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A New Approach to Subband Adaptive Filtering
S. Sandeep Pradhan and V. U. Reddy,Fellow, IEEE

Abstract—Subband adaptive filtering has attracted much at-
tention lately. In this paper, we propose a new structure and a
new formulation for adapting the filter coefficients. This structure
is based on polyphase decomposition of the filter to be adapted
and is independent of the type of filter banks used in the
subband decomposition. The new formulation yields improved
convergence rate when LMS algorithm is used for coefficient
adaptation. As we increase the number of bands in the filter,
the convergence rate increases and approaches the rate that
can be obtained with a flat input spectrum. The computational
complexity of the proposed scheme is nearly the same as that
of the fullband approach. Simulation results are included to
demonstrate the efficacy of the new approach.

Index Terms—Acoustic echo cancellation, adaptive filtering,
subband filtering.

I. INTRODUCTION

A COMMON problem encountered in telephone communi-
cation is the presence of echo, which is produced when

the signal passes through telephone channels. Removal of this
echo requires precise knowledge of the channel, which may be
time varying. This calls for adaptive estimation of the channel,
which is characterized by time varying impulse response. In
recent years, there has been a marked interest in the application
of adaptive filtering to acoustic echo cancellation where the
impulse response involved is long. We briefly describe this
application to motivate our study.

In hands-free telephone sets and teleconferencing systems,
both ends of the telephone line consist of audio terminals (see
Fig. 1). The received speech signal is fed to a loudspeaker
(LS), which radiates acoustic waves. These waves are fed back
to the remote user through the microphone (MP) and constitute
the so-called echo. To cancel this echo, we take a sample
of , modify it by passing it through an adaptive filter

, and subtract the resulting signal from is the
estimate of the impulse response of the path that the signal

takes to form the echo For complete cancellation
of this echo, the impulse response of the adaptive filter
may have to be very long [1]–[4].

In the above example, the adaptation of the filter is based
on the error signal The algorithm used for adaptation
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Fig. 1. Acoustic echo canceler.

is generally a gradient type [5]–[7]. The least mean square
(LMS) algorithm of Widrowet al. [8] has been used widely in
such applications. However, it suffers from slow convergence
when the input signal to the adaptive filter is correlated, which
is generally the case in the above problem. In addition, the
convergence performance depends on the length of the filter:
the longer the filter, the slower the convergence. Thus, in such
applications, the convergence rate of the adaptive filter is the
major issue.

Several approaches based on subband adaptive filtering have
been recently proposed for the above problem. In these ap-
proaches, the underlying signals are decomposed into slightly
overlapping frequency bands by passing through a filter bank
and the output signals are decimated to give subband signals.
Now, the adaptations are carried out in each subband, but the
problem with this approach is the aliasing of the input signals,
which arises because of the decimation. Several solutions to
this problem, such as oversampling [9] of the analysis bank
outputs, incorporating adaptive cross filters [10] between the
adjacent subbands, and putting spectral gaps between the bands
[11], have been recently proposed. In [10], it is pointed out
that in the -band adaptive filters with critical sampling, the
cross filters can be avoided if the analysis filters are either
ideal filters, or the path impulse response is nonzero for the
coefficient indices that are multiples of and zero otherwise.
Thus, the cross filters are unavoidable in practical applications.
It has been found [10] that the convergence performance with
the cross filters is not better than that of fullband adaptive filter.
However, this approach yields a slight gain in computation.

In this paper, we present a new structure for the subband
adaptive filter (SAF) with critical sampling and a new cri-
terion for the adaptation algorithm that results in significant
improvement in the convergence rate when the LMS algorithm
is used for adaptation. This structure exploits the polyphase
decomposition of the adaptive filter. To prevent any distortion
that may be introduced in splitting and recombining the
signals, we use perfect reconstruction filter banks. All the
filters used here are real. In our presentation, we consider the
problem from the system identification point of view.
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Fig. 2. System identification model.

Fig. 3. Equivalent structure of Fig. 2.

The paper is organized as follows. In Section II, we develop
and analyze the SAF for the two-band case. The new structure
and the new criterion, and hence, the modified LMS algorithm
are presented here. Section III extends the proposed approach
to the -band case. Section IV discusses the improvements
in the convergence speed that the new approach yields as
well as the issues related to the computational complexity. In
Section V, we present some simulation results to demonstrate
the convergence performance of the proposed approach. The
performance of the SAF in the presence of additive noise is
also brought out here. Finally, Section VI concludes the paper.

II. DEVELOPMENT AND ANALYSIS OF SAF FOR 2-BAND CASE

Consider the system identification model of the echo can-
cellation problem as shown in Fig. 2. The input signal passes
through , which may be unknown and/or slowly varying.
The output of this system is corrupted by a signal , which
is the system noise in acoustic echo canceler. To estimate this
unknown/time varying system, the input is passed through a
synthetic filter whose coefficients are adapted in such a
way that the power of the error signal is minimized.

A. Structure of the SAF

An equivalent structure of the above system identification
model is given in Fig. 3. Here, the output signals from the
filters and are divided into subbands, decimated,
subtracted, and combined through an appropriate filter bank
to form the error signal The signal is not shown
here; we do not consider it in the analysis of the SAF, but
its effect on the performance of the SAF will be studied
through simulations in Section V. and are the
analysis filters, and and are the synthesis filters.
These filters form a perfect reconstruction pair. We used cosine
modulated paraunitary filter banks in our simulations, although
the paraunitary property is not needed for our development
and analysis.

Fig. 4. New structure for the SAF for the two-band case.

Consider It can be decomposed into polyphase com-
ponents as

(2.1)

Using this decomposition and Noble identities [12], the con-
figuration of Fig. 3 can be transformed into Fig. 4. Note
that and are the subband
components of the input , and together, they account for
all the samples of and , which are the outputs of the
filters and , respectively. Note also that the cross
filters are totally avoided in our structure. However, we have
two copies of and , each of length , where
denotes the length of

B. Adaptive Algorithm

The filters and are to be adapted. We use
and to adapt the coefficients of these filters. From Fig. 4,
we have

(2.2)

and

(2.3)

Note that when the spectrum of is flat, the power of
is equal to that of , assuming that the filters

and are of equal bandwidth with identical passband
responses. When is colored, the power of will be
different from that of We define a cost function as

(2.4)

where and are proportional to the inverse of the
powers of and , respectively, and denotes the
expectation operator. This cost function gives higher weight to
the error corresponding to the subband of lower signal power.
As we show later in Section IV, this cost function brings down
the eigenvalue spread of the weighted sum of the correlation
matrices of the input signals to the adaptive filter, thereby
resulting in improved rate of convergence.
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The gradient-based algorithm for adaptation is given by

(2.5)

(2.6)

where and are the th coefficients of and
, respectively, at theth iteration, and is the step size.

From the cost function (2.4), we have

(2.7)

(2.8)

The partial derivatives of and with respect to
and are given by

(2.9)

(2.10)

(2.11)

(2.12)

Taking the inverse transform of (2.9)–(2.12) and combining
the results with (2.5)–(2.8), we obtain

(2.13)

(2.14)

for
Now, we replace the true gradient by the instantaneous

gradient and express the update equations as

(2.15)

(2.16)

These are the LMS adaptation equations for the coefficients
of and It is to be noted that the filters and

in the two subbands are constrained to be the same.

C. Asymptotic Convergence Analysis

We will now study the convergence of the coefficient error
vector with the above adaptation rule.

We decompose as

(2.17)

and define the coefficient error vector at theth iteration as

(2.18)

(2.19)

where and denote the coefficient vectors of and
, respectively, and and denote the coefficient

vectors of and , respectively, at the th iteration.
Using the input-output relation of the decimator, we can write
the transform of (see Fig. 4) as

(2.20)

which in view of (2.17) can be expressed as

(2.21)

Noting that

(2.22)
and

(2.23)

(2.21) can be simplified as

(2.24)

Similarly, we obtain

(2.25)

Combining (2.24) and (2.25) with (2.2) and (2.3), we get

(2.26)

(2.27)

Taking the inverse transform of (2.26) and (2.27) and
expressing the results in vector form, we have

(2.28)

(2.29)

where

Using (2.28) and (2.29) in (2.15) and (2.16) and the def-
initions of (2.18) and (2.19), the recursive relations for the
coefficient error vector can be obtained as

(2.30)
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(2.31)

Expressing (2.30) and (2.31) in vector form, we have

(2.32)

where

(2.33)

(2.34)

We now consider the mean behavior of the coefficient error
vector, as is usually done in the LMS algorithm analysis [8].
Taking expectation on both sides of (2.32), we have

(2.35)

where we have implicitly assumed the independence of the
two terms appearing on the right-hand side of (2.32), which
is usually made in such analysis. Equation (2.35) can now be
expressed as

(2.36)

where

(2.37)

and denotes the identity matrix of order
It can be shown [10] that is positive definite. Let the

ordered eigenvalues of be denoted as

(2.38)

We can then show [8] that the mean coefficient error vector
converges to zero asymptotically if

(2.39)

The convergence rate, however, depends on the eigenvalue
spread. We show in later sections that our formulation (cost
function) brings down this eigenvalue spread, forcing it close
to unity with increasing value of

Fig. 5. SAF forM -band case.

III. EXTENSION TO -BAND CASE

Here, we decompose the adaptive filter into
polyphase components

(3.1)

Each of the polyphase components can be moved across the
decimator. The SAF structure for this case is shown in Fig. 5.

As seen from the figure, there are filters, each of length
, at the output of each analysis filter. These filters have

to be adapted. The cost function in this case is the extension
of (2.4)

(3.2)

where the constants are inversely propor-
tional to the powers of , respec-
tively. This is, again, a weighted cost function, with more
weight given to the error corresponding to the subband of
lower signal power. Following the steps as in the two-band
case, we can obtain the adaptation equations for the filter
coefficients as

(3.3)

Extending the analysis of the two-band case, we have

...
...

(3.4)

where

(3.5)
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Fig. 6. Sample spectrum ofy(n):

with

...

(3.6)

As in the two-band case, the matrixis positive definite. The
mean coefficient error vector converges to zero asymptotically
if the step size is chosen according to , where

is the maximum eigenvalue of

IV. CONVERGENCE PERFORMANCE

AND COMPUTATIONAL COMPLEXITY

In this section, we bring out how our formulation forces
close to a scalar multiple of an identity matrix, i.e.,
is close to zero, where denotes the Frobenius norm of
and is a scalar constant, thereby leading to improved rate of
convergence of the adaptation algorithm. We do this by taking
a sample spectrum for the input signal and considering ideal
filters for the analysis bank. We also discuss the computational
complexity of the proposed scheme.

A. Structure of

For the purpose of clarity, we consider the four-band case
with (length of ), and hence, the corresponding
vectors will be of length 2. We assume that the power
spectrum of , is piecewise flat, as shown in
Fig. 6.

Recall that

where is the autocorrelation matrix given in (3.6). For
is given by

(4.1)

with

(4.2)

Thus, we have (4.3), shown at the bottom of the page, where

(4.4)

We now assume the analysis filters
and to be ideal with bandwidth of All

these filters can be obtained from a prototype lowpass ideal
filter of passband to , which is denoted by ,
by cosine modulation. We can thus express

(4.5)

where
Now, can be written as

(4.6)

where is unity between and and zero
elsewhere. The power spectrum of , which is denoted
by , is then given by

(4.7)

which, in view of (4.5), can be expressed as

(4.8)

From (4.6) and the fact that and
have the same characteristics, (4.8) simplifies to

(4.9)

Let be the inverse Fourier transform of We
can then write

(4.10)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(4.3)



660 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

Recall that , which is the weight applied to in (3.2),
is , where is a proportionality constant. Let

(4.11)

Then, from (3.5), (4.3), and (4.11), we can expressas

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(4.12)

Combining (4.10) and (4.11) and substituting for , we
get

(4.13)

Since , it is easy to show
that is nonzero only for

Now, because of the nature of
, its inverse Fourier transform is a sinc function

with zeros at for
Therefore, is nonzero only for Thus, the matrix
is diagonal with identical diagonal elements. That is, ,
where This means that the eigenvalue spread of

is unity. It is well known that the convergence rate of the
LMS algorithm is fastest under this condition.

In practice, however, i) analysis filters have finite transition
bandwidth and finite attenuation in the stopband, and ii) the
power spectrum of the input signal may not be piece-wise flat.
In such a case, will not be a scalar multiple of the identity
matrix. However, as we increase the number of bands, it
tends to a scalar multiple of, provided the analysis filters
are of good quality (but not necessarily ideal). The simulation
results given in the next section corroborate this fact.

B. Computational Complexity

We will now discuss the computational complexity of the
proposed approach. For the convolutions of subband signals
with the polyphase components of , the computations
are carried out once for every input samples. Thus, for
every input samples, we perform convolutions of
length additions, each involving elements and

subtractions to get subband error signals. This comes to
multiplications and additions for every input

samples.
In the adaptation, we need to calculate

Since we compute them only once, we do not consider the
computations required for their calculations. As the filter
coefficients are adapted once everyinput samples, the adap-
tation algorithm requires multiplications and

additions for every input samples. In addition to the above
computations, we have the complexity of the filter banks.
There are two analysis banks and one synthesis bank. With
efficient implementations, the computations required by these
banks can be made considerably low (these computations,
however, depend on the quality of the analysis filters, and
they may become more significant as the filters approach the
ideal case). Thus, for every input samples, the total number
of computations required are multiplications and

additions.
Now, the computations required in the fullband filter case

are as follows. For the convolution of the input with the
estimated impulse response, which is of length, we need
multiplications/input sample and additions/input sam-
ple. In the adaptation, we need multiplications/input
sample, additions/input sample, and one subtraction/input
sample to get the error signal. Thus, the fullband adaptive
filter requires multiplications and additions/input
sample. Thus, the computational complexity of the proposed
SAF is nearly same as that of fullband adaptive filter.

V. SIMULATION RESULTS

In this section, we study the convergence performance of
the SAF using simulations. The input signal is a first-order
autoregressive (AR) process with white Gaussian noise as the
driving input. That is, is modeled as

, where is a white Gaussian noise sequence. In our
simulations, we fixed at 0.9. The system noise is a white
Gaussian noise sequence that is independent of the

We considered two sets of simulations. In the first set, the
length of [and of ] was kept at 80, i.e., ,
whereas in the second set, this was increased to 1000. In each
case, the coefficients of the filter were chosen randomly.
The normalized coefficient error vector norm and mean square
error (in decibels) at time , which is defined as

and , respectively, where
, and , are

used to depict the convergence performance. We normalized
the input such that the variance of the resulting sequence
at the output of was unity. In each case, i.e., for
and , we considered two levels of system noise: no noise
and 30 dB noise. In the simulations, we discarded the first
2000 samples of so that the actual AR sequence used
was nearly stationary. The coefficients were computed
as the inverse of the powers of estimated from the
overall samples used in the adaptation. The selection of the
step size was made as follows.

In the fullband case, we used a normalized LMS algorithm,
whereas in the sub-band case, the algorithm as given by (3.3)
was implemented, initializing the coefficients of to zero
in each case. The best possible value for(best in the sense
that it yields fastest convergence with the converged value
as close to the noise level as possible) was found by trial
and error. Since the value of has to satisfy the condition
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Fig. 7. Convergence performance of the SAF for different values ofM with system noise absent (filter lengthL = 80 and step sizes(� values) are
0.675, 0.0038, 0.0033, and 0.0028 for fullband,M = 2;M = 4; andM = 8; respectively).

Fig. 8. Convergence performance of the SAF for different values ofM with system noise level of�30 dB (filter lengthL = 80 and step sizes (� values)
are 0.675, 0.0038, 0.0033, and 0.0028 for fullband,M = 2;M = 4; andM = 8, respectively).

, where is the maximum eigenvalue of
and does not depend on the system noise level [see (3.5)],

the best value for was found for the noise level of30 dB,
and the same was used in the no-noise case. Note that the
value of so found depends on the value of The norm
and mean square error (MSE) curves were averaged over 25
Monte Carlo runs.

Recall that the adaptations are carried out once for every
input samples in the SAF case. This means that for ,
the time elapsed for adaptations spans input samples
whereas for , it spans input samples. We therefore
present the plots for different values of as a function of
the number of input samples. Further, the delays introduced
by the analysis bank alone and that introduced by the cascade
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Fig. 9. MSE curves, depicting the convergence performance of the SAF, with system noise level of�30 dB (filter lengthL = 80 and step sizes(� values)
are 0.675, 0.0038, 0.0033, and 0.0028 for fullband,M = 2;M = 4; andM = 8; respectively).

Fig. 10. Convergence performance of the SAF for different values ofM with system noise absent (filter lengthL = 1000 and step sizes(� values) are
0.50, 0.0005, 0.000 35, and 0.000 25 for fullband,M = 2;M = 4; andM = 8; respectively).

of analysis and synthesis banks are taken into account while
plotting the coefficient error vector norm and MSE curves,
respectively. That is, the norm and MSE curves are plotted
without the effect of the filter bank delay. We may point out
here that for both cases of (i.e., and ), the
lengths of the analysis filters (as well as the synthesis filters)
were increased with so that the ratio of the transition band

to the passband was maintained nearly the same for all values
of In particular, we used filters (analysis and synthesis)
with lengths 20, 40, and 80 for and respectively.

Figs. 7–9 correspond to the first set, i.e., for The
plots of Fig. 7 (for the no-noise case) clearly show that the
convergence rate goes up with Since the system noise is
zero, the converged value will be (theoretically speaking)
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Fig. 11. Convergence performance of the SAF for different values ofM with system noise level of�30 dB (filter lengthL = 1000 and step sizes(�
values) are 0.50, 0.0005, 0.000 35, and 0.000 25 for fullband,M = 2;M = 4; andM = 8; respectively).

Fig. 12. MSE curves depicting the convergence performance of the SAF with system noise level of�30 dB (filter lengthL = 1000 and step sizes(�
values) are 0.50, 0.0005, 0.000 35, and 0.000 25 for fullband,M = 2;M = 4; andM = 8; respectively).

The curves of Fig. 8 (which correspond to the system noise
level of 30 dB), on the other hand, show that the coefficient
error vector norm converges to about 1.5 dB above the system
noise level in the fullband and subband cases, whereas the rate
at which this happens goes up with increasing value ofThe
difference between the converged value and the system noise
level is mainly because of the misadjustment noise. Fig. 9

gives the MSE curves for 30 dB noise. Note, once again,
that the converged value is slightly above the system noise
level and that the convergence rate increases with

Figs. 10–12 correspond to the second set, i.e., for
In this case, we used 20 000 data samples to study the

convergence. Note from the plots that the convergence rate
goes up with The converged value is about 3 dB higher
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TABLE I
EIGENVALUE SPREAD OF THE��� MATRIX

than the noise level (see Figs. 11 and 12), which is more than
the value in Figs. 8 and 9. This is because the misadjustment
noise level is usually higher when the filter length is larger. In
the present case, the filter length is around 12 times that of the
filter used in the simulations corresponding to Figs. 7–9. We
may also point out here that the converged values (see Fig. 11)
may appear to be different for different values of However,
this difference will come down if the adaptation is continued
further, and eventually, the difference will become negligible.

Choosing a sample input spectrum that is piecewise flat and
assuming ideal analysis filters, we have shown in Section IV
how our formulation forces to With overlapping analysis
filters and an input signal whose spectrum is not piece-wise
flat, we conjectured that tends to a scalar multiple of the
identity matrix as is increased. To substantiate this, we
computed the eigenvalue spread (which is measured as the
ratio of the maximum to the minimum eigenvalue) of the
matrix for different values of and for different filter lengths
and presented the results in Table I.

Note that the eigenvalue spread comes down by a factor
of 55 in the case of and for as is
increased to 8. This reduction in the eigenvalue spread results
in the increased convergence rate with

VI. CONCLUSIONS

A new structure and a new formulation for the SAF are
presented in this paper. With the weighted cost function,
the convergence rate of the SAF improves considerably with
increasing value of The cross filters are totally avoided
in the structure, and the adaptive filters in the subbands are
independent of the analysis and synthesis filters. Any perfect
reconstruction system with “good” filter characteristics can be
used in our approach. The overall computational complexity
is nearly the same as that of fullband adaptive filter. The
simulation results support the theoretical predictions.
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