opened when executing the test cases.
Otherwise, the tool can pick the wrong window thus compromising the test cases.
This problem can be partially solved by generating test cases that return to the
initial state. However, when a specific path does not run till the end, for instance,
because an error was detected, it may leave windows of the application opened.
To overcome this problem, some code is added manually to the start method
(LaunchNotepad) to close all windows that were opened by the previous
testing trace/path.

Test execution

As soon as the mapping code is available and compiled into a library, a reference
to this library is added to the Spec Explorer project, and the test cases are
generated, it is possible to execute the test cases autonomously without user
intervention.

Let’s assume we have a deterministic model. Then, each test case consists of a
sequence of steps. For each step, a specification action and its related
implementation method are executed in lock-step mode (e.g., the Close()
method in Figure 53). At the implementation level, each method does a call to a
method defined in the generic GUI test library (e.g., Click() in Figure 53) that
interacts with the GUI AUT simulating the user actions. The query actions (with
the Get prefix) get information about interaction object properties that are
compared with the expected values obtained from the specification. Whenever
inconsistencies are detected, they are reported.

In GUI testing, inconsistencies between specifications and implementations can
rise for several reasons:

− the model is trying to act on a control that is not enabled or cannot be
found;

− the model is trying to act on a window that is not reachable or is not
opened (e.g., a modal dialog is open and the window we want to reach
is behind that dialog);

− the expected result was not displayed (e.g., a textbox does not display
the expected content).

The path that gave rise to the error must be analysed to infer the actual reason for
the error to happen.

While testing Notepad, we discovered two sequences of actions which lead to an
inconsistency between our intuitive model and the actual Notepad application:

Chapter IV

132

1. Type text.

2. Search for text using the find dialog (Ctrl-F). Close the dialog.

3. Open the replace dialog (Ctrl-H). Close the dialog.

4. Press the F3 key (shortcut for "Find Next").

Notepad will search upwards instead of downwards.

1. Type text, for instance, "aaa".

2. Search for text (e.g., "a") using find dialog (Ctrl-F) in upward
direction. Close the dialog.

3. Open the find dialog (Ctrl-F) and close it immediately (press Cancel
button).

4. Press the F3 (shortcut for "Find Next").

Notepad will search downward instead of upward as expected.

These are sequences of events that manual test would probably miss since they
aren’t common sequences of events.

Figure 53: Test execution

4.5. Conclusions

This chapter presented the main contributions of our work, namely, an approach to
model GUIs with HFSMs and to generate test cases from such models in an
optimized way, taking advantage of the hierarchical structure.

The Spec# specification language, developed by Microsoft Research based on
Abstract State Machines, is used to construct the model of the application. This
model was converted automatically into a FSM using the Spec Explorer tool

Spec Explorer Test suite

�GUI model
(Spec# or AsmL)

Compare Execute

GUI mapping code
C# _GUI test

library
GUI application

under test
(bin. exec.)

��������

���
���

���

Test result

Expected
result

Actual result

GUI object
mapping
(XML)

e.g. Close()

e.g. Click(...) e.g.
SendMessage(....)

e.g. Close()

Specification-based GUI Test Automation

133

which is a model-based testing tool also developed by Microsoft Research. With
the definition of expressions to construct state groups, it was also possible to
structure the model into a HFSM. This tool is also used to generate test cases and
execute them to perform conformity checks between a specification and an
implementation.

The Notepad application was used as a running example to illustrate our approach.
It was possible to reduce the states of an initial incomplete model of the Notepad
application from 69 to 41 states using the structure of the corresponding HFSM.

To test conformity between the specification and the implementation, intermediate
code in C# code is needed to simulate the user actions interacting with the
application. Our approach automates this task thanks to a tool, called GUI
Mapping Tool, which was developed on purpose.

The Mapping tool reduces the effort to test applications through their GUI based
on a formal specification in Spec#. This tool is an extension to Spec Explorer tool
that already supports modelling, test case generation, and test case execution.

An overview of the GUI model and test process was provided and the components
of Spec Explorer as well as the components of the tool extensions were described.

The GUI Mapping Tool has three components:

− a Spy tool that captures information about the real interactive objects
where modelled actions occur;

− a front-end that maps the modelled actions to real objects by dragging
and dropping the mouse on the real interactive objects;

− a code generator to construct code simulating the user actions
interacting with the GUI AUT;

The tool has some limitations: it requires manual definition of input domains; it
only addresses Windows applications; and it does not deal with
internationalization, i.e., variable name mappings.

Spec Explorer together with the GUI Mapping Tool can be used to test existing
software applications, or it can be used to assist the development of new software
applications and to test them through their GUI. In the former case, a reverse
engineering process could be useful to construct a model, or part of the model, of
an arbitrary application exhibited by its GUI. In the latter case, the specification of
the application (or part of the application) is constructed later on to be
implemented and tested using automatically generated mapping code.

135

Chapter V

Case studies

This chapter presents some case studies which illustrate and
evaluate the specification-based testing approach proposed in this
dissertation.

The specification-based testing approach put forward by this dissertation was
validated with the help of two experiments performed on two different kinds of
software application: Microsoft's text editor Notepad and a Java software
application which manages database files of contacts (Address Book).

Each of these experiments involved the construction of the corresponding
software application models, test case generation, and execution.

The Address Book application is based on the Standard Widget Toolkit (SWT).
SWT is a set of GUI widgets and related classes which are integrated with the
native window system and can be used to build rich client user interfaces in Java.
SWT has been developed by the Eclipse Foundation (IBM, Intel, Borland,
Computer Associates, etc.) as a part of the open-source Eclipse platform made
available in an operating system independent manner.

The Address Book software application was modified with injected errors so as to
evaluate how sharp the approach is in fault detecting. The same was not
performed on the Notepad application because its source code was not available.

The experiments were performed by a HewlettPackard Pavilion Notebook
dv1140EA with the following characteristics:

− CPU: 1.60GHz Intel Pentium M 725 processor;

− RAM: 1.21GB

Chapter V

136

− Operating System: Microsoft Windows XP.

Whenever possible, quantitative measures concerning these two case studies are
presented.

5.1. Notepad application

Notepad (Figure 54) is a basic text editor that ships with the Microsoft Windows
operating system. It can be used to edit, view, create and update simple text files:

Edit – The GUI makes it possible to type text; select text; cut, copy, paste, and
delete text; and replace, all at once or one by one, the occurrences of one string in
a text by another one.

View – The user can open an existing text file in disk, browse through the text,
and search for the occurrences of a string in the text (Find) in the following rules:

− case sensitive or case insensitive way;

− backwards or forwards with respect to the current mouse position.

Create or update – the user can create a new text file (save), or update an
existing text file (overwrite) in disk.

Figure 54: Notepad main window

5.1.1. Model

The model of the Notepad software application captures the atomic actions
available at each time to the user and can be consulted in Appendix A.1. (Format
and View functionalities are not taken into account). Only the Open and Find
functionalities will be used to illustrate the approach. The Open dialog is a modal
dialog and the Find dialog is a modeless dialog. Two models were constructed at
different levels of abstraction: taking the focus property of the windows and
interactive controls into account, and abstracting from such properties.

The main difference between the two models remains in the fact that to model the
focus property of windows and interactive controls inside windows, additional

Case studies

137

state variables and methods are needed. The windows focus property is modelled
inside the window manager by one state variable that keeps the name of the
window/dialog which has the focus at each moment, and methods to manipulate
(write and read) that property: SetFocus , GetWindowWithFocus , and
HasFocus . Furthermore, there is one state variable inside each window/dialog to
indicate the control that has the input focus at each moment and additional
methods to switch focus between controls belonging to the same window/dialog.
Each method has at least one pre-condition requiring the focus to be set to the
interactive control where the action will occur. It is possible to set focus on a
window whenever that window is enabled (meaning that it is open and does not
have a modal window belonging to the same software application on top of it).

Should the focus property be abstracted away, the state variables
ctrlWthFocus and the methods SetControlFocus and
SwitchToWindow are not needed. Each method has at least one pre-condition
ensuring that the window where the modelled action occurs is enabled, instead of
checking if the window is focused.

Abstracting from the focus property will decrease the total number of actions
within the model as there will be no actions to switch focus between windows and
interactive controls. This has an impact on navigation map views which will be
dealt in the sequel.

Notepad specification with the focus property modelled

The state of the Notepad application main window and the actions on the main
window are defined inside a namespace called Notepad (see display below).

When a new window is created (AddWindow), the window manager set the input
focus immediately on it.

After launching the application, it is possible to interact with the client area by
typing text (InsText(string txt)), selecting text (SelText(int p0,
int p1)) – where p0 and p1 are text positions, and with the main menu to open
the Open or Replace dialogs (Open(), Replace()) or close the application
(Close()). Should the contents of the main window have changed, closing the
application or opening another file will be preceded by a message offering the user
the opportunity to save changes (MsgSvBfrClose(string op) and
MsgSvBfrOpen(string op)). Actions modelling message boxes will have
at least one pre-condition requiring focus set to the message box window.

Module
namespace Notepad;

Types
type dir = string where value in Set{"Up","Down"};
type windows = string where value in
 {"Notepad", "Find", "Replace"};

Chapter V

138

Variables
// editing status
string text = "", // the text of the main wi ndow
 selText = ""; // text selected
int posCursor = 0; // cursor position within the text
bool dirty = false; // has text been update d?
// file being edited
string fileOpened = "",
 directory = "E:"; // for testing purposes
// find and replace settings
string findWhat = "", // string to search
 replaceWord = ""; // string to replace for
dir direction = ""; // "Up" or "Down"
bool matchCase = false, // case sensitive search?
// temporary state of the open feature
bool svBfrOpen = false;
// temporary state of the close feature
bool svBfrClose = false;

Controllable actions
void LaunchNotepad() // start the Notepad applicati on
void Close() // close the Notepad application
void MsgSvBfrClose(string op) // save changes?
void Open() // open the open dialog
void MsgSvBfrOpen(string op) // save changes?
void Save() // save text in memory to disk
void SaveAs() // open the save dialog
void InsText(string txt) // insert text in the main window
void SelText(int p0,int p1) //select text between p 0 and p1
void Find() // open the find dialog
void FindNext // find another occurrence of the "fi ndWhat"
void MsgAckCantFindWord() // can't find the word
void Replace() // open the replace dialog
void SwitchToWindow(windows win) // switch window f ocus

Observable action
string GetText() // observe the text within the mai n window

When the Open dialog is open (Figure 55), it is possible to type a file name
(SetFileName(string fn)), and press buttons Cancel (Cancel()), to
close the dialog, or Open (Open()), to open an existing text file (the other
interactive controls were not modelled). Since Open dialog is modal, it is not
possible to interact with the main window of the application until this dialog is
closed. When trying to open a nonexistent file, a message box informs the user of
that fact (Figure 56).

Case studies

139

Figure 55: Open dialog

The only action the user can perform on that message box is to acknowledge the
message by pressing the "Ok" button (MsgAckFileNotFound()).

Figure 56: File not found message box

Module
namespace OpenDialog;

Types
type OpenCtrls = string where value in
 Set{"Cancel","Open","FileName"}

Variables
string fileNameO = "*.txt", //name of the file
 dirO = "E:"; // current directory
 // ("E:" for testing purposes)
OpenCtrls openCtrlWthFocus = "FileName"; // control
 // with the inpu t focus

Chapter V

140

Controllable actions
void Cancel() // press the cancel button
void Open() // press the open button
void MsgAckFileNotFound() // acknowledge error mess age
void SetFileName(string fn)//fill in the file name text box
void SetCtrlFocus (OpenCtrls c) // switch control f ocus

The relevant state of the file system is modelled inside a namespace called
FileManager (Figure 57) by a table/map that associates keys (file names) with
values (file contents). Each individual key-value pair (called a maplet) models a
file.

This module has methods to create, read, and delete files and also methods to
query the state of the file system such as asses if a filename exists
(FileExists), and asses if a file name is valid (IsValid). A file name is valid
if it does not have weird characters e.g., '\\', '*', '/', ':', '?', '\"', '<', '>', '|'.

namespace FileManager;

Map<string,string> files = Map{};

public void CreateFile(string fileName, string text)
 requires !FileExists(fileName); {
 files = files + Map{fileName :> text};
}
public bool FileExists(string fileName) {
 choose (i in files, i == fileName) return true;
 else return false;
}
public string ReadFile(string fileName)
 requires FileExists(fileName); {
 return files[fileName];
}
public void DeleteFile(string fileName)
 requires FileExists(fileName); {
 files[fileName] = none;
}
bool IsValid(string fileName) {
 if (file == "") return false;
 // IndexOfAny reports the index of the first occu rrence
 // in this instance of any character in a specifi ed
 // array of Unicode characters
 if (file.IndexOfAny(new char[8]{
 '\\','*','/',':','?','\"','<','>','|'})> = 0)
 return false;
 else return true;
}

Figure 57: File manager module

Upon opening the Find dialog (Figure 58), it is possible to fill in the word to
search for (SetFindWhat(string txt)), to choose the direction to look for

Case studies

141

(SetDirection(string d)), to choose if the search is case sensitive or case
insensitive (SetMatchCase(bool op)), and also to press the buttons Find
Next (FindNext()), and Cancel (Cancel()). The Find Next button is enabled
only when the Find What text box is not empty. After the Find Next button is
pressed, if the string to look for does not exist, a message box is shown to the user
who is expected to acknowledge it by pressing the Ok button
(MsgAckCantFindWord()). Since Find is a modeless dialog, it will be also
possible to switch to the Notepad main window
(Notepad.SwitchToWindow("Notepad")) and the other way around
(Notepad.SwitchToWindow("Find")).

Figure 58: Find dialog

Module
namespace FindDialog;

Types
type FindCtrls = string where value in
 Set{"FindWhat","Direction","MatchC ase",
 "FindNext","Cancel"}
type dir = string where value in {"Up","Down"};

Variables
string findWhatF = ""; //word to look for
dir directionF = "Down"; //direction to look for
bool matchCaseF = false; //case sensitive s earch?
FindCtrls findCtrlWthFocus = "FindWhat"; //control with the
 //focus

Controllable actions
void Cancel() // press the cancel button
void SetFindWhat (string fw) // fill "Find what" te xt box
void SetMatchCase (bool op) // match case option
void SetDirection(dir d) // select direction
void FindNext() // press the "Find Next" button
void SetCtrlFocus() // switch control focus
void MsgAckCantFindWord() // acknowledge user messa ge

The complete model of the Notepad application can be found in Apendix A.1.

Chapter V

142

5.1.2. Scenarios

Models of the GUI under test can be built at different levels of abstraction. The
specification of the Notepad application presented above describes the possible
atomic actions the user can perform when interacting with the GUI. However, it is
possible to describe the main functionalities of the Notepad application at a higher
level of abstraction as the main usage scenarios of the GUI under test. High level
scenarios capture user visible functions (or high level requirements) to achieve
user goals and model typical ways of using the GUI. Scenarios can be described
by "scenario actions" inside Spec Explorer. The high level scenarios are
constructed on top of atomic user actions that are defined in the complete model
of the system (in Appendix A.1.). Scenarios describe possible sequences of atomic
user actions. For example, the FindScenario presented bellow describes the
sequence of actions a user should perform to search for an occurrence of a string
(as indicated by the word parameter) in backward or forward direction (as
indicated by the direction parameter), and in case sensitive or case insensitive
way (as indicated by the matchCase parameter).

FindScenario: It is possible to search a string within a text:

− In a case sensitive or case insensitive way;

− Look for the string backwards or forwards relative to the mouse
position within the text.

[Action(Kind=ActionAttributeKind.Scenario)])
void FindScenario(string word, dir direction,
 bool matchCase)
requires IsEnabled("Notepad") && text != "";
{
 Notepad.Find();
 assert IsEnabled("Find");
 FindDialog.SetFindWhat(word);
 FindDialog.SetDirection(direction);
 FindDialog.SetMatchCase(matchCase);
 FindDialog.FindNext();
 if (IsEnabled("MsgAckCantFindWord"))
 FindDialog.MsgAckCantFindWord();
 FindDialog.Cancel();
}

Figure 59: Find scenario within Notepad application

The assert clause is used to express a condition that must hold when it is reached.
Although it will not be checked by the implementation (only by the model), it was
introduced to improve the documentation of the scenario.

ReplaceScenario: It is possible to find a word (indicated by the word parameter)
in a text file, in a case sensitive or case insensitive way (indicated by the

Case studies

143

matchCase parameter), and replace that word by another one (indicated by the
replaceWord parameter) (Figure 60).

− A message box will inform the user whenever the word to look for
does not exist in the text. In this case, the user should acknowledge the
message box by pressing the Ok button
(MsgAckCantFindWord());

− It is possible to replace one by one the occurrences of the string in the
text or replace all occurrences of the string in one step (as indicated by
the repAll parameter).

[Action(Kind=ActionAttributeKind.Scenario)])
void ReplaceScenario(string word,
 string replaceWord,
 bool matchCase, bool repAll)
requires IsEnabled("Notepad");
{
 Notepad.Replace();
 assert IsEnabled("Replace");
 ReplaceDialog.SetFindWhat();
 ReplaceDialog.SetReplaceWith(replaceWord);
 ReplaceDialog.SetMatchCase(matchCase);
 if (repAll) Replace.ReplaceAll();
 else {
 ReplaceDialog.FindNext();
 ReplaceDialog.Replace();
 }
 if (IsEnabled("MsgAckCantFindWord"))
 ReplaceDialog.MsgAckCantFindWord();
 ReplaceDialog.Cancel();
}

Figure 60: Replace scenario within Notepad application

OpenScenario: It is possible to load (open) data from a file in disk (the name of
the file to open is indicated by the fileToOpen parameter). If the file name to
open does not exist, a message box appears which the user is expected to
acknowledge by pressing the Ok button
(OpenDialog.MsgAckFileNotFound()). If the text in the main window
was updated, a message box will ask the user whether he/she wants to save
contents in memory to a text file before opening a new one (as indicated by the
saveChanges parameter). If this filename (as indicated by the fileToSave
parameter) already exists, a message box appears allowing the user to choose
between overwriting and non-overwriting it (as indicated by the overwrite
parameter) (Figure 61).

[Action(Kind=ActionAttributeKind.Scenario)]
void OpenScenario(string fileToOpen,
 string saveChanges,
 string fileToSave,
 bool overwrite)

Chapter V

144

requires IsEnabled("Notepad") &&
 saveChanges in Set{"y","n","c"};
{
 Notepad.Open();
 if (IsEnabled("MsgSaveChanges")) // if dirty
 {
 MsgSvBfrOpen(saveChanges);
 if (saveChanges)
 {
 assert IsEnabled("Save");
 SaveDialog.SetFileName(fileToSave);
 SaveDialog.Save();
 // file exists
 if (IsEnabled("MsgOverwriteFile"))
 {
 SaveDialog.MsgOverwriteFile(overwrite);
 if (!overwrite) {
 assert IsEnabled("Save");
 SaveDialog.Cancel(); // close save dialog
 }
 }
 }
 }
 //(saveChanges != c || !dirty)
 if (IsEnabled("Open")) {
 OpenDialog.SetFileName(fileToOpen);
 OpenDialog.Open();
 if (IsEnabled("MsgAckFileNotFound"))
 {
 OpenDialog.MsgAckFileNotFound();
 OpenDialog.Cancel(); // end of the scenario
 }
 }
}

Figure 61: Open file scenario within the Notepad application

SaveScenario: It is possible to save text (new or updated) to a (new or existing)
text file (as indicated by fileName parameter). If the file already exists a
message box appears allowing the user to choose between overwriting and
non-overwriting it (as indicated by the overwrite parameter) (Figure 62).

[Action(Kind=ActionAttributeKind.Scenario)])
void SaveScenario(string fileName, bool overwrite)
requires IsEnabled("Notepad");
{
 Notepad.SaveAs();
 SaveDialog.SetFileName(fileName);
 SaveDialog.Save();
 if (IsEnabled("MsgOverwriteFile"))
 {
 SaveDialog.MsgOverwriteFile(overwrite);
 if (!overwrite) {
 assert IsEnabled("Save");
 SaveDialog.Cancel();
 }
 }
}

Figure 62: Save scenario within Notepad application

Case studies

145

5.1.3. Testing goals

It is important to define testing goals as a way to deal with scalability problems
and decide when to stop testing.

Testing goals for the Notepad software application were defined based on the
following coverage criteria on the generated FSM from which test cases are
generated. They aim at defining and checking the set of the FSM testing properties
as a way to assess the quality of the FSM from the testing perspective. If the FSM
fails such desired properties then the process must go through a new iteration, in
which a new FSM is constructed from an exploration of the model after providing
new bounds.

The testing goals are:

− Full coverage of the actions in the model – all the modelled actions
should be present in the FSM;

− Full coverage of scenarios – all the modelled scenarios should be
present in the FSM. The scenarios may be described as model views
to check if they are present in the FSM;

− Full coverage of functional dependencies – check if the chosen
domains allow showing that all variables affect independently the
behaviour of the system (generalization for non-Boolean variables of
the MC/DC criterion);

− Full coverage of the test boundary and special conditions – check if the
FSM contains the states or sequences of states that describe boundary
and special conditions (to be defined ahead);

− Full coverage of the navigation map and dialog views – check if the
navigation map and dialog views are fully within the FSM (to be
defined ahead).

5.1.4. Choosing domain values for adequate testing

Once the model program of the GUI is written up, Spec Explorer allows us to
generate a FSM by bounded exploration. This FSM consists of the states of the
model program and method invocations that move from state to state as
transitions. In order to explore the model by calling each of the actions available at
each state, it is necessary to define the domains of the actions' parameters. Should
the set of possible values that a parameter can get be small, the general rule is to
define the domain based on that set. Such is the case in the methods which follow:

Notepad.SwitchToWindow(window win)
 where window = Set{"Notepad","Find","Replace"}
Notepad.MsgSvBfrClose(string op)
Notepad.MsgSvBfrOpen(string op)
 where op in Set{"y","n","c"}

OpenDialog.SetCtrlFocus(OpenCtrls c)
 where OpenCtrls = Set{"Cancel","Open","FileName"}

Chapter V

146

SaveDialog.SetCtrlFocus(SaveCtrls c)
 where SaveCtrls = Set{"FileName","Save","Cancel"}
SaveDialog.MsgOverwriteFile(string op)
 where op in Set{"y","n"}

FindDialog.SetCtrlFocus(FindCtrls c)
 where FindCtrls = Set{"FindWhat", "Direction",
 "MatchCase", "FindNext",
 "Cancel"}
FindDialog.SetMatchCase(bool op)
 where op in Set{true, false}
FindDialog.SetDirection(dir d)
 where dir = Set{"Up","Down"}

ReplaceDialog.SetCtrlFocus(ReplaceCtrls c)
 where ReplaceCtrls = Set{"Cancel", "Replace",
 "ReplaceWith", "FindWhat",
 "ReplaceAll",
 "MatchCase", "FindNext"}
ReplaceDialog.SetMatchCase(bool op)
 where op on Set{true,false}

For the other cases, a reduction of the number of possible values is on demand.
This domain reduction is applied according to the testing goals defined for the
current GUI under test. The domains chosen (Table 2) must allow for full
coverage of the functional dependencies and full coverage of test boundary and
special conditions.

Actions with parameters Test conditions Domains

namespace Notepad:

 InsText(char txt) Upper and lower case to test
the "match case" option
inside the find dialog

{'a', 'A'}

 SelText(int p0, int p1) All pairs of integers that
satisfy the pre-condition

a)

namespace OpenDialog:

 SetFileName(string fn) Test for existing and
non-existing files

{"foo.txt", "foo.htm"}

namespace SaveDialog:

 SetFileName(string fn) Test for existing and
non-existing files

{"foo.txt","foo.html"}

namespace FindDialog:

 SetFindWhat(string str) Test for existing and
non-existing words

{"A","aA"}

namespace ReplaceDialog:

 SetFindWhat(string str) Test for existing and
non-existing words

{"A","aA"}

 SetReplaceWith(string str) A char possibly different
from the ones within the text

{"a"}

Table 2: Domains for actions' parameters

Case studies

147

a) This is a dynamic set of values because it depends on text contents
at each state. In Spec Explorer, dynamic domains can be defined by
properties.

SelectText property defined bellow reads the text values at each state and
calculates the set of values valid for the SelText parameters.

Set<<int,int>> SelectText { get {
 if (text.Length>0)
 return Set{p0 in Set{0..text.Length-1},
 p1 in Set{p0+1..text.Length};<p0,p1>};
 else return Set{<0,0>};
 }}

Domain definition is an iterative process involving the need to verify full coverage
of functional dependencies. This is checked by Table 3 for the example under test.

Inputs Find effects

text selText posCursor findWhat direction matchCase Change

posCursor?

Change

selText?

Appears

Message?

aaA "" 0 A Down F T T F

aaA "" 0 A Up F F F T

aaa "" 1 aA Down T F F T

aaa "" 1 aA Down F T T F

aAa Aa 3 aA Up T T T F

aAa aAa 3 aA Up T F F T

aaA "" 1 aA Down T T T F

aaA "" 3 A Down F F F T

Aa "" 1 aA Down F F F T

Aa "" 1 A Down F T T F

Table 3: Test data and coverage analysis for the Find effect

By analysing Table 3 one concludes that the domains defined above allow for
testing the find effect according to the full coverage of functional dependencies
criterion. Column "Message" refers to the effect of a message box showing up to
inform the user that the word to look for could not be found in the text.

It should be stressed that this kind of analysis can be automated. In such case, the
manual task remaining would be to provide additional domain values when the
test goals are not met yet.

Besides the test conditions identified in Table 3, it may be interesting to identify
additional boundary test conditions and other special conditions. Boundary test
conditions correspond to situations located near limits of valid ranges where errors

Chapter V

148

are most likely to occur. Examples of boundary test conditions for the find effect
are:

− The word to look for is at the beginning of the text.

 text.IndexOf(findWhat) == 0

− The word to look for is at the end of the text.

 text.LastIndexOf(findWhat)==text.Length-
 findWhat.Length

− The word to look for is equal to the text content.

 text == findWhat

− The cursor's position is in middle of the word to look for.

 Exists{ i in Set{0..text.Length};
 posCursor>i && posCursor<i+findWhat.Leng th &&
 i==text.IndexOf(findWhat)}

− The word occurs several times within the text and the different
occurrences overlap each other

 Example: text = "aAaAa";
 findWhat = "aAa";
 matchCase = false;

 This can be written in Spec# as

 if ((Exists{i in Set{1..findWhat.Length-1 };
 findWhat.Substring(0,i)==
 findWhat.Substring(findWhat.Length-i,i)
 &&
 text.IndexOf(findWhat+
 findWhat.Substring(i,text.Length))>=0})
 ||
 (Exists{i in Set{1..findWhat.Length-1};
 findWhat.Substring(0,i).ToLower() ==
 findWhat.Substring(findWhat.Length-i,
 i).ToLower()
 &&
 text.ToLower().IndexOf(findWhat.ToLower ()+
 findWhat.Substring(i,text.Length).ToLow er())
 >=0}
 && !matchCase))

− The word occurs several times within the text and the different
occurrences are side by side

 Example: Text="aAaAa"; word="Aa"; MatchCa se=true

 This can be written in Spec# as

text!="" && findWhat!="" &&
(text.IndexOf(findWhat+findWhat)>=0

Case studies

149

||
text.ToLower().IndexOf(findWhat.ToLower()+
 findWhat.ToLower())>=0 && !matchCase))

By analysing Table 4 one conclude that the domains defined allow for testing of
the replace effect meeting the full coverage of functional dependencies criterion.

Inputs Effect

Text selText findWhat matchCase replaceWith Replace

aaA A A F a T

aaA A A T a F

aaA A aA F a F

aaA aA aA F a T

Table 4: Test conditions for the Replace effect

Table 5 checks the full coverage of functional dependencies criterion for the Open
and Save effects inside the Open scenario.

Inputs Effect

dirty Exists(fileToOpen) saveChanges Exists(fileToSave) overwrite Saved? Opened?

T T Y - T T T

T T Y F - T T

T T Y T F F T

T T N - - F T

T - C - - F F

F F - - - F F

T F N - - F F

T F Y - T T F

T F Y F - T F

F T - - - F T

Table 5: Conditions to test the save and open effects inside the Open
scenario

5.1.5. State filtering

Once domains are defined and checked for achieving full coverage of functional
dependencies criterion, additional techniques can be used to prune the exploration

Chapter V

150

process in order to generate a FSM with manageable size. For this purpose, one
may define state filters excluding from the exploration process all states where the
specified state condition does not hold.

An additional state filter was added to the Notepad software application limiting
the size of the text variable that models the text inside the Notepad main window.

text.Length <= 3

The size of the text should be chosen in a way so as not to forbid achieving states
where boundary and special conditions hold. For example, a text size limited to 2
(instead of 3) would not allow states where a word occurs several times within the
text and the different occurrences overlap each other.

5.1.6. FSM generation and reduction

The generation of the full FSM for the domains and state filtering defined
previously in a single step was not practical so FSMs for subsets of the model
were generated. One of those subsets containing the behaviour of the dialog Find
is reported in section 5.1.10. Although the complete FSM was never generated, a
FSM with enough size, i.e., covering all the testing goals defined, was used to
illustrate the process of FSM validation in the next section.

5.1.7. FSM validation

Once parameter domains and state filters are settled, the Spec Explorer tool
generates automatically a FSM by exploring the model program within defined
bounds. By default, all states of the model that are reachable within such bounds
will be explored and represented in the FSM.

For visualization purposes, Spec Explorer allows us to provide criteria to group
together in the same vertex states sharing a common characteristic (two states are
grouped together if an expression provided by the user evaluates identically).
These expressions can be used to construct views (or projections) at different
levels of abstraction that may be used for FSM validation. This can be done by
generating different views for different coverage goals (dialog views, scenarios,
functional dependencies, and special cases) and visually inspecting those views to
check for testing goals coverage.

Projections obtained from the Notepad model with focus property modelled

In our example, the variable hasFocus inside the window manager refers to the
window or dialog with the input focus at each moment. Variables
ctrlWthFocus defined inside each dialog are used to point out the interaction
object that has the input focus in the dialog. By querying such variables it is

Case studies

151

possible to obtain two different views of the model: navigation map view and
dialog view.

string NavigationMap { get {
 if (GetWindowWithFocus()== "")
 return "NotOpen";
 else return GetWindowWithFocus();
 }}

Figure 63: Navigation map obtained from focus property of the windows

The navigation map view is obtained from the model by projecting the state onto
the name of the window with the input focus (Figure 63).

Within the navigation map view each vertex corresponds to a group of states
where a specific window has the input focus. In this view, it is possible to see that
the user can interact with the main window of the Notepad application by
interacting with the menu to open one of the dialogs, open (e.g., Open()) and
find (e.g., Find()) or by interacting with the client area selecting text
(SelText(...)). It is also possible to switch focus between Find and Replace
dialogs (SwitchToWindow("Find") , SwitchToWindow("Replace"))
whenever one of them is opened. The interaction inside such dialogs is detailed at
the lower level of abstraction.

The dialog views are obtained by projecting the states where the dialog has the
focus onto the ctrlWthFocus variable. This can be obtained by

string OpenDialogGroup { get {
 if (!IsOpen("Notepad")) return "NotOpen";

Chapter V

152

 else if (IsOpen("Open")) return openCtrlWthFocus;
 else return "OpenDlgClosed"; }}

and is illustrated in Figure 64.

Figure 64: Open dialog view

Inside the open dialog, the user can interact with the file name textbox
(SetFileName(...)), open a file (Open()), and close the dialog
(Cancel()). By default, when the Open dialog is opened (Open() transition),
the interaction object with the focus is the FileName textbox.

The find dialog view can be obtained by

string FindDialogGroup { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (HasFocus("Find")) return findCtrlWthFocu s;
 else if (IsOpen("Find")) return "FindDlgNotActive ";
 else return "FindDlgClosed";
}}

and is illustrated by Figure 65.

Case studies

153

Figure 65: Find dialog view

Chapter V

154

The Find dialog can have the focus (i.e., be active), in which case there is an
interactive control with focus, or may be opened without focus, in which case it is
NotActive . When the Find dialog is active, the user can fill in the "find what"
textbox (FindWhat(...)), choose the search direction (SetDirection()),
choose if the search is case sensitive or not (SetMatchCase()), and press the
buttons find next (FindNext()), and cancel (Cancel()).

Projections obtained from the Notepad model abstracting from the focus
property

Modelling the focus property requires too much additional effort that is not
rewarding if the test goal does not include checking which interactive object has
the input focus at each moment. Although the navigation map view and dialog
views can be easily obtained from models where the focus property is modelled
explicitly, it is also possible to obtain other views from models where the focus
property is abstracted. The navigation map view is obtained by querying which
dialogs are enabled instead of querying which dialog has the focus at each
moment.

Set<string> NavigationMap { get {
 return GetEnabledWindows();
 }}

The diagram obtained from the expression above is illustrated by Figure 66. In
this view it is possible to see the set of enabled windows at each moment and the
actions available in each of those sets. There are groups of states where two
different modeless windows are enabled, e.g., the Notepad main windows and the
Find dialog, or the Notepad main window and the Replace dialog.

Figure 66: Navigation map obtained from the enabled windows' property

The dialog views are obtained by projecting the state onto the variables
manipulated by each dialog.

Case studies

155

<string,string> OpenDialogGroup { get {
 if (IsOpen("Open"))
 return <"fileNameO="+fileNameO,"dirO="+dirO>;
 else return <"NotOpen","NotOpen">;
}}

Figure 67: Open dialog view obtained from the projection onto the
manipulated variables

In this view (Figure 67) it is possible to see the set of states of the Open dialog
that correspond to the different possible combinations of the manipulated
variables of the dialog.

Scenarios

In order to check if the identified scenarios are covered by the generated FSM, one
should construct views that can be inspected visually to infer if there is full branch
coverage of the scenarios.

Open scenario: The view corresponding to the open scenario is illustrated in
Figure 45.

Save scenario: The view corresponding to the save scenario can be defined by the
following state group:

// save scenario
string SaveScenario { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (!IsOpen("Save")) return "SaveDlgClosed";
 else if (IsEnabled("Save")) return "Save";
 else return "MsgOverwriteFile";
}}

Chapter V

156

Figure 68: Save scenario view

Find Scenario: The view corresponding to the find scenario described by Figure
59 can be defined by the following state group:

string FindScenario { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (!IsOpen("Find")) return "FindDlgClosed";
 else if (HasFocus("Find")) return "Find";
 else if (IsOpen("MsgAckCantFindWord"))
 return "MsgAckCantFindWord";
 else "FindDlgNotActive";
}}

Figure 69: Find scenario view

Checking if the boundary (and special) conditions are covered by the generated
FSM can be done by visual inspection of the views generated from each of the
formal expressions that describe them. In case some of the test conditions are not
covered, it is still possible to construct scenarios to drive the system into the
desired states or to redefine the domains and generate the FSM again.

Case studies

157

Functional dependencies

Table 3 (on page 147), Table 4 (in page 149), and Table 5 (on page 149) show that
it is possible to define states with the identified domains that guaranties full
coverage of functional dependencies. Even so, it is possible to check if all the
states identified in the tables are present in the generated FSM by writing a state
expression for each pair of lines in the table that show result dependency on one of
the input parameters. For instance, to check if the direction parameter affects the
result independently, it is possible to construct a view based on the first and
second lines of Table 3 as:

string FindDirectionDependency { get {
 if (text=="aaA" && selText=="" && posCursor==0
 && findWhat == "A" && !matchCase)
 if (direction == "Down")
 return "first line";
 else return "second line";
 else return "any other state";
}}

and inspected visually in Figure 70.

Figure 70: Coverage analysis of a functional dependency

Special cases

The same process can be used to check if boundary and special conditions are
within the generated FSM. Formal expressions for this purpose are given in
section 5.1.4, whereby it is possible to construct views and inspect them visually
for coverage analysis. Figure 71 shows a view intended to analyse the coverage of
the special situation where a word occurs several times within the text and those
occurrences overlap with each other. This can be expressed in Spec# by writing

string OverlapGroup { get {
 if ((Exists{i in Set{1..findWhat.Length-1};
 findWhat.Substring(0,i)==
 findWhat.Substring(findWhat.Length-i,i) &&
 text.IndexOf(findWhat+
 findWhat.Substring(i,text.Length))>=0})

Chapter V

158

 ||
 (Exists{i in Set{1..findWhat.Length-1};
 findWhat.Substring(0,i).ToLower() ==
 findWhat.Substring(findWhat.Length-i,i).ToLowe r() &&
 text.ToLower().IndexOf(findWhat.ToLower()+
 findWhat.Substring(i,text.Length).ToLower())>=0}
 && !matchCase))
 return "Overlap";
 else return "NotOverlap";

Figure 71: Coverage analysis of a special case situation "several
occurrences overlapping each other"

5.1.8. Test case generation and execution

Upon defining domains for the methods' parameters and generating and validating
the FSM thus assessing its quality based on scenarios and boundary test
conditions, it is possible to generate test cases from the FSM thus obtained.
However, executing all possible test cases may be not realistic due to the huge size
of the FSM generated and consequently the huge number of test cases.

A new algorithm is presented in section 4.3.4 to reduce the FSM while
guaranteeing coverage of the intermediate level of abstraction defined by the
navigation map and dialog views. After applying this pruning technique to the
initial FSM, the size of the FSM is reduced and test cases may be generated from
it based on full transition coverage criterion, later to be executed.

5.1.9. Test results

In order to test the Notepad application without resorting to its source code (that
is, running its executable binary file), some intermediate code, in C#, must be
written to execute and interact with the application simulating the user (this will
trigger events like mouse clicks or keyboard keys). Every method at the
specification level will have a corresponding method at the intermediate code that
will simulate the user actions. Maps between functions at specification and
implementation levels are established so that the tool can run related methods at
both levels and compare the results obtained.

Case studies

159

The intermediate code needed to simulate the user actions and the maps between
methods of the specification and implementation levels is built automatically with
the support of the tool described in section 4.4.

Test execution is performed by Spec Explorer tool. Every time there is an
inconsistency (i.e., the outcome of an observable action at the specification level is
different from the outcome of an related method at the implementation level) it is
reported.

Observable actions whose pre-conditions hold are executed after each controllable
action. In the case of the Notepad model, there is just one observable action that
sees the content of the main window whenever possible (when the main window is
enabled).

During the testing of Notepad, we found two sequences of actions which lead to
an inconsistency between our intuitive model and the actual Notepad application:

− After executing the next sequence of actions the Notepad will search
upwards instead of downwards as expected:

1. Type text.

2. Search for text using the find dialog (Ctrl-F) in the downward
direction. Close the dialog (press Cancel button).

3. Open the replace dialog (Ctrl-H). Close the dialog (press Cancel
button).

4. Press the F3 key (shortcut for "Find Next").

− After executing the next sequence of actions, the Notepad will search
downward instead of upward as expected:

1. Type text, for instance, "aaa".

2. Search for text (e.g., "a") using find dialog (Ctrl-F) in upward
direction. Close the dialog (press Cancel button).

3. Open the find dialog (Ctrl-F) and close it immediately (press Cancel
button).

4. Press the F3 (shortcut for "Find Next").

These are sequences of events that manual tests would probably miss since they
are not common scenarios.

Finding only two errors is after all not surprising since the Notepad application
has been in use and tested for years already.

Chapter V

160

5.1.10. Metrics

Several test experiments were performed in order to test Notepad software
application and as a way to evaluate the testing approach proposed in this
dissertation.

The Notepad model was constructed in a week. It consists of 35 actions and 38
helper methods. The window manager consists of 10 methods. The file manager
consists of 5 methods.

For each experiment several metrics were gathered: FSM generation time; size of
the original generated FSM; size of the FSM after reduction; time taken to validate
the FSM according to coverage criteria defined; test suite length; and errors found.
In addition, the configuration (set of actions to be considered for FSM generation
and domains for the action parameters) used by each experiment is annotated.

Although several experiments were performed, just one of them is reported here
for illustration. The goal of this experiment is to test the find word functionality of
Notepad. The subset of actions (and parameter values) of the Notepad model used
in this experiment is listed in Table 6.

Actions Parameter domains

Notepad.LaunchNotepad()

Notepad.Close()

Notepad.GetText()

Notepad.InsText(string txt) {"a", "A"}

Notepad.SelText(int x, int y) if text.Length>0 {p0 in Set{0..text.Length-1}, p1 in
Set{p0+1,text.Length}; <p0,p1>} else {<0,0>}

Notepad.Find()

Notepad.FindNext()

Notepad.Replace()

Notepad.MsgAckCantFindWord()

Notepad.MsgSvBfrClose(string op) {"n"}

FindDialog.FindScn (string fw,

 string dir,

 string mc)

{"A","Up",false}, {"A","Down",false}

{"aA","Up",true}, {"aA","Down",true}

{"aA","Down",false}

/* These values were taken from Table 3 */

FindDialog.FindNext()

FindDialogMsgAckCantFindWord()

FindDialog.Cancel()

ReplaceDialog.Cancel()

Table 6: Actions and parameter domains used in the first test experiment

Case studies

161

The time needed to generate the FSM is 1 day, 7 hours and 47 minutes. The FSM
has 65701 states, 158571 transitions, and 30 invocations (actions with
parameters).

The quality of the FSM was accessed according to coverage criteria defined in
section 5.1.7 for the find word functionality. It took half an hour to conclude that
the FSM had the desired quality properties. Test suite generated from this FSM
has 1 segment with the total length of 257615 steps.

The pruning technique described in section 4.3.4 was applied to the original FSM.
After reduction, the FSM has 2478 states, 7573 transitions and 30 invocations.
The number of transitions is reduced in 94.6% while the number of states is
reduced in 96.2%. The time needed to reduce the FSM is 16 hours. The reduced
FSM preserved the desired testing properties. Test suite generated from the
reduced FSM has 466 segments with the total length of 15566 steps.

With this experiment it was possible to find the two bugs (reported in section
5.1.9).

5.2. Address book application

The address book application (Figure 72) allows for managing (creating, updating,
deleting, and querying) a database file of contacts. The address book data file
keeps personal information, like last name, first name, business phone, home
phone, email, and fax number for each contact.

Figure 72: Address book main window

5.2.1. Model

Modelling the Address Book software application while capturing atomic user
actions requires five namespaces that correspond to the different windows/dialogs
of the software application: AddressBook (for the main window); OpenDialog (to
open an existing database file of contacts); SaveDialog (to create a new database
file of contacts or update an existing one); ContactDialog (to add a new contact or
update an existing one); FindDialog (to query the database).

Chapter V

162

The AddressBook namespace models the main window of the software
application.

Module
namespace AddressBook;

Types
Fields = string where value in Set{"Last Name",
 "First Name", "Business Phone",
 "Home Phone", "Email", "Fax"};
Dir = string where value in Set{"Up","Down"};
SortDir = string where value in Set{"Asc","Desc"};
Contact = <string,string,string,string,string,strin g>;

Variables
Contact contactInMem = <"","","","","","">;

Seq<Contact> dbContacts = Seq{};

SortDir sort = "Asc";

Fields orderedBy = "Last Name";

string fileOpened = "",

 directory = "E:", //for test purposes

 nextAction = "";

int lineSelected = -1;

bool addNew = true,

 dirty = false;

bool returnToOpenDlg = false,

 returnToAddressBook = false;

Controllable actions
void LaunchAddressBook() // start the sw applicatio n
void Close() // close the sw application
void MsgSvBfrClose(string op) // save changes?
void NewContact() // open Contact dlg to add a new contact
void SelContact(int line) // select one of the cont acts
void EditContact() // edit selected contact
void Copy() // copy selected contact
void Paste() // paste the contact in memory
void Delete() // delete selected contact
void Sort(Fields field) // sort contact by field
void MsgSvBfrNew(string op) // save changes?
void NewAddressBook() // start a new address book
void MsgSvBfrOpen(string op) // save changes?
void OpenAddressBook() // open an existing file of contacts
void SaveAddressBookAs() // save the address book
void SaveAddressBook() // save address book
void Find() // open find dialog
void FindNext() // look for a word

Observable actions
Contact GetContacts() // observe the contacts shown
 // in the main window

Case studies

163

The model of the Address Book software application is similar to the Notepad
application. The main differences can be found in the edit (Contact dialog) and
view (Find dialog) functionalities. The contact dialog allows for adding, one by
one, new contacts to a database file, and for updating existing contacts. It is also
possible to copy-paste and delete, one by one, existing contacts. Contacts may be
sorted by a specific field in ascending or descending order. It is also possible to
browse through all contacts in a sequential way using the arrow keys.

The Address Book software application has dialogs to open and save address book
files from/to disk that are similar to the ones used by the Notepad application, so
the modules of both dialogs are reused by the address book application without
any changes. Two different modules were developed to model the Contact (Figure
73) and Find (Figure 74) dialogs.

Figure 73: Contact dialog of the Address Book

Module
namespace ContactDialog;

Variables
Contact contact = <"","","","","","">

Actions
void Cancel() // close the contact dialog
void Ok() // press Ok button
void SetLastName (string ln) // fill the last name
void SetFirstName (string fn) // fill first name
void SetBusinessPhone(string bph) // fill business phone
void SetHomePhone(string hph) // fill home phone
void SetEmail(string email) // fill email
void SetFax(string fax) // fill fax

The Find dialog has additional particularities when compared to the corresponding
module in the Notepad application: the user can select the field where the word
will be searched and there is an additional option: "Match whole word". When
"Match whole word" is selected, the search is set for a word in the database field
(column) selected which is an exact match of the word in the "Find What" text

Chapter V

164

box. When this option is not selected, the search may return a word (field value)
that contains the word to look for as substring.

Figure 74: Find dialog of the Address Book

Module
namespace FindDialog;

Variables
String findWhat = "",
 field = "",
 direction = "Down";
bool matchCase = false,
 matchWholeWord = false;

Actions
void SetFindWhat(string str) // fill find what
void SetField(string str) // select field
void SetMatchCase(bool op) // choose match case opt ion
void SetMatchWholeWord(bool op) // choose match who le word
void SetDirection(string d) // choose direction
void Find() // press find button
void Cancel() // press cancel button
void MsgAckCannotFindWord() // acknowledge message

5.2.2. Scenarios

The main functionalities of the Address Book application may be described by the
following high level scenarios: find, open, save, edit, and view.

Find Scenario: It is possible to search contacts that match a search string within
one of the contacts' fields:

− in a case sensitive or case insensitive way;

− by looking for a string that is an exact match with the field or that is a
substring of the field content;

Case studies

165

− by searching backwards or forwards, with respect to the record
(Contact) currently selected;

− by issuing a message box informing the user every time the operation
tries to find a word that does not exist in the given database field.

void FindScenario(string fw,Fields field, bool mc,
 bool mww, Dir dir)
requires IsEnabled("AddressBook");
{
 AddressBook.Find(); // Opens the Find dialog
 assert IsEnabled("Find");
 FindDialog.SetFindWhat(fw);
 FindDialog.SetField(field);
 FindDialog.SetMatchCase(mc);
 FindDialog.SetMatchWholeWord(mww);
 FindDialog.SetDirection(dir);
 FindDialog.Find();
 if (IsEnabled("MsgAckCantFindWord"))
 FindDialog.MsgAckCantFindWord();
 FindDialog.Cancel();
}

Open Scenario: It is possible to load (open) an address book from a file in disk
(indicated by the fileToOpen parameter). When the file to open does not exist,
a message box will appear providing such information to the user, which the user
should acknowledge by pressing its Ok button
(OpenDialog.MsgAckFileNotFound()). Should the address book in the
main window be updated, a message box will appear allowing the user to choose
between saving and not saving (as indicated by the svChanges parameter) the
updates to a data file (indicated by the fileToSave parameter) before opening
the new database. If the file name (indicated by fileToSave) already exists, a
message box will appear allowing the user to choose between overwriting and
cancelling the operation (as indicated by the overwrite parameter).

void OpenScenario(string fileToOpen, string svChang es,
 string fileToSave, string over write)
requires IsEnabled("AddressBook");
{
 AddressBook.OpenAddressBook();
 if (IsEnabled("MsgSvBfrOpen")) // if dirty
 {
 MsgSvBfrOpen(svChanges);
 if (svChanges)
 {
 assert IsEnabled("Save");
 SaveDialog.SetFileName(fileToSave);
 SaveDialog.Save();
 if (IsEnabled("MsgOverwriteFile")) { // file exists
 SaveDialog.MsgOverwriteFile(overwrite);//ye s/no
 if (IsEnabled("Save")) // don't want to ove rwrite
 SaveDialog.Cancel(); // so end of the sce nario
 }
 }
 }
 //(saveChanges != c || not dirty)
 if (IsEnabled("Open")) {
 OpenDialog.SetFileName(fileToOpen);
 OpenDialog.Open();

Chapter V

166

 if (IsEnabled("MsgAckFileNotFound"))
 {
 OpenDialog.MsgAckFileNotFound();
 OpenDialog.Cancel(); // end of the scenario
 }
 }
}

Save Scenario: This makes it possible to save an address book (new or updated)
to a file. If the file name already exists, a message box appears asking the user for
permission to replace/overwrite it or to cancel the operation.

void SaveScenario(string fileName, string overwrite)
requires IsEnabled("AddressBook");
{
 AddressBook.SaveAddressBook();
 if (IsEnabled("Save")) //no file currently opened
 {
 SaveDialog.SetFileName(fileName);
 SaveDialog.Save();
 if (IsEnabled("MsgOverwriteFile"))
 {
 SaveDialog.MsgOverwriteFile(overwrite);
 if (IsEnabled("Save"))
 SaveDialog.Cancel();
 }
 }
}

Close Scenario: Whenever trying to close the Address Book software application
in a state where its content is updated, a message will allow the user to choose
among saving the content to a data file (thus preventing potential loss of important
information), not to save the content to a data file, and to cancel the operation.

void CloseScenario(string svChanges, string fn,
 string overwrite)
requires IsEnabled("AddressBook");
{
 AddressBook.Close();
 if (IsEnabled("MsgSaveChanges")) {
 AddressBook.MsgSvBfrClose(svChanges);
 if (svChanges == "y")
 if (IsEnabled("Save")) {
 SaveDialog.SetFileName(fn);
 if (IsEnabled("MsgOverwriteFile")) {
 SaveDialog.MsgOverwriteFile(overwrite);
 if (overwrite == "c") {
 AddressBook.Close();
 if (IsEnabled("MsgSaveChanges"))
 AddressBook.MsgSvBfrClose("n");
 }
 }
 }
 }
}

Case studies

167

5.2.3. Testing goals

As already mentioned, it is important to define test goals as a way to deal with
scalability and evaluate when to stop testing.

The testing goals defined for testing the Address Book application are similar to
the ones defined for the Notepad application:

− Full coverage of the actions in the model;

− Full coverage of scenarios;

− Full coverage of functional dependencies (a generalization for
non-Boolean variables of the MC/DC coverage criterion);

− Full coverage of the test boundary and special conditions;

− Full coverage of the navigation map and dialog views.

5.2.4. Choosing domain values for adequate testing

As already mentioned, domains values must be defined in order to generate a FSM
by exploration of the model, the goal being to find domains that allow achieving
the testing goals listed in the previous section. As earlier on, whenever the defined
domains are not sufficient to achieve the testing goals, they must be redefined.

When the set of possible values that a parameter can get is finite and small, the
general rule is to define the domain based on such a set. This is the case of the
following methods.

AddressBook.MsgSvBfrClose(string op)
AddressBook.MsgSvBfrNew(string op)
AddressBook.MsgSvBfrOpen(string op)
 where op in Set{"y","n","c"}

AddressBook.SelContact(int line)
 where line in Set{0..dbContacts.Size-1}

AddressBook.Sort(Field f)
 where f in Set{"Last Name", "First Name",
 "Business Phone", "Home Phone",
 "Email", "Fax"}

FindDialog.SetDirection(Dir d)
 where d in Set{"Up","Down"}
FindDialog.SetField(Field f)
 where f in Set{"Last Name", "First Name",
 "Business Phone", "Home Phone",
 "Email", "Fax"}
FindDialog.SetMatchCase(bool op)
FindDialog.SetMatchWholeWord(bool op)
 where op in Set{true, false}

SaveDialog.MsgOverwriteFile(string op)
 where op in Set{"y","n"}

Chapter V

168

For the other cases, a reduction of the number of possible values is needed
according to the testing goals defined for the current GUI under test. The domains
presented in Table 7 ensure full coverage of the functional dependencies and full
coverage of test boundary and special conditions.

Actions with parameters Test Condition Domains

namespace ContactDialog:

 SetLastName(string op) Two different values {"Pinto","Silva"}

 SetFirstName(string fn) Will not be tested {""}

 SetBusinessPhone(string bph) Two different values {"1","3"}

 SetHomePhone(string hph) Will not be tested {""}

 SetEmail(string email) Will not be tested {""}

 SetFax(string fax) Will not be tested {""}

namespace FindDialog:

 SetField(Field f) Two fields of different
types

{"Last Name",
"Business Phone"}

 SetFindWhat(string fw) Values that allow testing the
"match case" and the "match
whole word" functionalities
of the find action

{"pin", "nuno"}

namespace OpenDialog:

 SetFileName(string fn) Test for an existing and a
non-existing file

{"AB.adr",
"ABne.adr"}

namespace SaveDialog:

 SerFileName(string fn) Test for an existing file
and a file that does not
exist at first but will exist
eventually later

{"AB.adr",
"ABwe.adr"}

Table 7: Domains for the actions' parameters

After defining the domains for the actions' parameters it is important to check if
they meet the full coverage of functional dependencies criterion identified as a
testing goal in section 5.2.3. For that, the following tables were constructed. Table
8 and Table 9 are built for this purpose.

For example, column "Changed lineSelected?" in Table 8 is true when variable
lineSelected is updated after the find action occurs. The last column
"Appears message?" refers to the effect of a message box showing up to inform
the user that the word to look for could not be found in the text.

Case studies

169

Table 8: Test data for the Find effect

Table 9 checks for full coverage functional dependencies criterion for the Sort
effect. In order to avoid having mutually dependency among input variables the
set of contacts was considered instead of its sequence.

Inputs Effect

Set of Contacts orderedBy sort field Order
changed?

Set{<"Pinto","","3","","","">,
<"Silva","","1","","","">}

Business
Phone

Desc Last
Name

F

Set{<"Pinto","","3","","","">,
<"Silva","","1","","","">}

Business
Phone

Desc Business
Phone

T

Set{<"Silva","","1","","","">,
<"Pinto","","3","","","">}

Business
Phone

Asc Last
Name

T

Set{<"Silva","","1","","","">,
<"Pinto","","3","","","">}

Last Name Desc Last
Name

T

Set{<"Pinto","","1","","","">,
<"Silva","","3","","","">}

Business
Phone

Asc Last
Name

F

Table 9: Test conditions for the Sort effect

Recall that it is possible to sort the contacts by a specific field in ascending or
descending order. The sorting order is toggled every time two sorting operations
are sequentially performed on the same database field. When the field changes
between two sequentially sorting operations and independently of the last sorting
order used, it becomes ascending. The information related to the previous sort
operation is kept within two additional state variables called orderedBy (the

Inputs Find effect

Contacts Line
Selected

find
What

direction match
Case

match
Whole
Word

field Changed
lineSelected
?

Appears
message?

<"Pinto","","3","","",""> -1 "pin" Down F F Last
Name

T F

<"Pinto","","3","","",""> -1 "pin" Down F F Business
Phone

F T

<"Pinto","","3","","",""> -1 "pin" Down F T Last
Name

F T

<"Pinto","","3","","",""> -1 "pin" Down T F Last
Name

F T

<"Pinto","","3","","",""> -1 "pin" Up F F Last
Name

F T

<"Pinto","","3","","",""> -1 "nuno" Down F F Last
Name

F T

<"Pinto","","3","","",""> 0 "pin" Down F F Last
Name

F T

<"Silva","","1","","",""> -1 "pin" Down F F Last
Name

F T

Chapter V

170

field by which the address book was last sorted) and sort (that keeps the order of
the last sort operation).

Boundary test conditions

Examples of boundary test conditions for the find effect are:

− The word to look for is at the beginning of the text field.

− The word to look for is at the end of the text field.

− The word to look for is equal to the text field.

− The word to look for is in the field of the currently selected line.

5.2.5. State filtering

An additional state filter was added to the Address Book software application
limiting the size of the dbContacts variable that models the set of contacts
inside the Address Book main window.

AddressBook.dbContacts.Size <= 2

State filter exclude from the exploration process all states where the specified state
condition does not hold.

5.2.6. FSM generation and reduction

The generation of the full FSM for the domains and state filter defined previously
in a single step was not practical so FSMs for subsets of the model were
generated. One of those subsets containing the behaviour of the dialog Find and
sort functionality is reported in section 5.2.10. Although the complete FSM was
never generated, a FSM with enough size, i.e., covering all the testing goals
defined, was used to illustrate the process of FSM validation in the next section.

5.2.7. FSM validation

The navigation map view of Figure 75 shows which windows/dialogs are enabled
at each moment. The Find dialog is a modeless window such that, when it is
enabled, the main window of the Address Book application remains enabled. The
navigation map view has one state group where both windows/dialogs are enabled
at the same time. There is also one state group for each other modal dialog
window. It is obtained from the following property in Spec#:

Set<string> NavigationGroup { get {
 return GetEnabledWindows();
}}

Case studies

171

Figure 75: Navigation map view of the Address Book software application

Chapter V

172

The Open dialog view (Figure 76) shows the states and methods available inside
the dialog. According to Table 7 (in page 168), the state variable fileName can
be set to two different values "AB.adr " (an existing address book database) and
"ABne.adr " (a non-existing address book database).

<string,string> OpenDialogGroup { get {
 if (IsOpen("Open"))
 return <"fileNameO="+fileNameO,"dirO="+dirO>;
 else return <"NotOpen","NotOpen">;
}}

Figure 76: Open dialog view

The save dialog view shows the states and possible actions inside the Save dialog
(Figure 77). It can be obtained from the following Spec# code:

<string,string> SaveDialogGroup { get {
 if (IsOpen("Save"))
 return <"fileName="+fileName,"dir="+dir>;
 else return <"NotOpen","NotOpen">;
}}

Figure 77: Save dialog view

Case studies

173

In our point of view, the order in which the Contact dialog fields are filled in is
not relevant for testing purposes. The only thing that is really important is the state
of the dialog fields when the Ok button is pressed because that's the moment when
the database in memory will be updated (add a new record or update an existing
one). Hence, the states and transitions inside the Contact dialog can be reduced by
constructing a scenario action (an action constructed as a sequence of controllable
actions) that abstracts away the order by which fields are filled in.
Substeps/subactions inside this scenario action have been disabled (the attribute
action was removed) so as to avoid being explored outside of the scenario.

[Action(Kind=ActionAttributeKind.Scenario)]
void ScnEditContact(string LN, string FN, string BP h,
 string HPh, string E, string F)
requires IsEnabled("Contact");{
 SetLastName(LN);
 SetFirstName(FN);
 SetBusinessPhone(BPh);
 SetHomePhone(HPh);
 SetEmail(E);
 SetFax(F);
}

According to Table 8 and Table 9, the domain of the scenario action parameters is
defined as a set of four different tuples:

<"Pinto","","1","","","">,
<"Pinto","","3","","",""> ,
<"Silva","","1","","","">,
<"Silva","","3","","",""> .

The Edit Contact dialog view in Figure 78 can be obtained by

<string,string,string,string,string,string>
ContactDialogGroup { get {
 if (IsOpen("Contact")) return contc;
 else return <"","","","","","">;
}}

Figure 78: Contact dialog view

Chapter V

174

Similarly to the Edit Contact dialog, the order in which the Find dialog fields are
filled in is irrelevant. So, an action scenario is built to set values to the fields and
search the word in the database.

[Action(Kind=ActionAttributeKind.Scenario)]
public void ScnFind (string fw, string f, string d,
 bool mc, bool mww)
 requires IsEnabled("Find") && fw != "";{
 findWhat = fw;
 field = f;
 direction = d;
 matchCase = mc;
 matchWholeWord = mww;
}

According to Table 8, the domains for the ScnFind action arguments are defined
as a set of six different tuples:

Set{<"pin","Last Name","Down",false,false>,
<"pin","Business Phone","Down",false,false>,
<"pin","Last Name","Down",false,true>,
<"pin","Last Name","Down",true,false>,
<"pin","Last Name","Up",false,false>,
<"nuno","Last Name","Down",false,false>}

The Find dialog view in Figure 79 can be obtained by

string FindDialogGroup { get {
 if (IsOpen(" Find")) return
 "<"+findWhat + ";" + field + ";" + direction + ";" +
 matchCase + ";" + matchWholeWord + ">";
 else return " NotOpen";
}}

Case studies

175

Figure 79: Find dialog view

Chapter V

176

Scenario validation

In order to check by visual inspection if the scenarios defined are covered by the
FSM generated with the domain values defined in section 5.2.4, a view was
defined for each scenario, as presented bellow:

string CloseScenarioView { get {
 if (IsOpen("MsgOverwriteFile"))
 return "MsgOverwriteFile?";
 else if (IsEnabled("MsgSvBfrClose"))
 return "MsgSvBfrClose?";
 else if (IsEnabled("Save")) return "Save";
 else if (!IsEnabled("AddressBook")) return "NotOp en";
 else return "AddressBook";
}}

Figure 80: Close scenario view

string FindScenarioView { get {
 if (IsEnabled(" MsgAckCannotFindWord"))
 return " MsgAckCannotFindWord";
 else if (IsEnabled(" Find")) return " Find";
 else if (!IsOpen(" AddressBook")) return " NotOpen";
 else return "AddressBook";
}}

Figure 81: Find scenario view

Case studies

177

string OpenScenarioView { get {
 if (IsEnabled("MsgAckFileNotFound"))

return "MsgAckFileNotFound";
 else if (IsEnabled("Open")) return "Open";
 else if (IsEnabled("Save") && returnToOpenDlg)
 return "Save";
 else if (IsEnabled("MsgSvBfrOpen"))
 return "MsgSvBfrOpen";
 else if (IsEnabled("MsgOverwriteFile")
 && returnToOpenDlg) return "MsgOverwrite File";
 else if (!IsOpen("AddressBook")) return "NotOpen" ;
 else return "AddressBook";
}}

Figure 82: Open scenario view

string SaveScenarioView { get {
 if (IsEnabled("MsgOverwriteFile"))
 return "MsgOverwriteFile";
 else if (IsEnabled("Save")) return "Save";
 else if (IsEnabled("MsgOverwriteFile"))
 return "MsgOverwriteFile";
 else if (!IsOpen("AddressBook")) return "NotOpen" ;
 else return "AddressBook";
}}

Figure 83: Save scenario view

Chapter V

178

5.2.8. Test case generation and execution

After assuring that the test goals are met, the algorithm presented in section 4.3.4
was applied on the FSM generated to reduce its size while guaranteeing coverage
of the two intermediate levels of abstraction defined by the navigation map and
dialog views. Then, test cases that meet full transition coverage criterion were
generated from this FSM.

The map between model actions and interactive controls where the modelled
actions will occur is established with the GUI Mapping Tool (Figure 84). This
makes it possible to point out, for each model action, the interactive control where
the modelled action will occur. Two XML files and a C# file are automatically
generated for this purpose.

Figure 84: GUI Mapping Tool relating model action of the Address Book
application with interactive controls

5.2.9. Capacity of detecting errors

Unlike the Notepad application, the source code of the Address Book is available,
thus enabling testing by a particularly kind of fault injection called mutation
testing (recall section 3.3). This makes it possible to assess how sharp the
developed methodologies and tools are in interactive software error detecting (in a
sense, this amounts to "testing the testing toolset" itself).

List of injected errors

The list of errors was constructed having in mind the kind of errors this approach
is suited to find and classified as "functionality errors" in section 2.2.

The errors injected spread over several different types:

Case studies

179

− Mandatory fields are not mandatory.

− Missing commands.

− Existing commands are disabled when they should be enabled.

− Commands do not do what was expected.

− Incorrect field defaults.

− Windows with incorrect modality.

− Message boxes do not show up when expected or do not show the set
of options they should.

− Files are not correctly saved.

5.2.10. Metrics

The Address Book model was constructed in a single day. It reuses the modules
Open, Save, and Window and File managers already constructed for the other case
study (section 5.1). In addition to the modules reused, it was necessary to model
more 38 actions and 20 helper methods to describe the behaviour of the Address
Book.

The goal of this experiment is to test the find word and sort functionalities. The
subset of actions (and parameter values) of the Address Book model used in this
experiment is listed in Table 10.

Actions Parameter domains

FindDialog.Cancel()

ContactDialog.Cancel()

AddressBook.Close()

AddressBook.EditContact()

AddressBook.Find()

AddressBook.LaunchAddressBook()

FindDialog.MsgAckCantFindWord()

AddressBook.MsgSvBftClose(string) {"n","c"}

AddressBook.MsgSvBfrNew(string) {"n","c"}

AddressBook.NewContact()

AddressBook.SelContact(int line) if (dbContacts.Size>0) return
Set{0..dbContacts.Size-1} else return Set{-1}

ContactDialog.Ok()

ContactDialog.ScnEditContact(string,string,
string,string)

{<"Pinto","","3","">, <"Pinto","","1","">
<"Silva","","1","">, <"Silva","","3","">}

/* taken from Table 9*/

Chapter V

180

FindDialog.ScnFind(string,string,string,
bool,bool)

<"pin","Last Name","Down",false,false>,
<"pin","Business Phone","Down",false,false>,
<"pin","Last Name","Down",false,true>,
<"pin","Last Name","Down",true,false>,
<"pin","Last Name","Up",false,false>,
<"nuno","Last Name","Down",false,false>

/* taken from Table 7 */

AddressBook.Sort(Fields) {"Last Name", "Business Phone"}

AddressBook.GetDBLastName()

AddressBook.GetDBBusinessPhone()

Table 10: Actions and parameter domains used in the experiment to test
find word and sort functionalities of the Address Book

The time needed to generate the FSM is 6 hours and 27 minutes. The FSM has
64797 states, 105317 transitions, and 44 invocations (actions with parameters).

The quality of the FSM was accessed according to coverage criteria defined in
section 5.1.7 for the find word and sort functionalities. It took half an hour to
conclude that the FSM had the desired quality properties.

The pruning technique described in section 4.3.4 was applied to the original FSM.
After reduction, the FSM has 23059 states, 36922 transitions and 44 invocations.
The number of transitions is reduced in 64.9% while the number of states is
reduced in 64.4%. The time needed to reduce the FSM is irrelevant. The reduced
FSM preserved the desired testing properties. Test suite generated from the
reduced FSM has 69 segments with the total length of 55801.

All the injected errors were found with this experiment.

5.3. Conclusions

This chapter presented some experiments which illustrate and evaluate the
specification-based testing approach proposed in this dissertation. Such
experiments were performed on two different kinds of software applications
(Microsoft's text editor Notepad, with source code unavailable, and a Java
software application which manages database files of contacts, with source code
available) and involved the construction of the corresponding software application
models, test case generation, and execution.

Quantitative measures were provided for each experiment concerning the time
needed to construct the models, the time needed to generate the FSMs, and the
time needed to assess the quality of the FSM generated. In addition, the sizes of
the models as well as the reduction achieved with the application of the reduction
algorithm were provided.

Case studies

181

Since the source code of the Address Book software application is available, a
mutation testing technique was applied on the source code as a way to evaluate
how sharp the approach is in fault detection. All injected defects were found with
this experiment. The same approach was not followed for the Notepad application
because its source code was not available. Although being used for several years,
two so far unreported errors were detected in the Notepad application related to
uncommon sequences of events.

The results achieved with the experiments performed gave us enthusiasm to
continue our work in the field of model-based GUI testing.

183

Chapter VI

Conclusions and future work

This chapter presents a summary of the main contributions of the
work reported in this dissertation in the fields of interactive
software development and testing, and points out topics that
deserve future attention.

The starting point of the work which leads to this dissertation was our analysis of
current state-of-the-art methods for GUI development which revealed their lack of
support for the modelling and verification phases (recall Chapter II). As a rule, the
testing activity is performed manually without systematization. Moreover, no
guarantee of adequate coverage with respect to some predefined criteria is given.

Although there have been efforts in constructing tools to automate the GUI testing
process and diminish the resources (time and money) required, they suffer from
many drawbacks that make them unsatisfactory solutions for the problem.

This dissertation reports on the application of specification-based testing
techniques as a way to overcome such drawbacks and to make GUI testing more
systematic, thus improving overall GUI quality.

6.1. Summary of contributions

The contributions of this research work fall into three areas:

− GUI testing process – The GUI testing process proposed in this
dissertation is introduced in section 4.1 and detailed in its subsequent

Chapter VI

184

sections. This process involves the following steps: construction of the
GUI model, definition of test goals, definition of input domains,
assessment of the quality of the FSM generated by exploration of the
model, FSM reduction, test case generation, automatic construction of
the intermediate code needed to simulate user's actions, test case
execution, and analysis of the test results.

− A set of GUI modelling techniques specially suited for testing
purposes, promoting modularity and reusability – Section 4.2
explains in detail how to model GUIs, in particular how to model
windows, windows' controls, and communication among windows.
The proposed modelling technique enables GUI description at
different levels of abstraction where different properties under
analysis (navigation between windows, use case scenarios, atomic
user actions) can be expressed and then verified.

− Specification-based GUI testing tools – Two extensions to the Spec
Explorer tool were developed: the first one (described in section 4.3.4)
is an algorithm to reduce the FSM generated by the exploration of the
Spec# model, while guaranteeing coverage of the intermediate level of
abstraction defined by the navigation map and dialog views; the
second extension (the GUI Mapping Tool described in section 4.4)
assists the user in relating the model actions ("logical" actions) to
"physical" actions of "physical" GUI objects. It then generates
intermediate code that simulates the user actions over the GUI under
test. This code is automatically bound to related actions in the
specification.

These contributions address some of the GUI testing challenges identified in
section 3.1, as follows:

− GUI testing is known to be laborious, costly, extremely
time-consuming and difficult to automate – Our approach
automates both test case generation and test case execution. The GUI
Mapping Tool automates the execution of the test cases by controlling
the GUI and observing the outputs automatically. Test cases generated
include uncommon sequences of actions or events that would not be
tested by manual tests. Errors detected when testing the Notepad
application are reported as examples of errors related to such kinds of
sequence.

− Test case explosion – The modelling technique allows for defining
scenario actions, that is, actions built as sequences of smaller actions
that abstract the order in which inputs are provided by eliminating all
the other possible permutations. In addition, an algorithm is put
forward to reduce the corresponding FSM while guaranteeing
coverage of the navigation map and dialog views.

− Controllability and observability – The toolset described in this
dissertation resorts to a GUI test library designed to control the GUI
while simulating users' actions and observing properties of the GUI
interactive controls.

Conclusions and future work

185

− Need for multiple testing techniques – The approach proposed can
be combined with scenario testing technique.

− Documentation – Models built according to our approach document
the behaviour of the GUIs under test. Although interactive controls are
not modelled in detail, the same approach could be used to model and
test interactive controls and document their behaviour. This topic is
illustrated in one of the papers published while carrying out the
current research work [150]).

6.2. Summary of experimental results

The approach put forward in this research work was validated by two testing
experiments on two software applications available under different contexts: the
Notepad application that ships with Microsoft Windows (source code
inaccessible) and the Address Book application developed for the Eclipse platform
(example of a SWT application whose source code is available).

We stress the fact that two so far unreported errors were detected in the Notepad
application, despite its widespread use for many years all over the world.

Our model of the Notepad application was built in a week (full time). Such a long
time was needed because along the way we were also developing the modelling
technique proposed in research work. By contrast, the model of the Address Book
application reused some modules of the Notepad specification and was
constructed in a single day.

Microsoft testers who use model-based testing tools for GUI testing have reported
that modelling accounts for 10% of their work and fixing automation bugs for
90%. Without model-based testing tools, testers spend 60% of their time/effort
writing the automation harnessing and 40% in writing tests. Thanks to our
approach, the harnessing code can be built automatically. This means that most of
the effort and time are spent on the construction of the model. It should be noted
that models required by our approach are more detailed than models currently in
use at Microsoft. Even so, the time saved during the construction of the harnessing
code surpasses beyond doubts the additional time needed for the construction of
the model itself.

6.3. Future Work

Although specification-based testing achieves a high level of testing automation,
there is still a long way to go before it reaches widespread acceptance in
industry-strong environments. Main obstacles to the introduction of
specification-based testing techniques are:

Chapter VI

186

− The specification language itself – We believe that specification
languages should not involve a complete divorce from the current
nature of programming languages used by industry programmers,
otherwise these will resist to learn and use them. Some modellers
resist constructing textual specifications, like those used in this
research work in Spec#. They argue that specifying is too close to
programming. Because they don't regard themselves as programmers,
they would prefer to construct models using graphical notations like,
for instance, Statecharts [87]. This points to a future direction in our
research, that of investigating how to model GUIs in graphical
notations and building mechanisms to translate such notations into
Spec#, thus hiding the Spec# formalism from the modellers.

− End-to-end support of specification-based testing in the test
process – Planning how models cover test goals (by test generation
and coverage analysis based on test goals) and establishing
communication channels among test managers (e.g., automatically
providing reports for test management purposes like test cost, test
coverage, and defects found) are important aspects of GUI testing. As
future work, we intend to support explicit definition of testing goals
to support the construction of reports with coverage analysis
measures.

− State space explosion of the model and test suite explosion –
Additional pruning techniques must be provided to control models and
test suites size. Although two techniques have already been made
available within the testing process proposed in this dissertation
(scenario actions and a FSM reduction algorithm), we intent to
construct an algorithm combining the exploration process itself with
test coverage analysis (based on the explicit definition of test goals) so
as to stop automatically the exploration process as soon as test goals
are reached.

− Time needed to build the model – Specification-based testing
methods can be criticized for the time and effort needed to construct
the model of the system under test. As future work, we intend to
derive techniques for reverse engineering existing GUI applications by
automatic exploration, leading to automatic generation of Spec#
models in a way similar to the one presented by Memon in [124].
Such models will in general be incomplete and only capture the coarse
structure of the application; nevertheless, they can serve as starting
point for further manual enhancements. This reverse engineering
process will trim down the time needed to construct models and will
allow us to apply our approach to more complex applications while
saving on the effort to construct entire models from scratch.

− Degree of automation – The GUI testing method proposed in this
research work involves manual definition of input domains. As future
work, we will study ways to integrate test data generation approaches
(see section 3.3.1) to allow coverage of the testing goals defined. The
testing process also involves evaluation of the quality of the generated
FSM in terms of meeting test goals previously identified (recall
section 4.3.3 in this respect). For instance, one may whish to check if

Conclusions and future work

187

the FSM covers the scenarios identified, special case situations, and so
on. Right now, this phase is performed by expressing those properties
as state group views in Spec# and then inspecting those views visually
to check if they produce the expected result. Some mechanism to
check such properties automatically is on demand.

− Integration with other testing approaches – The prototype tool
developed in this work can be further extended in the future to
transform the test cases generated into scripts written in the input
language of a Capture/Replay tool for being executed and taking
benefit of the observability capabilities of such tools. Moreover, test
suites can be coded automatically and then be used by unit testing
frameworks like JUnit and NUnit.

Other topics which deserve further attention are:

− Usability testing – The main target of the approach proposed in this
research work is that of finding functionality errors, as described in
section 2.2. However, further functionalities can be added to support
additional analysis of the model in so far as to collect, for instance,
information about the steps needed to reach a user goal (complete a
task), thus predicting GUI usability.

− Support for multiple platforms and languages – The prototype tool
developed so far only recognizes interactive controls with window
handlers. This works for Windows applications and other software
applications constructed with SWT (Standard Widget Toolkit)
controls. By using existing libraries it is possible to extend this
approach for other platforms, namely Java and Web applications.

− Configuration testing – The prototype tool developed so far does not
explicitly deal with internationalization, e.g., command keys and data
formats may change according to internationalization. To deal with
these issues, the mapping tool should be extended to use system
configurations (e.g., data formats) and help the user in "translating"
user commands.

Pragmatically, we hope that the approach developed in this research work will be
used effectively in industrial environments and henceforth contribute to higher
quality interactive software. However, we are aware that the specification-based
testing technique is not yet widely understood by testers and their managers. May
this dissertation be also a contribution to disseminate the knowledge about
methodologies and techniques to make testing activities more systematic,
automatic, and less resource demanding.

188

189

Bibliography

1. G. Abowd, J. Bowen, A. Dix, M. Harrison, and R. Took, "User
Interface Languages: A survey of Existing Methods",
Programming research group, Oxford University Computing
Laboratory, Oxford, Technical Report PRG-TR-5-89, 1989.

2. G. Abowd and A. J. Dix, "Integrating status and event
phenomena in formal specifications of interactive systems", in
Proceedings of the Symposium on Fundations of Software
Engineering - SIGSOFT'94, D. Wile(Eds.), New Orleans, 1994.

3. G. Abowd, H.-M. Wang, and A. F. Monk, "A formal technique
for automated dialog development", in Proceedings of the
Designing interactive systems: processes, practices, methods &
techniques, 1995.

4. B. K. Aichernig, "Automated Black-Box Testing with Abstract
VDM Oracles", in Proceedings of the Workshop Materials: VDM
in Practice! Part of the FM'99 World Congress on Formal
Methods, I. J. F. a. P. G. L. editors(Eds.), Toulouse,
September,1999.

5. B. K. Aichernig, "On the value of fault injection on the modeling
level", in Proceedings of the Overture Workshop, N. Plat and P.
G. Larsen(Eds.), Newcastle upon Tyne, UK, 18 July,2005.

6. Y. Ait-Ameur, M. Baron, and P. Girard, "Formal validation of
HCI user tasks", in Proceedings of the International Conference
on Software Engineering Research and Practice - SERP 2003,
Las Vegas, Nevada, USA, 2003.

7. S. Alagar and K. Periyasamy, Specification of Software
Systems,ed., Springer-Verlag, New York, Inc., pp.422,
isbn:ISBN: 0-387-98430-5, 1998.

8. M. F. Ali, "A Transformation-based Approach to Building Multi-
Platform User Interfaces Using a Task Model and the User
Interface Markup Language", PhD thesis, Faculty of the Virginia
Polytechnic Institute and State University, 2004

9. P. Ammann and P. E. Black, "Model Checkers in Software
Testing", National Institute of Standards and Technology,
Technical Report NIST-IR 6777, 2002.

10. P. E. Ammann, P. E. Black, and W. Majurski, "Using Model
Checking to Generate Tests from Specifications", in Proceedings
of the 2nd IEEE International Conference on Formal Engineering
Methods (ICFEM'98), M. G. H. John Staples, and Shaoying
Liu(Eds.), Brisbane, Australia, 1998.

11. A. A. Andrews, J. Offutt, and R. T. Alexander, "Testing Web
Application by Modeling with FSMs", Software System
Modeling, vol. 4(3), pp. 326-345, 2005.

190

12. C. Artho, H. Barringer, A. Goldberg, K. Havelund, and S.
Khurshid, "Automated Testing using Symbolic Model Checking
and Temporal Monitoring", submitted to Theoretical Computer
Science, 2004.

13. H. Balzer, F. Hofmann, V. Kruschinski, and C. Niemann, "The
JANUS Application Development Environment-Generating
More than the User Interface", in Proceedings of the CADUI'96,
J. Vanderdonckt(Eds.), 1996.

14. M. Barnett, R. DeLine, B. Jacobs, M. Fähndrich, K. R. M. Leino,
W. Schulte, and H. Venter, "The Spec# Programming System:
Challenges and Directions", in Proceedings of the VSTTE2005,
2005.

15. M. Barnett, K. R. M. Leino, and W. Schulte, "The Spec#
Programming System: An Overview", in Proceedings of the
CASSIS'04 - International workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart devices,
Marseille, 10-13 Mar,2004.

16. R. Bastide and P. Palanque, "A Petri Net Based Environment for
the Design of Event-Driven Interfaces", in Proceedings of the
Application and Theory of Petri Nets — ATPN'95, Torino, Italy,
1995.

17. B. Bauer, "Generating User Interfaces from Formal
Specifications of the Application", in Proceedings of the 2nd
International Workshop on Computer-Aided Design of User
Interfaces CADUI'96, J. Vanderdonckt(Eds.), 1996.

18. A. Beer, S. Mohacsi, and C. Stary, "IDATG: An Open Tool for
Automated Testing of Interactive Software", in Proceedings of
the COMPSAC'98 - The Twenty-Second Annual International
Conference Computer Software and Applications, 19-21
Aug,1998.

19. F. Belli, "Finite State Testing and Analysis of Graphical User
Interfaces", in Proceedings of the ISSRE 2001 - The 12th
International Symposium on Software Reliability Engineering,
Hong Kong, 27-30 Nov,2001.

20. E. Bernard, B. Legeard, X. Luck, and F. Peureux, "Generation of
test sequences from formal specifications: GSM 11-11 standard
case study", Software Testing, Verification and Reliability, vol.
34(10), pp. 915-948, 2004.

21. J. Berstel, S. C. Reghizzi, G. Roussel, and P. S. Pietro, "A
Scalable Formal Method for Design and Automatic Checking of
User Interfaces", in Proceedings of the ICSE'01, 2001.

22. D. W. Binkley and K. B. Gallagher, "Program Slicing", Advances
in Computers, vol. 43, pp. 1-50, 1996.

23. E. Bishop, "News: conferences - Report on the fourth
International Conference on Software Testing (ICSTEST)", in
Professional Tester, 2003, pp. 6-7.

24. P. E. Black, V. Okun, and Y. Yesha, "Mutation of Model
Checker Specifications for Test Generation and Evaluation", in

Bibliography

191

Proceedings of the Mutation 2000, W. E. Wong(Eds.), Jan Jose,
California, 2000.

25. F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, B.
Sacré, and J. Vanderdonckt, "Towards a Systematic Building of
Software Architecture: the TRIDENT Methodological Guide", in
Proceedings of the Workshop on Design, Specification and
Verification of Interactive Systems DSVIS'95, P. Baside(Eds.),
Toulouse, France, 1995.

26. K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M.
CGheorghe, M. Harman, R. M. Hierons, K. Kapoor, P. Krause,
G. Luettgen, and A. J. H. Simons, "Working together: Formal
Method and Testing", ACM Computing Surveys, 2005.

27. T. Bolognesi and E. Brinksma, "Introduction to the ISO
Specification Language LOTOS", Computer Networks ISDN
Systems. Special Issue: Protocol Specification and Testing, vol.
14(1), pp. 25-59, 1987.

28. E. Börger and R. Staerk, Abstract State Machines: A Method for
High-Level System Design and Analysis, 1st ed., Springer,
isbn:3540007024, 2003.

29. J. P. Bowen, "X: Why Z?" in Proceedings of the Computer
Graphics Forum, 1992.

30. C. J. Bramwell, "Formal Development Methods for Interactive
Systems: Combining Interactors and Design Rational", PhD
thesis, University of York, The Department of Computer Science,
1996

31. J. Bredereke and B.-H. Schlingloff, "An Automated, Flexible
Testing Environment for UMTS", in Proceedings of the IFIP 14th
International Conference on Testing Communicating Systems
XIV, 2002.

32. J. Brown, "Evaluation of the Task-Action Grammar Method for
Assessing Learnability in User Interface Software", in
Proceedings of the 6th Australian Conference on Computer-
Human Interaction (OZCHI'96), 1996.

33. P. Bumbulis, P. S. C. Alencar, D. D. Cowan, and C. J. P. Lucena,
"Combining Formal Techniques and Prototyping in User
Interface Construction and Verification", 1995.

34. P. Bumbulis, P. S. C. Alencar, D. D. Cowan, and C. J. P. Lucena,
"A Framework for Machine-Assisted User Interface
Verification", in Proceedings of the 4th International Conference
on Algebraic Methodology and Software Technology
(AMAST'95), London, UK, 1995.

35. R. Butterword, A. Blandford, and D. Duke, "The role of formal
proof in modelling interactive behaviour", in Proceedings of the
Design, Specification and Verification of Interactive Systems
(DSV-IS), P. Markopoulos and P. Johnson(Eds.), February,1998.

36. R. Butterword, A. Blandford, D. Duke, and R. Young, "Formal
user models and methods for reasoning about interactive
behaviour", in Proceedings of the WP17, 1998.

192

37. R. J. Butterworth and D. J. Cooke, "Using Temporal Logic in the
Specification of Reactive and Interactive Systems", in
Proceedings of the BCS-FACS Workshop on Formal Aspects of
the Human Computer Interface, S. H. U. C.R. Roast and J.I.
Siddiqi, UK(Eds.), 1996.

38. M. Cabrera, M. Gea, F. Gutierrez, and J. C. Torres, "Algebraic
specification of User Interfaces", in Proceedings of the 1st
ERCIM Workshop on "User Interfaces for All", C.
Stephanidis(Eds.), Crete, Greece, October 30-31,1995.

39. C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N.
Tillmann, and M. Veanes, "Model-Based Testing of Object-
Oriented Reactive Systems with Spec Explorer", Microsoft
Research, MSR-TR-2005-59, May, 2005.

40. A. Campi, E. Martinez, and P. S. Pietro, "Experiences with a
Formal Method for Design and Automatic Checking of User
Interfaces", in Proceedings of the Position paper in
IUI/CADUI'2004 Workshop on Making Model-Based UI Design
Practical: usable and open methods and tools, 13th January,2004.

41. J. Campos and M. D. Harrison, "Model Checking Interactor
Specifications", in Automated Software Engineering, vol. 8,
2001.

42. J. F. C. F. d. Campos, "GAMA-X Geração Semi-Automática de
Interfaces Sensíveis ao Contexto", MSc, Universidade do Minho,
Departamento de Informática, 1993

43. D. A. Carr, "Specification of Interface Interaction Objects", in
Proceedings of the ACM Conference on Human Factors in
Computing Systems - CHI, Boston, Masachusetts, USA, 1994.

44. S. S. Chok and K. Marriott, "Automatic Construction of User
Interfaces from Constraint Multiset Grammars", in Proceedings
of the 11th International IEEE Symposium on Visual Languages
(VL'95), Washington, DC, USA, 1995.

45. E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P.
Mirandola, and A. Morzenti, "From formal models to formally-
based methods: an industrial experience", ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 8(1), pp.
79-113, 1999.

46. K. Claessen and J. Hughes, "QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs", in Proceedings of the
ICFP'00, Montreal, Canada, 2000.

47. E. M. Clarke, O. Grumberg, M. Minea, and D. Pled, "State space
reduction using partial order techniques", International Journal
on Software Tools for Technology Transfer (STTT), vol. 2(3), pp.
279-287, 1998.

48. T. Clement, "The Formal Development of a Windows Interface",
in Proceedings of the 3rd BCS-FACS Northern Formal Methods
Workshop, 1998.

49. L. Constantine, "Rapid Abstract Prototyping", Technical Report
#100, 1998.

Bibliography

193

50. L. L. Constantine and L. A. D. Lockwood, "Usage-Centered
Engineering for Web Applications", in IEEE Software, vol. 19,
2002.

51. J. Coutaz, "Software Architecture Modeling for User Interfaces",
in Encyclopedia of software Engineering(Eds.), Wiley and sons,
1993.

52. T. Dabóczi, I. Kollár, G. Simon, and T. Megyeri, "How to test
Graphical User Interfaces", in IEEE Instrumentation &
Measurement Magazine, 2003, pp. 27-33.

53. L. Dan and B. K. Aichernig, "Combining Algebraic and Model-
based Test Case Generation", in Proceedings of the First
International Colloquium in Theoretical Aspects of Computing
(ICTAC'04), Guiyang, China, 2004.

54. R. DeMillo and J. Offutt, "Constraint-Based Automatic Test Data
Generation", in IEEE Transactions on Software Engineering, vol.
17, 1991, pp. 900-910.

55. J. Dick and A. Faivre, "Automating the generation and
sequencing of test cases from model-based specifications", in
Proceedings of the FME'93: Industrial-Strength Formal Methods,
Odense, Denmark, 1993.

56. A. W. Dijkstra, "Notes On Structured Programming",
Technological University Eindhoven, The Netherlands,
Department of Mathematics, 70-WSK-03, 1970.

57. A. Dix and C. Runciman, "Abstract Models of Interactive
Systems, People and Computers: Designing the Interface", in
Proceedings of the HCI'85, P. J. S. Cook(Eds.), London, 1985.

58. G. J. Doherty, J. Campos, and M. D. Harrison, "Representational
Reasoning and Verification", Formal Aspects of Computing, vol.
12(4), pp. 260-277, 2000.

59. D. Duke and M. Harrison, "Towards a Theory of Interactors",
Amodeus Esprit Basic Research Project /WP6, February 12,
1993.

60. D. J. Duke and M. D. Harrison, "Abstract Interaction Objects", in
Proceedings of the EUROGRAPHICS'93, 1993.

61. M. B. Dwyer, V. Carr, and L. Hines, "Model Checking Graphical
User Interfaces Using Abstractions", in Proceedings of the Sixth
European Software Engineering Conference (ESEC/FSE), 1997.

62. J. Edvardsson, "A Survey on Automatic Test Data Generation",
in Proceedings of the Second Conference on Computer Science
and Engineering in Linkoping (ECSEL), October,1999.

63. M. Evers, "Adaptability Problems of Architectures for Interactive
Software", in Proceedings of the Workshop on Object-Oriented
Technology (ECOOP'99), Lisbon, Portugal, 1999.

64. J. C. P. d. Faria, "Regras Activas Dirigidas pelos Dados para a
Manutenção de Restrições de Integridade e Dados Derivados em
Aplicações Interactivas de Bases de Dados", PhD, Faculdade de

194

Engª da Universidade do Porto, Departamento de Engª
Electrotécnica e de Computadores, 1999

65. R. Ferguson and B. Korel, "The Chaining Approach for Software
Test Data Generation", ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 5(1), pp. 63-86,
1996.

66. J. Fitzgerald and P. G. Larsen, "Modelling Systems: Practical
Tools and Techniques in Software Development", Cambridge
University Press, 1998.

67. J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M.
Verhoef, Validated Designs for Object-oriented Systems,ed.,
Springer-Verlag Telos, isbn:1-85233-881-4, New York,2005.

68. J. S. Fitzgerald and P. G. Larsen, "Formal specification
techniques in the commercial development process", in
Proceedings of the International Conference on Software
Engineering (ICSE), Seattle, April,1995.

69. S. Flynn, "Expression Refinement Explained", National
University of Ireland, Department of Information Technology,
Galway, Technical Report, 1999.

70. S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A.
Ghedamsi, "Test selection based on finite state models", IEEE
Transactions on Software Engineering, vol. 17(6), pp. 591-603,
1991.

71. A. Galloway and B. Stoddart, "Integrated Formal Methods",
IRIN - Institute de Recherche en Informatic de Nantes, 1997.

72. E. Gamma, R. Helm, R. Johson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, 1st
ed., Addison-Wesley Professional, pp.395, isbn:0201633612,
1995.

73. J. Gannon, P. McMullin, and R. Hamlet, "Data-Abstraction
Implementation, Specification, and Testing", ACM Transactions
on Programming Languages and Systems, vol. 3(3), pp. 211-
223, 1981.

74. G. Gediga, K.-C. Hamborg, and I. Duntsch, "Evaluation of
Software Systems", in Encyclopedia of Library and Information
Science, vol. 72, A. Kent and J. G. Williams (Eds.), 2002, pp.
166-102.

75. D. F. Gieskens and J. D. Foley, "Controlling User Interface
Objects Through Pre- and Postconditions", GVU Technical
Report Number GIT-GVU-91-09, June, 1991.

76. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jounnaud, "Introducing OBJ", in Applications of Algebraic
Specification using OBJ, R. G. a. J. G. D. Coleman (Eds.),
Cambridge University Press, 1993.

77. C. Gram and G. Cockton, Design Principles for Interactive
Software,ed., Chapman & Hall, isbn:0412724707, 1996.

Bibliography

195

78. A. S. Grant, "Modelling Cognitive Aspects of Complex Control
Tasks", University of Strathclyde, Department of Computer
Science, 1990

79. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes,
"Generating Finite State Machines from Abstract State
Machines", in Proceedings of the ISSTA 2002, International
Symposium on Software Testing and Analysis, July,2002.

80. T. Griffiths, "Teallach: A Model-Based User Interface
Development Evironment for Object Databases", in Proceedings
of the User Interfaces to Data Intensive Systems - UIDIS, 1999.

81. T. Griffiths, J. McKirdy, N.Paton, J.Kennedy, R.Cooper,
P.Barclay, C.Goble, P.Gray, M. Smyth, A. West, and A.Dinn,
"An Open Model-Based Interface Development System: The
Teallach Approach", in Proceedings of the DSV-IS'98, 1998.

82. J. V. Guttag, J. J. Horning, and A. Modet, "Report on the Larch
Shared Language - Version 2.3", SRC Research Report 58,
April 14, 1990.

83. G. d. Haan, "Formal Representation of Human-Computer
Interaction", in Proceedings of the Human-Computer Interaction:
Preparing for the Ninties, T. N. W. a. A. G. A. G. C. van der
Veer(Eds.), Amsterdam, 1991.

84. G. d. Haan, "ETAG, A Formal Model of Competence Knowledge
for User Interface Design", Vrije Universiteit, 2000

85. G. d. Haan, G. C. v. d. Veer, and J. C. v. Vliet, "Formal
Modelling Techniques in Human Computer Interaction",
(http://home.tiscali.nl/gdehaan/articles/formal-models-
review.html), conferred in October, 2006.

86. P. R. Hanau and D. R. Lenorovitz, "Prototyping and simulation
tools for user/computer dialogue design", in Proceedings of the
7th annual International Conference on Computer Graphics and
Interactive Techniques, Seattle, Washington, USA, 1980.

87. D. Harel, "Statecharts: a visual formalism for complex systems",
in Science of Computer Programming, vol. 8(Eds.), 1987, pp.
231-274.

88. M. Harman and S. Danicic, "Using Program Slicing to Simplify
Testing", Software Testing, Verification and Reliability, vol.
5(143-162), 1995.

89. A. Hartman and K. Nagin, "The AGEDIS Tools for Model Based
Testing", in Proceedings of the ISSTA'04, Boston,
Massachusetts, USA, July 11-14,2004.

90. H. R. Hartson, A. C. Siochi, and D. Hix, "The UAN: a user-
oriented representation for direct manipulation interface designs",
in ACM Transactions on Information Systems (TOIS): ACM
Press, 1990.

91. K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K.
Rierson, "A Practical Tutorial on Modified Condition / Decision
Coverage", NASA/TM-2001-210876, 2001.

196

92. E. Hendrickson, "Making the Right Choice", in Software Testing
& Quality Engineering, 1999.

93. R. M. Hierons, "Testing From a Z Specification", Journal of
Software Testing, Verification, and Reliability, vol. 7(1), pp. 19-
33, 1997.

94. C. A. R. Hoare, Communicating Sequential Processes (CSP),ed.,
Prentice Hall International, 2004.

95. A. Howes, S. J. Payne, and D. Moffat, "Automated Theory-based
Procurement Evaluation", in Proceedings of the Interact'97, 1997.

96. A. Hussey and D. Carrington, "Comparing two user-interfaces:
MVC and PAC", in Proceedings of the FAHCI'96, 1996.

97. A. Hussey, I. MacColl, and D. Carrington, "Assessing Usability
from Formal User-Interface Designs", in Proceedings of the
Interact'01, 2001.

98. K. Iizuka, J. Tanaka, and B. Shizuki, "Describing a Drawing
Editor by Using Constraint Multiset Grammars", in Proceedings
of the Sixth International Symposium on the Future of Software
Technology (ISFST), Zhengzhou, China, November,2001.

99. M. Y. Ivory and M. A. Hearst, "The State of the Art in
Automating Usability Evaluation of User Interfaces", ACM
Computing Surveys, vol. 33(4), pp. 470-516, 2001.

100. C. Janssen, A. Weisbecker, and J. Ziegler, "Generating User
Interfaces from Data Models and Dialogue Net Specifications",
in Proceedings of the Proceedings of the CHI'93, New York,
NY, 1993.

101. R. Jeffries, J. R. Miller, C. Wharton, and K. M. Uyeda, "User
Interface Evaluation in the Real World: A Comparison of Four
Techniques", 1991.

102. B. E. John and D. E. Kieras, "The GOMS Family of User
Interface Analysis Techniques: Comparison and Contrast", ACM
ToCHI, 1996.

103. C. W. Johnson and M. D. Harrison, "Using Temporal Logic To
Support The Specification and Prototyping Of Interactive Control
Systems", International Journal Of Man-Machine Studies, vol.
36, pp. 357-385, 1992.

104. P. Johnson, H. Johnson, R. Waddington, and Shouls, "Task
Related Knowledge Structures: Analysis, Modelling and
Application", in People and Computers IV, Cambridge
University Press, 1988, pp. 35-61.

105. C. Kaner, "Improving the Maintainability of Automated Test
Suites", in Proceedings of the Tenth International Quality Week,
San Francisco, CA, May,1997.

106. C. Kaner, "Cem Kaner on Scenario Testing: The Power of "What
If. " and Nine Ways to Fuel Your Imagination", in Software
Testing & Quality Engineering (STQE), 2003.

Bibliography

197

107. C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in
Software Testing: A Context-Driven Approach,ed., John Wiley &
Sons, 2002.

108. C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer
Software,ed., Wiley Computer Publishing, isbn:0-471-35846-0,
1999.

109. H. C. Keh and T. G. Lewis, "Direct-Manipulation User Interface
Modeling with High-Level Petri Nets", in Proceedings of the 19h
annual conference on Computer Science, San Antonio, Texas,
United States, 1999.

110. W. C. Kim and J. D. Foley, "Providing high-level control and
expert assistance in the user interface presentation design", in
Proceedings of the Human Factors in Computing Systems
(InterCHI'93 Proceedings), New York, 1993.

111. B. A. Kitchenham, "Evaluating Software Engineering Methods
and Tool. Part 1: The Evaluation Context and Evaluation
Methods", ACM SIGSOFT Software Engineering Notes, vol.
21(1), 1996.

112. D. Lee and M. Yannakakis, "Principles and Methods of Testing
Finite State Machines - A Survey", Proceedings of the IEEE,
vol. 84, pp. 1090-1996, 1996.

113. F. Lonczewski, "The FUSE-System: an Integrated User Interface
Design Environment", in Proceedings of the CADUI'96, 1996.

114. M. Cabrera, M. Gea, and J. C. Torres, "Towards User Interfaces
Prototyping for Algebraic Specification", in Proceedings of the
VI Eurographics Workshop on Design, Specification and
Verification of Interactive Systems - DSV-IS'99, Braga,
Portugal, June,1999.

115. I. MacColl and D. Carrington, "User Interface Correctness", in
Proceedings of the Human Computer Interaction - HCI'97, 1997.

116. I. MacColl and D. Carrington, "Specifying Interactive Systems
on Object-Z and CSP", in Proceedings of A. G. a. K. T. K.
Araki(Eds.), 1999.

117. P. Markopoulos, J. Pycock, S. Wilson, and P. Jonhson, "Adept —
A task based design environment", in Proceedings of the 25th
Hawaii International Conference on System Sciences, 1992.

118. C. Märtin, "Software Life Cycle Automation for Interactive
Applications: The AME Design Environment", in Proceedings of
the Computer-Aided Design of User Interfaces - CADUI'96, J.
Vanderdonckt(Eds.), 1996.

119. F. M. Martins, "Semi-Automatic Design and Prototyping of
Adaptive User Interfaces", in Proceedings of the 2nd ERCIM
Workshop on "User Interfaces for All", C. Stephanidis(Eds.),
Prague, Czech Republic, 7-8 November,1996.

120. F. M. J. Martins, "Métodos Formais na Concepção e
Desenvolvimento de Sistemas Interactivos", PhD, Escola de
Engenharia da Universidade do Minho, 1995

198

121. A. v. Mayhauser, M. Scheetz, and E. Dahlman, "Generating
Goal-oriented Test Cases", in Proceedings of the The Twenty-
Third Annual International Computer Software and Applications
Conference (COMPSAC'99), 27-29 Oct,1999.

122. T. McCarthy, "Intro to NEXTSTEP",
(www120.pair.com/mccarthy/nextstep/intro.htmld), conferred in
October, 2006.

123. A. Memon, "Using Tasks to Automate Regression Testing of
GUIs", in Proceedings of the The IASTED International
Conference on Artificial Intelligence and applications
(AIA2004), Innsbruck, Austria, Feb. 16-18,2004.

124. A. Memon, I. Banerjee, and A. Nagarajan, "GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing", in
Proceedings of the WCRE2003 - The 10th Working Conference
on Reverse Engineering, Victoria, British Columbia, Canada,
13-16 Nov,2003.

125. A. M. Memon, "A Comprehensive Framework for Testing
Graphical User Interfaces", Pittsburgh, 2001

126. A. M. Memon, M. E. Pollack, and M. L. Soffa, "Using a Goal-
driven Approach to Generate Test Cases for GUIs", in
Proceedings of the International Conference on Software
Engineering, Los Angeles, 1999.

127. A. M. Memon, M. E. Pollack, and M. L. Soffa, "Automated Test
Oracles for GUIs", in Proceedings of the FSE, 2000.

128. A. M. Memon, M. E. Pollack, and M. L. Soffa, "Hierarchical
GUI Test Case Generation Using Automated Planning", IEEE
Transactions on Software Engineering, vol. 27(2), 2001.

129. A. M. Memon, M. L. Soffa, and M. E. Pollack, "Coverage
Criteria for GUI Testing", in Proceedings of the 8th European
Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-9), Sept,2001.

130. C. Meudec, "ATGen: automatic test data generation using
constraint logic programming and symbolic execution", Software
Testing, Verification and Reliability, vol. 11(2), pp. 81-96, 2001.

131. M. Mezzanotte and F. Paternó, "Verification of Properties of
Human-Computer Dialogs with an Infinite Number of States", in
Proceedings of the BCS-FACS Workshop on Formal Aspects of
the Human Computer Interface, S. H. U. C.R Roast and J.I.
Siddiqi, UK(Eds.), 10-12 September,1996.

132. Microsoft, "Visual Basic Home", (msdn2.microsoft.com/en-
us/vbasic), conferred in October, 2006.

133. Microsoft, "Visual Studio", (msdn.microsoft.com/vstudio),
conferred in October, 2006.

134. K. Mitchell and J. Kennedy, "DRIVE: An Environment for the
Organised Construction of User-Interfaces to Databases", in
Proceedings of the 3rd International Workshop on Interfaces to

Bibliography

199

Databases, J. K. a. P. Barclay(Eds.), Napier University,
Edinburgh, 1996.

135. P.-J. Molina-Moreno, I. Torres-Boigues, and O. Pastor-López,
"User Interface Patterns for Object-Oriented Navigation", in
Human-Computer Interaction: Overcoming Barriers, 2003.

136. P. J. Molina and J. Hernández, "Just-UI: Using patterns as
concepts for IU specification and code generation", in
Proceedings of the CHI 2003 workshop on HCI Patterns:
Concepts & Tools, Fort Lauderdale, Florida, 2003.

137. P. J. Molina, S. Martí, and Ó. Pastor, "Prototipado Rápido de
Interfaces de Usuario", in Proceedings of the V Workshop
Ideroamericano de Ingeniería de Ambientes Software,
IDEAS'2002, M. K. e. al.(Eds.), La Habana, Cuba, Abril,2003.

138. T. P. Moran, "Getting into a System: External-Internal Task
Mapping Analysis", in Proceedings of the CHI'83,
December,1983.

139. C. Morgan, Programming from Specification, 2nd edition ed.,
Prentice Hall, isbn:ISBN: 0131232746, 1994.

140. B. A. Myers, "User Interface Software Tools", ACM
Transactions on Computer-Human Interaction (TOCHI), vol.
2(1), pp. 64-103, 1995.

141. B. A. Myers and M. B. Rosson, "Survey on user interface
programming", in Proceedings of the SIGCHI'92, 1992.

142. N. Nyman, "In Defense of Monkey Testing", conferred in May,
2006.

143. N. Nyman, "Using Monkey Test Tools", in STQE - Software
Testing and Quality Engineering Magazine, 2000.

144. J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, "Generating test
data from state-based specifications", Software Testing,
Verification and Reliability, vol. 13(1), pp. 25-53, 2003.

145. V. Okun, P. E. Black, and Y. Yesha, "Testing with Model
Checker: Insuring Fault Visibility", WSEAS Transactions on
Systems, vol. 2(1), pp. 77-82, 2003.

146. D. R. Olsen and E. P. Dempsey, "SYNGRAPH: A Graphical
User Interface Generator", in ACM - Computer Graphics, vol. 17,
1983, pp. 43-50.

147. T. Ostrand, A. Anodide, H. Foster, and T. Goradia, "A Visual
Test Development Environment for GUI Systems", in
Proceedings of the ISSTA'98, Clearwater Beach Florida, USA,
1998.

148. A. C. Paiva, J. P. Faria, and R. M. Vidal, "Specification-based
Testing of User Interfaces", in Proceedings of the 10th DSV-IS
Workshop - Design, Specification and Verification of Interactive
Systems, Funchal - Madeira, 4-6 de Junho,2003.

149. A. C. R. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M. Vidal,
"A Model-to-implementation Mapping Tool for Automated

200

Model-based GUI Testing", in Proceedings of the ICFEM'05,
2005.

150. A. C. R. Paiva, J. C. P. Faria, and R. M. Vidal, "Automated
Specification-based Testing of Interactive Components with
AsmL", in Proceedings of the 5th edition of the Quatic (Quality:
the bridge to the future in ICT) international conference, Porto,
2004.

151. A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A. M. Vidal,
"Modeling and Testing Hierarchical GUIs", in Proceedings of the
ASM 2005 - 12th International Workshop on Abstract State
Machines, Paris - France, March 8-11,2005.

152. P. Palanque, "Petri Net Based Design Of User-Driven Interfaces
Using Interactive Cooperative Objects Formalism", in
Proceedings of the Design, Specification and Verification of
Interactive Systems - DSV-IS'94, 1994.

153. D. L. Parnas, "On the use of transition diagrams in the design of a
user interface for an interactive computer system", in
Proceedings of the 24th National Conference, New York, NY,
USA, 1969.

154. F. Paternò, C. Mancini, and S. Meniconi, "ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models", in
Proceedings of the Interact'97, 1997.

155. F. Paternò and C. Santoro, "Integrating Model Checking and HCI
Tools to Help Designers Verifying User Interface Properties", in
7th International Workshop on Design, Specification and
Verification of Interactive Systems DSV-IS'2000. Limerick,
Ireland, 2000.

156. D. Peled, E. Clarke, and O. Grumberg, Model checking,ed., MIT
Press, isbn:02620327 -08, Cambridge, Massachusetts,2000.

157. I. Phillips, "A comparative review of HyperCard and Director as
tools for time-based expressive work",
(www.agocg.ac.uk/reports/graphics/26/node12.htm), conferred in
October, 2006.

158. N. Plat and P. G. Larsen, "An Overview of the ISO/VDM-SL
Standard", ACM SIGPLAN Notices, vol. 27(8), pp. 76-82, 1992.

159. A. Pretschner, "Classical search strategies for test case generation
with Constraint Logic Programming", in Proceedings of the
CONCUR'01 Workshop on Formal Approaches to Testing of
Software (FATES'01), Aalborg, Denmark, August,2001.

160. M. Priestley, "The Logic of Correctness in Software
Engineering", in Proceedings of the 17th International
Conference, CAiSE 2005, Porto, Portugal, June 13-17,2005.

161. A. R. Puerta, "The MECANO Project: Comprehensive and
Integrated Support for Model-Based Interface Development", in
Proceedings of the 2nd International Workshop on Computer-
Aided Design of User Interfaces - CADUI'96, 1996.

162. A. R. Puerta, "Supporting User-Centered Design of Adaptive
User Interfaces Via Interface Models", in Proceedings of the First

Bibliography

201

Annual Workshop On Real-Time Intelligent User Interfaces for
Decision Support and Information Visualization, San Francisco,
January,1998.

163. A. R. Puerta and D. Maulsby, "Management of Interface Design
Knowledge with MOBI-D", in Proceedings of the IUI'97,
Orlando, FL, January,1997.

164. S. Rayadurgam and M. P. E. Heimdahl, "Test-Sequence
Generation from Formal Requirements Models", in Proceedings
of the Sixth IEEE High Assurance in Systems Engineering
Workshop, Florida, October,2001.

165. P. Reisner, "Further Developments Toward Using Formal
Grammar as a Design Tool", in Proceedings of the Conference on
Human Factors in Computing Systems, Gaithersburg, Maryland,
United States, 1982.

166. J. Schalken, "Research Methods for the Empirical Assessment of
Software Processes", in Proceedings of the Proceedings of the
12th doctoral consortium on Advanced Information Systems
Engineering - CAISE'05, H. BOUNIF(Eds.), Porto - Portugal,
13-14 June,2005.

167. E. Schlungbaum, "Model-based User Interface Software Tools
Current state of declarative models", Graphics, Visualization &
Usability Center, GIT-GVU-96-30, 1996.

168. B. v. Schooten, O. Donk, and J. Zwiers, "Modelling Interaction
in Virtual Environments using Process Algebra", in Proceedings
of the Interactions in Virtual Worlds - TWLT 15, 1999.

169. M. L. Scott and S.-K. Yap, "A Grammar-based Approach to the
Automatic Generation of User-Interface Dialogs", in Proceedings
of the CHI'88, 1988.

170. R. K. Shehady and D. P. Siewiorek, "A Method to Automate
User Interface Testing Using Variable Finite State Machines", in
Proceedings of the 27th International Symposium on Fault-
Tolerant Computing, 1997.

171. P. P. d. Silva, "User Interface Declarative Models and
Development Environments: A Survey", University of
Manchester, 2000.

172. D. Sinnig, P. Forbrig, and A. Seffah, "Patterns in Model-Based
Development", in Proceedings of the INTERACT'03 - Workshop
entitled: Software and Usability Cross-Pollination: The Role of
Usability Patterns, 2003.

173. D. Sinnig, A. Gaffar, A. Seffah, and P. Forbrig, "Patterns, Tools
and Models for Interaction Design", in Proceedings of the
CADUI'04 - Workshop entitled Making model-based user
interface design practical: Usable and open methods and tools,
2004.

174. E. G. Sirer and B. N. Bershad, "Using Production Grammars in
Software Testing", in Proceedings of the Second Conference on
Domain Specific Languages, Austin, Texas, October 3-5,1999.

202

175. H.-W. Six and J. Voss, "User Interface Development: Problems
and Experiences", in Proceedings of the Sysmposium on New
Results and New Trends in Computer Science, S. L. N. i. C.
Science(Eds.), Graz/Austria, 1991.

176. G. Smith, The Object-Z Specification Language, vol. 1,ed.,
Kluwer Academic Publishers, pp.160, isbn:0-7923-8684-1, 2000.

177. S. Software, "Seapine QA Wizard - Automated Functional and
Regression Testing", (downloads.seapine.com/pub/product-
info/qawizard.pdf), conferred in November, 2006.

178. N. Souchon and J. Vanderdonckt, "A Review of XML-Compliant
User Interface Description Languages", in Proceedings of the
10th International Conference on Design, Specification, and
Verification of Interactive Systems (DSV-IS'03), Madeira, 4-6
June,2003.

179. J. M. Spivey, The Z Notation: A Reference Manual,ed., Prentice
Hall International (UK) Ltd, 1998.

180. E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson, "User
Interface Reverse Engineering in Support of Interface Migration
to the Web", Automated Software Engineering, vol. 10, pp. 271-
301, 2003.

181. E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, and B.
Matichuk, "Reverse Engineering Legacy Interfaces: An
Interaction-Driven Approach", in Proceedings of the WCRE99,
1999.

182. P. Szekely, P. Luo, and R. Neches, "Facilitating the Exploration
of Interface Design Alternatives: The HUMANOID Model of
Interface Design", in Proceedings of the CHI'92, 1992.

183. P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and
E. Salcher, "Declarative interface models for user interface
construction tools: the MASTERMIND approach", in
Proceedings of the EHCI'95, 1995.

184. C. Szyperski, Component Software: Beyond Object-Oriented
Programming,ed., Addison-Wesley, pp.411, isbn:ISBN:
0201178885, 1999.

185. N. Tillmann and W. Schulte, "Parameterized Unit Tests", in
Proceedings of the ESEC/FSE'05 - Joint 10th European Software
Engineering Conference (ESEC) and the 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-
13), Lisbon - Portugal, Semtember 5-9,2005.

186. H. Traetteberg, "Model-based user interface design", PhD Thesis,
Norwegian University of Science and Technology, Department
of Computer and Information Sciences, 2002

187. S. Trewin, G. Zimmermann, and G. Vanderheiden, "Abstract
User Interface Representations: How Well do they Support
Universal Access?" in Proceedings of the CUU'03, Vancouver,
British Columbia, Canada, November 10-11,2003.

188. J. D. Ullman and J. D. Widom, A First Course in Database
Systems, 2nd ed., Prentice Hall, pp.528, isbn:0130353000, 2001.

Bibliography

203

189. M. Utting, "COMP424 Module 2: Specification-Based Testing",
2004.

190. J. Vanderdonckt, L. Bouillon, and N. Souchon, "Flexible Reverse
Engineering of Web Pages with VAQUISTA", in Proceedings of
the IEEE 8th Working Conf. on Reverse Engineering, 2001.

191. M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, and N.
Tillmann, "Online Testing with Model Programs", in Proceedings
of the ESEC/FSE'05, 2005.

192. M. Veanes, C. Campbell, W. Schulte, and P. Kohli, "On-The-Fly
Testing of Reactive Systems", Technical Report MSR-TR-2005-
05, January, 2005.

193. M. v. Welie, G. C. v. d. Veer, and A. Eliens, "An Ontology for
Task World Models", in Proceedings of the DSV-IS'98, 1998.

194. L. White and H. Almezen, "Generating Test Cases for GUI
Responsibilities Using Complete Interaction Sequences", in
Proceedings of the 11th International Symposium on Software
Reliability Engineering (ISSRE'00), San Jose, California, 2000.

195. C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Green, "ITS: A
Tool for Rapidly Developing Interactive Applications", ACM
Transactions on Infomation Systems, vol. 8(3), pp. 204-236,
1990.

196. C. Wiecha and S. Boies, "Generating user interfaces: principles
and use of ITS style rules", in Proceedings of the Proceedings of
the UIST'90, October,1990.

197. J. M. Wing, "Formal Methods", in Encyclopedia of Software
Engineering, J. J. Marciniak (Eds.), 1994, pp. 504-517.

198. K. Winter, "Model Checking Abstract State Machines", PhD,
Elektrotechnik und Informatik der Technischen Universitat
Berlin, 2001

199. K. Zambelich, "Totally Data-Driven Automated Testing.
Whitepaper", (http://www.sqa-test.com/White_Paper.doc),
conferred in October, 2006.

200. M. V. Zelkowitz and D. R. Wallace, "Experimental models for
validating technology", IEEE Computer, vol. 31(5), pp. 23-31,
1998.

205

Appendix A

A.1. Notepad specification

//--
// Notepad main window
//--
namespace Notepad;
using WindowManager;
using FileManager;

// State variables
// ---- editing status ----
string text = "",
 selText = "";
int posCursor = 0;
bool dirty = false;
// ---- file being edited ----
string fileOpened = "",
 directory=" E:"; // "E:" for test purposes
// ---- file and replace settings ----
string findWhat = "",
 replaceWord = "",
 direction = " Down";
bool matchCase = false;
// ---- temporary state of the open feature ----
bool svBfrOpen = false;
// ---- temporary state of the close feature ----
bool svBfrClose = false;

// It is possible to launch the Notepad application
[Action] void LaunchNotepad()
 requires !IsOpen("Notepad"); {
 AddWindow("Notepad","",false);
 Init();
}
void Init()
{
 FileManager.CreateTextFile("E:\\foo.txt",""); //for test purposes
 text = "";
 posCursor = 0;
 selText = "";
 dirty = false;
 fileOpened = "";
 findWhat = "";
 svBfrOpen = false;
 svBfrClose = false;
}
// It is possible to close the application.
[Action] void Close()
 requires IsEnabled("Notepad") ; {
 if (dirty) {
 AddWindow("MsgSaveChanges"," Notepad",true);
 svBfrClose = true;
 svBfrOpen = false;
 }
 else CloseApp();
}
void CloseApp(){
 if (IsOpen(" Replace")) ReplaceDialog.RemoveReplace();
 if (IsOpen(" Find")) FindDialog.RemoveFind();
 Init();
 if (IsOpen("Notepad")) RemoveWindow(" Notepad");
}

206

[Action] void MsgSvBfrClose(string option)
requires IsEnabled("MsgSaveChanges") && svBfrClose &&
 option in Set{"y","n","c"}; {
 RemoveWindow("MsgSaveChange s");
 switch (option){
 case "n" : CloseApp();break;
 case "c" : svBfrClose=false; break;
 case "y" : if (fileOpened != "") {
 SaveDlglistener.SaveFile(directory,fileOpened);
 CloseApp();
 }
 else
 AddWindow("Save","Notepad",true);
 return;
 default : return;
 }
}
// It is possible to type text
[Action] void InsText(string typedText)
 requires IsEnabled("Notepad") &&
 text.Length + typedText.Length < 4; {
 text = text.Substring(0,posCursor-selText.Length) + typedText +
 text.Substring(posCursor,text.Length-posCursor);
 posCursor = posCursor – selText.Length + typedText.Length ;
 selText = "";
 dirty = true;
}
[Action(Kind=ActionAttributeKind.Probe)]
string GetText()
requires IsEnabled("Notepad"); {
 return text;
}
// helper method
Set<<int,int>> SelectText { get {
 if (text.Length==1 || text.Length==2)
 return Set{p0 in Set{0..text.Length-1},
 p1 in Set{p0+1..text.Length}; <p0,p1>};
 else return Set{<0,0>};
 }}

[Action] void SelText(int p1,int p2)
 requires IsEnabled("Notepad") && text!="" &&
 p1>=0 && p1< text.Length &&
 p2>=p1 && p2<= text.Length; {
 selText = Substring(text,p1,p2-p1);
 posCursor = p2;
}
// It is possible to open a file
[Action] void MsgSvBfrOpen (string option)
requires IsEnabled("MsgSaveChanges") && svBfrOpen &&
 option in Set{"y","n","c"}; {
 RemoveWindow("MsgSaveChanges");
 switch (option){
 case "y": if (fileOpened != ""){
 SaveDialog.Show(" Notepad",directory,fileOpened);
 }
 else
 SaveDlglistener.SaveFile(directory,fileOpened);
 break;
 case "n": OpenDialog.Show(" Notepad",directory);
 break;
 case "c": break;
 default: return;
 }
}
[Action] void Open()
 requires IsEnabled("Notepad"); {
 if (dirty) {
 AddWindow("MsgSaveChanges","Notepad",true);
 svBfrOpen = true;
 svBfrClose = false;
 }
 else {

Appendix A

207

 OpenDialog.Show("Notepad",directory);
 }
}
// It is possible to save the content in memory to a file
[Action] void Save()
 requires IsEnabled("Notepad") ;{
 if (fileOpened == "") {
 SaveDialog.Show("Notepad",directory,fileOpened);
 }
 else
 SaveDlglistener.SaveFile(directory,fileOpened);
}
[Action] void SaveAs()
 requires IsEnabled("Notepad"); {
 SaveDialog.Show("Notepad",directory,fileOpened);
}

// It is possible to open the find dialog.
[Action] void Find()
requires text!="" && !IsOpen(" Replace") && IsEnabled("Notepad") ;{
 if (!IsOpen("Find")) {
 FindDialog.Show(" Notepad",findWhat);
 }
}
[Action] void FindNext()
requires text!="" && IsEnabled("Notepad") ;{
 if (findWhat == "" && !IsOpen("Find") && !IsOpen("Replace")) {
 FindDialog.Show("Notepad","");
 }
 else if (findWhat!="")
 FindNextWord(findWhat, matchCase, direction);
}
[Action] void MsgAckCantFindWord()
 requires IsEnabled("MsgAckCantFindWord") &&
 windows["MsgAckCantFindWord"].parent == "Notepad"; {
 RemoveWindow("MsgAckCantFindWord");
 SetFocus("Notepad");
}
// It is possible to open the replace dialog.
[Action] void Replace()
 requires !IsOpen("Find") && IsEnabled("Notepad") ;{
 if (!IsOpen("Replace"))
 ReplaceDialog.Show(" Notepad",findWhat,replaceWord);
}

// Interfaces
// ---- Open dialog interface ----
var CNotepadOpDlg OpDlglistener = new CNotepadOpDlg();

class CNotepadOpDlg : OpenDialog.IOpenDlgListener {
 void OpenFile(string dir, string file){
 string path = dir + "\\" + file;
 text = FileManager.ReadFile(path);
 dirty = false;
 posCursor = 0;
 selText = "";
 directory = dir;
 fileOpened = file;
 svBfrOpen = false;
 }
 CNotepadOpDlg(){
 OpenDialog.SetOpenDialogListener(this);
 }
}
// ---- Save dialog interface ----
var CNotepadSaDlg SaveDlglistener = new CNotepadSaDlg();

class CNotepadSaDlg : SaveDialog.ISaveDlgListener {
 string dir=null,file=null;

 void SaveFile(string dir, string file){
 string path = dir + " \\" + file ;

208

 if (file != " *.txt" && file !="") {
 CreateTextFile(path,text);
 Notepad.fileOpened = file;
 directory = dir;
 dirty = false;
 if (svBfrOpen) {
 AddWindow("Open","Notepad",true);
 svBfrOpen = false;
 }
 else if (svBfrClose)
 CloseApp();
 }
 }
 CNotepadSaDlg(){
 SaveDialog.setSaveDialogListener(this);
 }
}

// ---- Find dialog interface ----
var CNotepadFiDlg FiDlglistener = new CNotepadFiDlg();

class CNotepadFiDlg : FindDialog.IFindDlgListener {
 void FindNext(string findWord, bool matchC, string dir)
 requires dir in Set{"Up","Down"}; {
 int index = -1;
 direction = dir;
 matchCase = matchC;
 Notepad.findWhat = findWord;
 index = FindWord();
 if (index in Set{0..text.Length-findWord.Length} && dir=="Up"){
 selText = text.Substring(index,findWord.Length);
 posCursor = index + findWord.Length;
 }
 else if (index != -1 && dir == "Down") {
 selText = text.Substring(index+posCursor,findWord.Length);
 posCursor = posCursor + index + findWord.Length;
 }
 else
 AddWindow("MsgAckCantFindWord","Find",true);
 Notepad.findWhat = findWord;
 }
 CNotepadFiDlg(){
 FindDialog.setFindDialogListener(this);
 }
}

// ---- Replace dialog interface ----
var CNotepadReDlg ReDlglistener = new CNotepadReDlg();

class CNotepadReDlg : ReplaceDialog.IReplaceDlgListener {
 public void FindNext(string findWord,string repWord, bool matchC){
 int index = -1;
 Notepad.findWhat=findWord;
 replaceWord=repWord;
 direction="Down";
 matchCase=matchC;
 index = FindWord();
 if (index != -1) {
 posCursor = index + posCursor + findWord.Length;
 selText = findWord;
 }
 else
 AddWindow("MsgAckCantFindWord","Replace",true);
 }
 public void Replace(string findWord, string repWord, bool matchC)
 {
 Notepad.findWhat = findWord;
 replaceWord = repWord;
 matchCase = matchC;
 direction="Down";
 if ((matchC && selText == findWord) ||
 (!matchC && selText.ToLower() == findWord.ToLower())) {
 text = text.Substring(0, posCursor-findWord.Length) + repWord

Appendix A

209

 + text.Substring(posCursor, text.Length – posCursor);
 posCursor = posCursor - findWord.Length + repWord.Length;
 selText = repWord;
 }
 FindNext(findWord,repWord, matchCase);
 }
 public void ReplaceAll(string findWord, string repWord,
 bool matchCase) {
 int i;
 findWhat = findWord; replaceWord = repWord;
 posCursor = 0; selText = "";
 if (matchCase) text = text.Replace(findWord, repWord);
 else{
 i = text.ToLower().IndexOf(findWord.ToLower());
 if (i>=0 && i<text.Length)
 text = FindRep(text,i,findWord, repWord);
 }
 }
 string FindRep(string txt,int i, string findWord,string repWord){
 if (i<0 || i>txt.Length) return txt;
 else return txt.Substring(0,i)+ repWord+
 FindRep(txt.Substring(i+findWord.Length,
 txt.Length-i-findWord.Length),
 txt.Substring(i+findWord.Length, txt.Length-i-
 findWord.Length).ToLower().IndexOf(findWord.ToLower()),
 findWord,repWord);
 }
 CNotepadReDlg(){
 ReplaceDialog.setReplaceDialogListener(this);
 }
}

// helper methods
int FindWord(){
 string txt = text;
 string findStr = findWhat;
 int index = -1;

 if (!matchCase) {
 txt = text.ToLower();
 findStr = findWhat.ToLower();
 }
 if (direction == " Down")
 index=txt.Substring(posCursor,
 txt.Length-posCursor).IndexOf(findStr);
 else {
 int i=posCursor-selText.Length+findStr.Length-1;
 if (i<0 || i>text.Length) i=posCursor;
 index = txt.Substring(0,i).LastIndexOf(findStr);
 if (index>-1 && index<posCursor - selText.Length)
 return index;
 else index = -1;
 }
 return index;
}

void FindNextWord(string findWord, bool matchC, string dir)
 requires dir in Set{"Up","Down"}; {
 int index = -1;
 direction = dir;
 matchCase = matchC;
 index = FindWord();
 if (index != -1 && dir==" Up"){
 selText = text.Substring(index,findWord.Length);
 posCursor = index + findWord.Length;
 }
 else if (index != -1 && dir == " Down"){
 selText = text.Substring(index+posCursor,findWord.Length);
 posCursor = posCursor + index + findWord.Length;
 }
 else {
 AddWindow("MsgAckCantFindWord","Notepad",true);
 }

210

}

//--
// Open dialog
//--
namespace OpenDialog;
using WindowManager;
using FileManager;

var string fileNameO = "*.txt";
var string! dirO = "E:";

var IOpenDlgListener OpenDlgListener;

public interface IOpenDlgListener{
 void OpenFile(string dirO, string file);
 void Cancel();
}
public void SetOpenDialogListener(IOpenDlgListener listener) {
 OpenDlgListener = listener;
}
public void Show(string parent, string d)
 requires !IsOpen("Open");{
 dirO = d;
 AddWindow("Open",parent,true);
}
[Action] void Cancel()
 requires IsEnabled("Open");{
 fileNameO = "*.txt";
 RemoveWindow("Open");
 OpenDlgListener.Cancel();
}
[Action] void MsgAckFileNotFound()
requires IsEnabled("MsgAckFileNotFound") ; {
 RemoveWindow("MsgAckFileNotFound");
}
[Action] void Open()
 requires IsEnabled("Open");{
 if (FileManager.FileExists(dirO+" \\"+fileNameO)) {
 OpenDlgListener.OpenFile(dirO,fileNameO);
 fileNameO = "*.txt";
 RemoveWindow("Open");
 }
 else
 AddWindow("MsgAckFileNotFound","Open",true);
}
[Action] void SetFileName(string fileName)
 requires IsEnabled("Open") ;{
 fileNameO = fileName;
}

//--
// Save dialog
//--
namespace SaveDialog;
using WindowManager;
using FileManager;

var string fileNameS = "*.txt";
var string! dirS = "E:";

var ISaveDlgListener SaveDlgListener;

public interface ISaveDlgListener{
 void SaveFile(string dir, string file);
 void Cancel();
}
public void setSaveDialogListener(ISaveDlgListener listener) {
 SaveDlgListener = listener;
}

Appendix A

211

public void Show(string parent, string dir, string file)
 requires !IsOpen("Save"); {
 dirS = dir; fileNameS = file;
 AddWindow("Save",parent,true);
}
[Action] void Cancel()
 requires IsEnabled("Save") ; {
 fileNameS = "";
 SaveDlgListener.Cancel();
 RemoveWindow("Save");
}
[Action] void Save()
 requires IsEnabled("Save") ; {
 if (FileManager.FileExists(dirS + " \\" + fileNameS)) {
 AddWindow("MsgOverwriteFile","Save",true);
 }
 else{
 if (IsValid(fileNameS)) {
 fileNameS = "";
 RemoveWindow("Save");
 SaveDlgListener.SaveFile(dirS,fileNameS);
 }
 }
}
[Action] void MsgOverwriteFile(string option)
 requires IsEnabled("MsgOverwriteFile");{
 RemoveWindow("MsgOverwriteFile");
 switch (option){
 case "n" : return;
 case "y" : RemoveWindow("Save");
 SaveDlgListener.SaveFile(dirS,fileNameS);
 fileNameS = "";
 return;
 default : return;
 }
}
[Action] void SetFileName(string fName)
 requires IsEnabled("Save"); {
 fileNameS = fName;
}

//--
// Find dialog
//--
namespace FindDialog;
using WindowManager;

// state variables
string findWhatF= "";
string directionF = "Down" ;
bool matchCaseF = false;

var IFindDlgListener FindDlgListener;

public interface IFindDlgListener{
 void FindCancel();
 void FindNext(string findWord, bool matchC, string dir) ;
}
public void setFindDialogListener(IFindDlgListener listener) {
 FindDlgListener = listener;
}
// helper methods
public void Show(string parent, string findWord)
 requires !IsOpen("Find");{
 findWhatF = findWord;
 directionF = "Down" ;
 AddWindow("Find",parent,false);
}
public void RemoveFind()
requires IsOpen("Find");
{
 findWhatF= ""; directionF = "Down" ;
 matchCaseF = false;

212

 RemoveWindow("Find");
}
// Actions
[Action(Kind=ActionAttributeKind.Scenario)]
void ScnFind(string fw, string dir, bool mc)
requires IsEnabled("Find") &&
 dir in Set{"Up","Down"} ; {
 SetFindWhat(fw);
 SetDirection(dir);
 SetMatchCase(mc);
}
[Action] void SetFindWhat(string str)
 requires IsEnabled("Find");{
 findWhatF = str;
}
[Action] void SetDirection(string dir)
 requires dir in Set{"Up","Down"} && IsEnabled("Find");{
 directionF = dir;
}
[Action] void SetMatchCase(bool op)
 requires IsEnabled("Find");{
 matchCaseF = op;
}
[Action] void FindNext()
 requires IsEnabled("Find") && findWhatF!="";{
 FindDlgListener.FindNext(findWhatF, matchCaseF, directionF);
}
[Action] void Cancel()
 requires HasFocus("Find") ;{
 findWhatF= ""; directionF = "Down" ;
 matchCaseF = false;
 RemoveWindow();
}
[Action] void MsgAckCantFindWord()
requires IsEnabled("MsgAckCantFindWord") &&
 windows["MsgAckCantFindWord"].parent == "Find"; {
 RemoveWindow("MsgAckCantFindWord");
}

//--
// Replace dialog
//--
namespace ReplaceDialog;
using WindowManager;

// state variables
string findWhatR="",
 replaceWithR="";
bool matchCaseR=false;

var IReplaceDlgListener ReplaceDlgListener;

// interface
public interface IReplaceDlgListener{
 public void FindNext(string findWord, string replaceWord,
 bool matchCase) ;
 public void Replace(string findWord, string replaceWord,
 bool matchCase);
 public void ReplaceAll(string findWord, string replaceWord,
 bool matchCase);
}
// helper methods
public void setReplaceDialogListener(IReplaceDlgListener listener){
 ReplaceDlgListener = listener;
}
public void Show(string parent, string findWord,string replaceWord)
 requires !IsOpen("Replace"); {
 findWhatR = findWord; replaceWithR = replaceWord;
 matchCaseR = false;
 AddWindow("Replace",parent,false);
}

Appendix A

213

public void RemoveReplace()
requires IsOpen("Replace"); {
 findWhatR = ""; replaceWithR="";
 RemoveWindow("Replace");
}
// Actions
[Action(Kind=ActionAttributeKind.Scenario)]
void ScnReplace(string fw, string rw, bool mc)
 requires IsEnabled("Replace");{
 SetFindWhat(fw);
 SetReplaceWith(rw);
 SetMatchCase(mc);
}
[Action] void Cancel()
 requires IsEnabled("Replace"); {
 findWhatR = ""; replaceWithR="";
 RemoveWindow("Replace");
}
[Action] void SetFindWhat(string str)
 requires IsEnabled("Replace") ; {
 findWhatR = str;
}
[Action] void SetReplaceWith(string str)
 requires IsEnabled("Replace") && findWhatR != "" ; {
 replaceWithR = str;
}
[Action] void SetMatchCase(bool value)
 requires IsEnabled("Replace"); {
 matchCaseR = value;
}
[Action] void FindNext()
 requires IsEnabled("Replace") && findWhatR != ""; {
 ReplaceDlgListener.FindNext(findWhatR,replaceWithR, matchCaseR);
}
[Action] void Replace()
 requires IsEnabled("Replace") && findWhatR != ""; {
 ReplaceDlgListener.Replace(findWhatR, replaceWithR, matchCaseR);
}
[Action] void ReplaceAll()
 requires IsEnabled("Replace") && findWhatR != ""
 && findWhatR.Length>=replaceWithR.Length // for testing purposes
; {
 ReplaceDlgListener.ReplaceAll(findWhatR,replaceWithR,matchCaseR);
}
[Action] void MsgAckCantFindWord()
 requires IsEnabled("MsgAckCantFindWord") &&
 windows["MsgAckCantFindWord"].parent=="Replace"; {
 RemoveWindow("MsgAckCantFindWord");
}

// -----------------------
// Notepad views
// -----------------------
// Open scenario.
[Action(Kind=ActionAttributeKind.Scenario)]
void ScnOpen(string fileToOpen, string saveChanges,
 string fileToSave, string overwrite)
requires IsEnabled("Notepad");
{
 Open();
 if (IsEnabled("SaveChanges")) // if dirty
 {
 MsgSvBfrOpen(saveChanges);
 if (IsEnabled("Save")) // saveChanges == true
 {
 SaveDialog.SetFileName(fileToSave);
 SaveDialog.Save();
 if (IsEnabled("MsgReplaceFile")) // file exists
 {
 SaveDialog.MsgOverwriteFile(overwrite); //yes or no
 if (IsEnabled("Save")) // overwrite = no, so get
 // out of the cycle
 SaveDialog.Cancel(); // end of the scenario

214

 }
 }
 }
 //(saveChanges != c || !dirty
 if (IsEnabled("Open")) {
 OpenDialog.SetFileName(fileToOpen);
 OpenDialog.Open();
 if (IsEnabled("AckMsgFileNotFound"))
 {
 OpenDialog.MsgAckFileNotFound();
 OpenDialog.Cancel(); // end of the scenario
 }
 }
}

// Navigation map view
// with focus property modelled
string NavigationMapWithFocus { get {
 if (GetWindowWithFocus()== "") return "NotOpen";
 else return GetWindowWithFocus();
 }}
// without modelling focus property
Set<string> NavigationMapWithoutFocus { get {
 return GetEnabledWindows();
 }}
// distinguish the Find dialog states with different enabled
// actions
string ValidationGroup { get {
 if (GetWindowWithFocus()=="Find") {
 if (FindDialog.findWhatF != "") return "Find Next enabled";
 else return "Find Next disabled";
 }
 else return "OutFind";
 }}
//Open scenario view
string OpenScenario { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (IsEnabled("MsgSaveChanges") && svNfrOpen)
 return "MsgSaveChanges";
 else if (IsEnabled("Save") && svBfrOpen) return "Save";
 else if (IsEnabled("MsgAckFileNotFound"))
 return " MsgAckFileNotFound";
 else if (IsEnabled("MsgOverwriteFile") && svBfrOpen)
 return "MsgOverwriteFile";
 else if (IsEnabled("Open")) return "Open";
 else if (dirty) return "Dirty";
 else if (!dirty) return "NotDirty";
 else return "";
 }}
// save scenario
string SaveScenario { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (IsEnabled("Save")) return "Save";
 else if (IsEnabled("MsgOverwriteFile") && IsOpen("Save"))
 return "MsgOverwriteFile";
 else return "SaveDlgClosed";
 }}
// find scenario
string FindScenario { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (!IsOpen("Find")) return "FindDlgClosed";
 else if (HasFocus("Find")) return "Find";
 else if (IsOpen("MsgAckCantFindWord"))
 return "MsgAckCantFindWord";
 else return "FindDlgNotActive";
}}
// the word to look for is at the beginning of the text
string AtBeginningGroup { get {
if (text!="" && findWhat.Length<=text.Length &&
 text.Substring(0,findWhat.Length)==findWhat
 && Notepad.findWhat!="")
 return "AtBeginning";
else return "NotAtBeginning";}}

Appendix A

215

// the word to look for is at the end of the text
string AtEndGroup { get {
if (text!="" && findWhat.Length<=text.Length &&
 text.Substring(text.Length-findWhat.Length,findWhat.Length)==
 findWhat && Notepad.findWhat!="") return "AtEnd";
else return "NotAtEnd";
}}
// the word to look for is equal to the text content
string WordEQToText{ get {
 if (text==findWhat) return "wordEQText";
 else return "NotEQ";
}}
// the cursor position is in the middle of the word to look for
string AtTheMiddleGroup { get {
if (Exists{ i in Set{0..text.Length};
 posCursor>i && posCursor<i+findWhat.Length &&
 i==text.IndexOf(findWhat)})
 return "InTheMiddle";
else return "NotInTheMiddle";
}}
// the several occurrences of the word overlap each other
string OverlapGroup { get {
if (findWhat.Length>1 && (Exists{i in Set{1..findWhat.Length-1};
 findWhat.Substring(0,i)==findWhat.Substring(findWhat.Length-i,i)
 &&
 text.IndexOf(findWhat+findWhat.Substring(0,i))>=0})
 || (Exists{i in Set{1..findWhat.Length-1};
 findWhat.Substring(0,i).ToLower() ==
 findWhat.Substring(findWhat.Length-i,i).ToLower() &&
 text.ToLower().IndexOf(findWhat.ToLower()+
 findWhat.Substring(0,i).ToLower())>=0}
 && !matchCase))
 return "Overlap";
else return "NotOverlap";
}}
// the several occurrences of the word are side by side
string SideBySideGroup { get {
if (text!="" && findWhat!="" && (text.IndexOf(findWhat+findWhat)>0
 ||
 text.ToLower().IndexOf(findWhat.ToLower()+findWhat.ToLower())>0
 &&
 !matchCase))
 return "SideBySide";
else
 return "NotSideBySide";
}}
// open view
// without modelling the focus property
<string,string> OpenDialogGroup { get {
 if (IsOpen("Open")) return fileNameO="+fileNameO,"dirO="+dirO>;
 else return <"NotOpen","NotOpen">;
}}
// open view
// modelling the focus property
string OpenDialogGroup { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (IsOpen("Open")) return openCtrlWthFocus;
 else return "OpenDlgClosed";
 }}
// save view
// without modelling the focus property
<string,string> SaveDialogGroup { get {
 if (IsOpen("Save")) return <"fileNameS="+fileNameS,"dirS="+dirS>;
 else return <"NotOpen","NotOpen">;
}}
// find dialog view
// without modelling the focus property
<string,string,string> FindDialogGroup { get {
 if (IsOpen("Find") && matchCaseF==true)
 return
 <"findWhatF="+findWhatF,"directionF="+directionF,
 "matchCaseF=true">;
 else

216

 if (IsOpen("Find") && matchCaseF==false) return
 <"findWhatF="+findWhatF,"directionF="+directionF,
 "matchCaseF=false">;
 else return <"NotOpen","NotOpen","NotOpen">;
}}
// find dialog view
// modelling the focus property
string FindDialogGroup { get {
 if (!IsOpen("Notepad")) return "NotOpen";
 else if (HasFocus(" Find")) return findCtrlWthFocus;
 else if (IsOpen(" Find")) return "Find DlgNotActive";
 else return " FindDlgClosed";
}}
// replace dialog view
// without modelling the focus property
<string,string,string> ReplaceDialogGroup { get {
 if (IsOpen(" Replace"))
 return <" findWhatR="+findWhatR," replaceWithR="+replaceWithR,
 " matchCaseR="+matchCaseR>;
 else return <" NotOpen"," NotOpen"," NotOpen">;
}}
// replace dialog view
// modelling the focus property
string ReplaceDialogGroup { get {
 if (HasFocus("MsgAckCantFindWord") &&
 windows["MsgAckCantFindWord"].parent != "Replace")
 return "MsgAckcantFindWord";
 else if (HasFocus("Replace")) return "";//replaceObjActive;
 else return "NotOpen";
}}

217

A.2. Address Book specification

//--
// Address Book main window
//--
using System.String;
using WindowManager;
using FileManager;
namespace AddressBook;

// ---- types and state variables ----
type Contact = <string,string,string,string,string,string>;

var Contact contactInMem = <"","","","","","">;
var Seq<Contact> dbContacts = Seq{};
var string sort = "Asc";
 orderedBy = "Last Name";
 fileOpened = "",
 directory = "E :", // "E:" for test purposes
 nextAction = "";
var int lineSelected = -1;
var bool addNew = true,
 dirty = false;
var bool returnToOpenDlg = false,
 returnToAddressBook = false;

// Actions
// To launch the AddressBook application
[Action] void LaunchAddressBook()
 requires !IsOpen("AddressBook"); {
 AddWindow("AddressBook","",false);
 lineSelected = -1;
 // for testing purposes
 FileManager.CreateDataBaseFile("E:\\AB.adr",
 Seq{<"Pinto","Nuno","1","4","","">,
 <"Silva","Ana","3","2","","">});
}

// To close the application.
[Action] void Close()
 requires IsEnabled("AddressBook"); {
 if (dirty) AddWindow("MsgSvBfrClose","AddressBook",true);
 else CloseApp();
}
void CloseApp(){
 dbContacts = Seq{};
 fileOpened = "";
 directory=" E:"; // "E:" for test purposes
 nextAction = "";
 lineSelected = -1;
 addNew = true;
 dirty = false;
 returnToOpenDlg = false;
 contactInMem = <"","","","","","">;
 if (IsOpen("Find")) FindDialog.Cancel();
 RemoveWindow("AddressBook");
}

[Action] void MsgSvBfrClose(string option)
requires option in Set{"y","n","c"} &&
 IsEnabled("MsgSvBfrClose"); {
 RemoveWindow("MsgSvBfrClose");
 switch (option){
 case "y" : if (fileOpened == "") {
 AddWindow("Save","AddressBook",true);
 }
 else {
 SaveDlgListener.SaveFile(directory,fileOpened);

218

 CloseApp();
 }
 case "n" : CloseApp(); return;
 case "c" : return;
 default : return;
 }
}

// To add a new contact
[Action] void NewContact()
 requires IsEnabled("AddressBook");{
 addNew = true;
 ContactDialog.Show("AddressBook",<"","","","","","">);
}
// To edit an existing contact
Set<int> selLine{ get {
 if (dbContacts.Size>0)
 return Set{0..dbContacts.Size-1};
 else return Set{-1};
 }}
[Action] void SelContact(int line)
 requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
 line>=0 && line<dbContacts.Size; {
 lineSelected = line;
}
[Action] void EditContact()
 requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
 lineSelected > -1; {
 addNew = false;
 ContactDialog.Show("AddressBook",dbContacts[lineSelected]);
}
[Action] void Copy()
 requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
 lineSelected != -1;
 ensures contactInMem == dbContacts[lineSelected]; {
 contactInMem = dbContacts[lineSelected];
}
[Action] void Paste()
 requires IsEnabled("AddressBook") &&
 contactInMem != <"","","","","","">; {
 dbContacts = dbContacts + Seq{contactInMem};
 dirty = true;
}
[Action] void Delete()
 requires IsEnabled("AddressBook") && dbContacts.Size>0 &&
 lineSelected != -1; {
 dbContacts = dbContacts.Subseq(0,lineSelected) +
 dbContacts.Subseq(lineSelected+1,dbContacts.Size);
 dirty = true;
 lineSelected = -1;
}
[Action] void Sort(string field)
requires IsEnabled("AddressBook") && dbContacts.Length>0 &&
 field in Set{"Last Name","First Name","Business Phone",
 "Home Phone","Email","Fax"}; {
 if (field == orderedBy) {
 if (sort == "Asc") sort = "Des";
 else sort = "Asc";
 SortContacts(field, sort);
 }
 else {
 sort = "Asc";
 SortContacts(field, sort);
 }
 orderedBy = field;
}
void SortContacts(string f, string s)
 requires field in Set{"Last Name","First Name","Business Phone",
 "Home Phone","Email","Fax"} &&
 s in Set{"Up","Down"}; {
 bool permutation = true;
 Contact x = <"","","","","","">;
 while (permutation){

Appendix A

219

 permutation = false;
 for (int i=0,j=1; i<=dbContacts.Length-2 &&
 j<=dbContacts.Length-1;i++,j++)
 if (s=="Asc"){
 if (System.String.Compare(GetField(dbContacts[i],f),
 GetField(dbContacts[j],f))>0){
 x = dbContacts[i];
 dbContacts[i] = dbContacts[j];
 dbContacts[j] = x;
 permutation = true;
 }
 }
 else
 if (System.String.Compare(GetField(dbContacts[i],f),
 GetField(dbContacts[j],f))<0){
 x = dbContacts[i];
 dbContacts[i] = dbContacts[j];
 dbContacts[j] = x;
 permutation = true;
 }
 }
}
// To open a database file
[Action] void MsgSvBfrNew(string option)
requires IsEnabled("MsgSvBfrNew") &&
 option in Set{"y","n","c"}; {
 RemoveWindow("MsgSvBfrNew");
 switch (option){
 case "y": if (fileOpened!="") {
 SaveDlgListener.SaveFile(directory,fileOpened);
 fileOpened = "";
 lineSelected = -1;
 dbContacts = Seq{};
 }
 else {
 returnToAddressBook = true;
 SaveDialog.Show("AddressBook",directory,fileOpened);
 }
 return;
 case "n": fileOpened = "";
 lineSelected = -1;
 dbContacts = Seq{};
 return;
 case "c": return;
 default: return;
 }
}

[Action] void NewAddressBook()
 requires IsEnabled("AddressBook"); {
 if (dirty) AddWindow("MsgSvBfrNew","AddressBook",true);
 else {
 fileOpened = "";
 lineSelected = -1;
 dbContacts = Seq{};
 }
}
[Action] void MsgSvBfrOpen (string option)
requires IsEnabled("MsgSvBfrOpen") &&
 option in Set{"y","n","c"}; {
 RemoveWindow("MsgSvBfrOpen");
 switch (option){
 case "y": if (fileOpened!="") {
 SaveDlgListener.SaveFile(directory,fileOpened);
 OpenDialog.Show("AddressBook", directory);
 }
 else {
 returnToOpenDlg = true;
 SaveDialog.Show("AddressBook",directory,fileOpened);
 }
 return;
 case "n": OpenDialog.Show("AddressBook",directory);
 return;

220

 case "c": return;
 default: return;
 }
}
[Action] void OpenAddressBook()
 requires IsEnabled("AddressBook"); {
 if (dirty) AddWindow("MsgSvBfrOpen","AddressBook",true);
 else OpenDialog.Show("AddressBook",directory);
}
[Action] void SaveAddressBookAs()
 requires IsEnabled("AddressBook") && dirty;{
 SaveDialog.Show("AddressBook",directory,fileOpened);
 AddWindow("Save","AddressBook",true);
}
[Action] void SaveAddressBook()
 requires IsEnabled("AddressBook") && fileOpened !="" &&
 dirty == true;{
 SaveDialog.Show("AddressBook",directory,fileOpened);
 AddWindow("Save","AddressBook",true);
}
// To open the find dialog.
[Action] void Find()
requires IsEnabled("AddressBook");{
 FindDialog.Show("AddressBook");
}
[Action] void FindNext()
requires IsEnabled("AddressBook");{
 FindDialog.Show("AddressBook");
}
[Action(Kind=ActionAttributeKind.Probe)]
string GetDBLastName()
 requires IsEnabled("AddressBook"); {
 if (dbContacts.Size > 0)
 return GetField(dbContacts[0],"Last Name");
 else return "0";
}
[Action(Kind=ActionAttributeKind.Probe)]
string GetDBBusinessPhone()
 requires IsEnabled("AddressBook"); {
 if (dbContacts.Size > 0)
 return GetField(dbContacts[0],"Business Phone");
 else return "0";
}

// Interfaces
// ---- Find dialog interface ----
var CAddressBookFiDlg FiDlgListener = new CAddressBookFiDlg();

class CAddressBookFiDlg : FindDialog.IFindDlgListener {
 void FindNext(string fw, string f, string d, bool mc, bool mww) {
 int lineSelOld = lineSelected;
 if (0<lineSelected && lineSelected<dbContacts.Size-1)
 if (d=="Up") lineSelected =
 FindWord(dbContacts.Subseq(0,lineSelected), fw,f,d,mc,mww);
 else lineSelected =
 FindWord(dbContacts.Subseq(lineSelected+1,
 dbContacts.Size),fw,f,d,mc,mww);
 if (lineSelOld == lineSelected)
 AddWindow("MsgAckCannotFindWord","Find",true);
 }
 CAddressBookFiDlg(){
 FindDialog.setFindDialogListener(this);
 }
}
// ---- helper methods ----
int FindWord(Seq<Contact> dbC, string w, string f, string d, bool
mc, bool mww)
 requires d in Set{"Up","Down"}; {
 int i=0;
 if (d=="Up") {
 for (i=dbC.Size-1;i>=0;i--) {
 if (CompareStrings(mc,mww,GetField(dbContacts[i],f),w,i)!=-1)

Appendix A

221

 return i;
 }
 return lineSelected;
 }
 else {
 for (i=0; i< dbC.Size; i++) {
 if (CompareStrings(mc,mww,GetField(dbContacts[i],f),w,i)!=-1)
 return i+lineSelected;
 }
 return lineSelected;
 }
}
public int CompareStrings(bool mc,bool mww,
 string cf,string w,int i) {
 if (mc && mww && System.String.CompareOrdinal(cf,w)==0)
 return i;
 else if (mc && !mww && cf.IndexOf(w)!=-1 &&
 System.String.CompareOrdinal(cf.Substring(
 cf.IndexOf(w),w.Length),w)==0)
 return i;
 else if (!mc && mww &&
 System.String.CompareOrdinal(cf.ToLower(),
 w.ToLower())==0)
 return i;
 else if (!mc && !mww &&
 cf.ToLower().IndexOf(w.ToLower()) !=-1)
 return i;
 else return -1;
}

string GetField(Contact c, string f)
 requires f in Set{"Last Name","First Name",
 "Business Phone","Home Phone","Email","Fax"};
{
 switch (f){
 case "Last Name": return c.First;
 case "First Name": return c.Second;
 case "Business Phone": return c.Third;
 case "Home Phone": return c.Fourth;
 case "Email": return c.Fifth;
 case "Fax": return c.Sixth;
 default : return "";
 }
}

��������������	
���	�����
��������
var CAddressBookOpDlg OpDlgListener = new CAddressBookOpDlg();

class CAddressBookOpDlg : OpenDialog.IOpenDlgListener
{
 void OpenFile(string dir, string file){
 int i = 0;
 string path = dir + " \\" + file;
 if (FileManager.DataBaseExists(path)) {
 dbContacts = FileManager.ReadDataBase(path);
 dirty = false;
 directory = dir;
 fileOpened = file;
 }
 else
 {
 OpenDialog.Cancel();
 AddWindow("MsgAckFileNotFound","AddressBook",true);
 }
 }
 CAddressBookOpDlg(){
 OpenDialog.SetOpenDialogListener(this);
 }
}
// ---- Save dialog interface ----
var CAddressBookSaDlg SaveDlgListener = new CAddressBookSaDlg();

class CAddressBookSaDlg : SaveDialog.ISaveDlgListener

222

{
 string SaveFile(string dir, string file){
 string path = directory + " \\" + file;
 string content = "";
 if (file != "*.adr" && file !="") {
 FileManager.CreateDataBaseFile(path,dbContacts);
 AddressBook.fileOpened = file;
 AddressBook.dirty = false;
 }
 if (returnToOpenDlg) {
 OpenDialog.Show("AddressBook",directory);
 returnToOpenDlg = false;
 }
 if (returnToAddressBook) {
 fileOpened = "";
 dbContacts = Seq{};
 lineSelected = -1;
 returnToAddressBook = false;
 }
 return "Ok";
 }
 void Cancel(){
 returnToOpenDlg = false;
 returnToAddressBook = false;
 }
 CAddressBookSaDlg(){
 SaveDialog.setSaveDialogListener(this);
 }
}
// ---- Contact dialog interface ----
var CContactDlg ContactDlgListener = new CContactDlg();

class CContactDlg : ContactDialog.IContactDlgListener {
 public void ContactUpdate(Contact contc) {
 if (addNew)// lineSelected == -1) // add a new contact
 dbContacts = dbContacts + Seq{contc};
 else // update an existing contact
 dbContacts = dbContacts.Subseq(0,lineSelected) +
 Seq{contc} +
 dbContacts.Subseq(lineSelected+1,dbContacts.Size);
 dirty = true;
 addNew = false;
 }
 CContactDlg(){
 ContactDialog.setContactDialogListener(this);
 }
}

//--
// Contact dialog
//--
using WindowManager;

namespace ContactDialog;
// types and variables
type Contact = <string,string,string,string,string,string>;

var Contact contc = <"","","","","","">;
var IContactDlgListener ContactDlgListener;

public interface IContactDlgListener{
 public void ContactUpdate(Contact contc) ;
}
public void setContactDialogListener(IContactDlgListener listener){
 ContactDlgListener = listener;
}
public void Show(string parent, Contact c)
 requires !IsOpen("Contact"); {
 contc = <c.First,c.Second,c.Third,c.Fourth,c.Fifth,c.Sixth>;
 AddWindow("Contact",parent,true);
}
[Action] void Cancel()

Appendix A

223

 requires IsEnabled("Contact"); {
 contc = <"","","","","","">;
 RemoveWindow("Contact");
}
[Action] void Ok()
 requires IsEnabled("Contact"); {
 ContactDlgListener.ContactUpdate(contc) ;
 contc = <"","","","","","">;
 RemoveWindow("Contact");
}
[Action] void SetLastName(string str)
 requires IsEnabled("Contact"); {
 contc = <str,contc.Second,contc.Third,
 contc.Fourth,contc.Fifth,contc.Sixth>;
}
[Action] void SetFirstName(string str)
 requires IsEnabled("Contact"); {
 contc = <contc.First,str,contc.Third,
 contc.Fourth,contc.Fifth,contc.Sixth>;
}
[Action] void SetBusinessPhone(string str)
 requires IsEnabled("Contact"); {
 contc = <contc.First,contc.Second,str,
 contc.Fourth,contc.Fifth,contc.Sixth>;
}
[Action] void SetHomePhone(string str)
 requires IsEnabled("Contact"); {
 contc = <contc.First,contc.Second,contc.Third,
 str,contc.Fifth,contc.Sixth>;
}
[Action] void SetEmail(string str)
 requires IsEnabled("Contact"); {
 contc = <contc.First,contc.Second,contc.Third,
 contc.Fourth,str,contc.Sixth>;
}
[Action] void SetFax(string str)
 requires IsEnabled("Contact"); {
 contc = <contc.First,contc.Second,contc.Third,
 contc.Fourth,contc.Fifth,str>;
}
[Action(Kind=ActionAttributeKind.Scenario)]
void ScnEditContact(string LN,string FN,string BPh,
 string HPh,string E,string F)
requires IsEnabled("Contact");{
 SetLastName(LN);
 SetFirstName(FN);
 SetBusinessPhone(BPh);
 SetHomePhone(HPh);
// SetEmail(E); SetFax(F); // not tested
 Ok();
}

//--
// Find dialog
//--
using WindowManager;
namespace FindDialog;

var IFindDlgListener FindDlgListener;
string findWhat = "",
 field = "",
 direction = "Down";

bool matchCase = false,
 matchWholeWord = false;

public interface IFindDlgListener{
 void FindNext(string fw, string f, string d, bool mc, bool mww)
 requires f in Set {"Last Name","First Name","Business Phone",
 "Home Phone","Email","Fax"}
 && d in Set{"Up","Down"};
}

224

public void setFindDialogListener(IFindDlgListener listener) {
 FindDlgListener = listener;
}
public void Show(string parent)
 requires !IsOpen("Find"); {
 // resets the values of the variables
 findWhat = "";
 field="Last Name";
 direction= "Down";
 matchCase=false;
 matchWholeWord=false;
 AddWindow("Find",parent,false);
}

[Action(Kind=ActionAttributeKind.Scenario)]
public void ScnFind (string fw, int f, string d, bool mc, bool mww)
 requires IsEnabled("Find") && fw != "";{
 SetFindWhat(fw);
 if (f == 0) SetField("Last Name");
 else SetField("Business Phone");
 SetDirection(d);
 SetMatchCase(mc);
 SetMatchWholeWord(mww);
 Find();
}
[Action] public void SetFindWhat(string str)
 requires IsEnabled("Find");{
 findWhat = str;
}
[Action] public void SetField(string str)
 requires IsEnabled("Find") && str in Set{"Last Name","First Name",
 "Business Phone","Home Phone","Email","Fax"}; {
 field = str;
}
[Action] public void SetMatchCase(bool op)
 requires IsEnabled("Find"); {
 matchCase = op;
}
[Action] public void SetMatchWholeWord(bool op)
 requires IsEnabled("Find") && windows != Map{};{
 matchWholeWord = op;
}
[Action] public void SetDirection(string d)
 requires IsEnabled("Find") && d in Set{"Up","Down"};{
 direction = d;
}
[Action] public void Find()
 requires IsEnabled("Find") && findWhat!="";{
 FindDlgListener.FindNext(findWhat, field, direction,
 matchCase, matchWholeWord);
}
[Action] public void Cancel()
 requires IsEnabled("Find");{
 // reset the value of the variables
 findWhat = "";
 field="Last Name";
 direction= "Down";
 matchCase=false;
 matchWholeWord=false;
 RemoveWindow("Find");
}
[Action] public void MsgAckCannotFindWord()
requires IsEnabled("MsgAckCannotFindWord") &&
 windows["MsgAckCannotFindWord"].parent == "Find"; {
 RemoveWindow("MsgAckCannotFindWord");
}

//--
// Address Book views
//--
// navigation map

Appendix A

225

Set<string> NavigationGroup { get {
 return GetEnabledWindows();
}}
// view to check the find scenario
string FindViewScn { get {
 if (IsEnabled("MsgAckCannotFindWord"))
 return "MsgAckCannotFindWord";
 else if (IsEnabled("Find")) return "Find";
 else if (!IsOpen("AddressBook")) return "NotOpen";
 else return "AddressBook";
}}
// find view
<string,string,string,string,string> FindDialogGroup { get {
 if (IsOpen("Find")) return <"findWhat="+ findWhat,
 "field="+ field, "direction="+ direction,
 "matchCase="+ matchCase,"matchWholeWord="+ matchWholeWord>;
 else return <"NotOpen","NotOpen","NotOpen","NotOpen","NotOpen">;
}}

// view to check the open scenario
string OpenViewScn { get {
 if (IsEnabled("MsgAckFileNotFound")) return "MsgAckFileNotFound";
 else if (IsEnabled("Open")) return "Open";
 else if (IsEnabled("Save")) return "Save";
 else if (IsEnabled("MsgSvBfrOpen")) return "MsgSvBfrOpen?";
 else if (IsEnabled("MsgOverwriteFile"))
 return "MsgOverwriteFile?";
 else if (!IsOpen("AddressBook")) return "NotOpen";
 else return "AddressBook";
}}
// view to check the save scenario
string SaveViewScn { get {
 if (IsEnabled("MsgOverwriteFile")) return "MsgOverwriteFile?";
 else if (IsEnabled("Save")) return "Save";
 else if (IsEnabled("MsgOverwriteFile"))
 return "MsgOverwriteFile?";
 else if (!IsEnabled("AddressBook")) return "NotOpen";
 else return "AddressBook";
}}
// dirty and a file opened
string DirtyFileView{ get {
 if (dirty && fileOpened != "") return "fileOpenedDirty";
 else if (!dirty && fileOpened != "") return "fileOpenedNotDirty";
 else if (fileOpened == "" && dirty) return "contentDirty";
 else if (fileOpened == "" && !dirty) return "contentNotDirty";
 else return "other";
 }}
// Scenarios
// Find Scenario
[Action(Kind=ActionAttributeKind.Scenario)]
void FindScenario(string findW,string field,bool mc,bool mww,
 string dir)
 requires dir in Set{"Up","Down"} &&
 field in Set{"Last Name","First Name", "Business Phone",
 "Home Phone", "Email","Fax"} &&
 IsEnabled("AddressBook"); {
 Find();
 FindDialog.SetFindWhat(findW);
 FindDialog.SetField(field);
 FindDialog.SetMatchCase(mc);
 FindDialog.SetMatchWholeWord(mww);
 FindDialog.SetDirection(dir);
 FindDialog.Find();
 if (IsEnabled("MsgAckCannotFindWord"))
 FindDialog.MsgAckCannotFindWord();
 FindDialog.Cancel();
}
//Open Scenario
[Action(Kind=ActionAttributeKind.Scenario)]
void OpenScenarioScn(string fileToOpen, string saveChanges,
 string fileToSave, string overwrite)
requires IsEnabled("AddressBook") &&
 saveChanges in Set{"y","n","c"} &&

226

 overwrite in Set{"y","n"}; {
 OpenAddressBook();
 if (IsEnabled("MsgSvBfrOpen")) // if dirty
 {
 MsgSvBfrOpen(saveChanges);
 if (IsEnabled("Save")) // saveChanges == true
 {
 SaveDialog.SetFileName(fileToSave);
 SaveDialog.Save();
 if (IsEnabled("MsgOverwriteFile")) // file exists
 {
 SaveDialog.MsgOverwriteFile(overwrite); //yes or no
 if (IsEnabled("Save")) // overwrite = no, so get
 // out of the cycle
 SaveDialog.Cancel(); // end of the scenario
 }
 }
 }
 //(saveChanges != c || !dirty
 if (IsEnabled("Open")) {
 OpenDialog.SetFileName(fileToOpen);
 OpenDialog.Open();
 if (IsEnabled("MsgAckFileNotFound"))
 {
 OpenDialog.MsgAckFileNotFound();
 OpenDialog.Cancel(); // end of the scenario
 }
 }
}
//Save Scenario
[Action(Kind=ActionAttributeKind.Scenario)]
void SaveScenario(string fileName, string overwrite)
requires IsEnabled("Notepad") && overwrite in Set{"y","n"}; {
 SaveAddressBook();
 if (IsEnabled("Save")) //no file currently opened
 {
 SaveDialog.SetFileName(fileName);
 SaveDialog.Save();
 if (IsEnabled("MsgOverwriteFile"))
 {
 SaveDialog.MsgOverwriteFile(overwrite);
 if (IsEnabled("Save"))
 SaveDialog.Cancel();
 }
 }
}
// close scenario
string CloseViewScn { get {
 if (IsOpen("MsgOverwriteFile")) return "MsgOverwriteFile?";
 else if (IsEnabled("MsgSvBfrClose")) return "MsgSvBfrClose?";
 else if (IsEnabled("Save")) return "Save";
 else if (!IsEnabled("AddressBook")) return "NotOpen";
 else return "AddressBook";
}}

227

A.3. Window manager and file manager

//--
// Window manager
//--
namespace WindowManager;

string hasFocus = "";

structure winInf{
 string parent;
 bool isModal;
}
Map<string,winInf> windows = Map{};

bool IsOpen(string name) {
 return Exists { i in windows; i == name};
}
bool IsEnabled(string name) {
 int id;
 if (IsOpen(name)) {
 choose (i in windows, windows[i].isModal &&
 i!=name && NotParent(i,name))
 return false;
 else
 return true;
 }
 else return false;
}
Set<string> GetEnabledWindows(){
 return Set{x in windows, IsEnabled(x)};
}
bool NotParent(string p, string c) {
 if (windows[c].parent == "") return true;
 if (windows[c].parent == p) return false; //p is parent of c
 else
 return NotParent(p, windows[c].parent);
}
void AddWindow(string name, string parent, bool isModal) {
 windows = windows + Map{name :> winInf(parent,isModal)};
 hasFocus = name;
}
void RemoveWindow(string name)
 requires Exists { i in windows; i == name}; {
 RemoveChild(name);
 hasFocus = windows[name].parent;
 windows[name] = none;
}
void RemoveChild(string name) {
 foreach (x in windows, windows[x].parent == name)
 RemoveChild(x);
 windows = Map{i in windows, windows[i].parent != name;
 i:>winInf(windows[i].parent, windows[i].isModal)};
}
void SetFocus(string name)
requires IsEnabled(name) || name == ""; {
 hasFocus = name;
}
string GetWindowWithFocus() {
 return hasFocus;
}
bool HasFocus(string name) {
 return name == hasFocus;
}

228

//--
// File manager
//--
namespace FileManager;

Map<string,string> files = Map{};

public void CreateTextFile(string fileName, string fileContent) {
 files = files + Map{fileName :> fileContent};
}
public bool FileExists(string fileName) {
 choose (i in files, i == fileName) return true;
 else return false;
}
public string ReadFile(string fileName)
 requires FileExists(fileName); {
 return files[fileName];
}
public void RemoveFile(string fileName)
 requires FileExists(fileName); {
 files[fileName] = none;
}
bool IsValid(string file) {
 if (file == "") return false;
 if (file.IndexOfAny(new char[8]{'\\','*','/',':','?','\"','<',
 '>','|'})>=0)
 return false;
 else return true;
}

