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Signal acquisition 
 

Introduction 
 
Variables representing physical world quantities are for the most part analog, such as 
temperature, pressure, positions, velocities, chemical concentrations, and many others. 
They are characterized by varying continuously with time, and we may be interested 
in the values at any instants in time, or only in the peak, average or r.m.s. values, or in 
their rates of change with time. Or we may be interested in their frequency content, 
that is, we would like to perform some type of frequency analysis of the signals. Or 
maybe we want to store their values at specific points in time, called data logging. 
Another possibility is that the analog signals represent variables in a manufacturing 
process and their values are to be used as inputs in the process control mechanism. 
 
Whatever the application, the most powerful and versatile method of performing it is 
by first bringing the analog signals into the digital domain, into a digital machine, and 
then do all the signal processing digitally. We can easily do this with a PC equipped 
with a data acquisition card and the appropriate software. This software incorporates 
an interface with the card and, through this, the signal samples are transferred to the 
PC memory. Other parts of the program may allow the user to set such things as the 
gain of the several analog channels and to visualize the signals on the PC monitor 
screen, or do some processing of the values and show the results. 
 
The data acquisition card contains a circuit known as analog-digital converter. This is 
the circuit where the analog signal amplitude is measured at equally spaced discrete 
time points, and the value of the amplitude is coded into digital words. We look next 
at this process because it contains several pitfalls. 

Analog-digital conversion 
The analog-digital converter (ADC) performs two basic functions. It samples the 
analog signal, and then it converts the amplitude of the sample to a digital value, a 
process known as quantization. We can think of these two processes as time 
discretization and amplitude discretization.  

Sampling  
Figure 1(a) represents an analog signal x(t), and 1(c) a sequence of samples xp(t), with 
a period Ts, which is the result of the sampling or time discretization of the analog 
signal. Mathematically this is equivalent to multiplying the analog signal by the train 
of impulses p(t), shown in figure 1(b). The multiplication in the time domain results in 
the convolution of the spectra of the signal X(ω) and the impulse train P(ω) in the 
frequency domain (fig. 2) [Oppe97]. In the signal spectrum, Fig. 2(a), ωm is the 
frequency above which the signal has no energy content. In the spectrum of the 
impulse train, fig. 2(b), ωs=2π/Ts, is the sampling frequency.  
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Figure 1: Sampling an analog signal with an impulse train 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Spectra of the signals in figure 1 
 

Aliasing 
The convolved spectrum, that is the spectrum of the sampled signal, fig. 2(c), shows 
that if ωm<(ωs/2) the original signal can be completely recovered from the sampled 
signal by a suitable low-pass filter, with a frequency response for example like the 
one shown as a dashed line.  If, on the other hand, ωm>(ωs/2), the images of the 
analog signal spectrum, centered at multiples of ωs, overlap as shown in fig. 2(d), and 
no filtering will succeed in recovering the original spectrum intact. This problem is 
called aliasing, because the high frequency components of an adjacent signal 
spectrum image overlap the original spectrum masquerading as (with the alias of) 
lower frequency components. For example, the component at frequency ωm is folded 
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back as a component at frequency ωs-ωm, and if this frequency falls within the 
spectrum of the signal as in fig. 2(d), when we try to recover the original signal we no 
longer have the original spectrum to do it. This is then the first pitfall to avoid. In 
practice, this means that we have to filter the analog signal to limit its bandwidth to 
less than half the sampling frequency, prior to sampling. The usual and most effective 
place for this filter is the input to the data acquisition board. This may be needed even 
if we are dealing with a very low frequency signal (compared with the sampling 
frequency). Real world signals often appear corrupted by noise, usually picked up by 
connecting wires from ambient electric and magnetic fields, and the noise frequency 
content may be much higher than the signal’s. This high frequency noise energy 
would then be folded back into the signal band increasing the overall noise.  

Quantization 
Every time the analog signal is sampled, its amplitude is converted into a N bit binary 
value. Since there are only 2N possible binary values, this means that, at best, the 
analog signal amplitude can be measured with a resolution of 1/ 2N. For instance, in a 
10 bit analog-digital converter, the resolution is 1/1024, or slightly better than 0,1%. 
The actual amplitude of this resolution interval depends on the maximum analog 
voltage that the converter is able to convert correctly, called the full-scale voltage 
(Vfs). For example, in a converter that has a 0V to 10V analog range (Vfs=10V), the 
resolution interval is Vfs/2N or about 9.77mV. This quantity is sometimes called the 
quantum Q, also the least significant bit or LSB, because it is the weight of the least 
significant bit of the binary value output by the converter. The quantum or LSB is 
then given by the following expression: 
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If the converter is a bipolar one, that is, the input voltage can assume positive or 
negative values, the expression above will still be valid if we consider the range given 
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One can think of the converter as a device that converts each analog sample into a 
binary code, which, if decoded, that is, converted back into an analog value, would 
produce the best approximation to the original analog value. 
 
The input/output characteristic of an ideal analog-digital converter is shown in figure 
3. For clarity, the number of bits is three, and the analog input range is 0V to 8V. The 
analog values corresponding to each binary code are shown between parentheses next 
to the codes. 
 
 
 
 
 
 
 
 
 

Figure 3: Ideal characteristic for a 3 bit unipolar ADC 
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For this converter, 1 LSB = 1V. It can be seen that input analog values between 0 and 
0,5V, that is ½ LSB, correspond to the binary output 000, which corresponds to 0V. 
The values between 0,5V and 1,5V correspond to 001, which translates into 1V. The 
same happens in all the other 1V, or 1 LSB, intervals, except the last one. The last 
interval runs from 6,5 V to 8V, corresponding to the code 111, that is 7V. Note that 
except for this last interval, the maximum difference between the coded analog value 
and the true analog value never exceeds ½ LSB. This difference is called the 
quantization error, and its amplitude as a function of the analog input value is 
represented in figure 4. 
 
It can be seen that, except for the last interval, corresponding to the code 111, this 
operation is equivalent to rounding to the nearest integer the input value measured in 
units of quantum. That is, the output code C is such that its binary value Cb is given 
by  
 
 Cb=Round (Vi/Q) 
 
 
 
 
 
 
 
 
 

Figure 4: Quantization error for the ADC shown in figure 3 
 

Real-world ADC Errors  
 
Without even discussing the actual electronic circuits that are used to implement the 
analog-digital conversion process we can be sure of one thing: they are not going to 
behave ideally. Even if we use the right sampling rate and an adequate number of bits, 
the results of the conversion, that is, the actual digital values of each sample, are 
going to suffer from different types of errors. The one that really matters, because it is 
not easily compensated, is the linearity error.  
 
We can understand what the linearity error is by imagining the following experiment: 
we apply a perfect sine wave to the input of the ADC; we then reconstitute the wave 
shape from the samples with a perfect DAC. If the output wave shape is not a perfect 
sinusoid, then the ADC is not linear. The term linear applied to a single input single 
output system indicates that the equation relating the output of the system to its input, 
is a linear function that is it only has first order terms. When we look at the output 
signal in the frequency domain, we can see that it has several spectral lines, that is, 
energy at other frequencies has appeared, and it can be shown that this only happens 
at frequencies that are integer multiples of the input sine wave frequency. They are 
called harmonics - second harmonic, third harmonic and so on, according to their 
frequencies, twice, three times, etc. of the original sinusoid which is of course still 
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present in the output. This happens with any signal that we apply to the ADC, but we 
only see harmonics easily when the input is a pure sine wave.  
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