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A New Approach to Subband Adaptive Filtering

S. Sandeep Pradhan and V. U. Reddgllow, IEEE

Abstract—Subband adaptive filtering has attracted much at-
tention lately. In this paper, we propose a new structure and a
new formulation for adapting the filter coefficients. This structure
is based on polyphase decomposition of the filter to be adapted
and is independent of the type of filter banks used in the
subband decomposition. The new formulation yields improved
convergence rate when LMS algorithm is used for coefficient
adaptation. As we increase the number of bands in the filter,
the convergence rate increases and approaches the rate that
can be obtained with a flat input spectrum. The computational
complexity of the proposed scheme is nearly the same as that
of the fullband approach. Simulation results are included to
demonstrate the efficacy of the new approach.

Fig. 1. Acoustic echo canceler.

is generally a gradient type [5]-[7]. The least mean square
Index Terms—Acoustic echo cancellation, adaptive filtering, (LMS) algorithm of Widrowet al. [8] has been used widely in

subband filtering. such applications. However, it suffers from slow convergence

when the input signal to the adaptive filter is correlated, which

|. INTRODUCTION is generally the case in the above problem. In addition, _the

. convergence performance depends on the length of the filter:

A COMMON problem encountered in telephone communipq onger the filter, the slower the convergence. Thus, in such
cation is the presence of echo, which is produced whep,jications, the convergence rate of the adaptive filter is the

the signal passes through telephone channels. Removal of mhcjor issue.

e_cho requires precise knowledge_ of the_ cha_nnel, which may b(JSeveraI approaches based on subband adaptive filtering have
t|m_e varying. This c.:alls for qdaptlve gstmjatlon of the Chann%een recently proposed for the above problem. In these ap-
which is charicterlf]ed kt))y time varky|gg |mpuls_e rﬁsponsl_e. oaches, the underlying signals are decomposed into slightly
recent ygars,_t ere has been a marke Interest 'T‘t € applica, \C/’erapping frequency bands by passing through a filter bank
pf adaptive flltermg to acou_st|c echo canc_ellatlon Where ﬂ}ﬁ]d the output signals are decimated to give subband signals.
impulse response involved is long. We briefly describe thﬁow, the adaptations are carried out in each subband, but the

aplalIEz{;%r]s—;?e??éll\éatﬁoﬁersg:sdgﬁd teleconferencing svste roblem with this approach is the aliasing of the input signals,
P : . . NG SYSIeMRich arises because of the decimation. Several solutions to
bpth ends of the.telephone I|n§ cons[st of audio terminals (Si(:ﬁ?s problem, such as oversampling [9] of the analysis bank
I(:LI%) 13vr;||_2§ rr:gg':/eesdasc%euesct::?/:/%?/i) [?J:g;?,vaal:/%id;fee% I;elr)gégputs, incorporating adaptive cross filters [10] between the

’ ' Jacent subbands, and putting spectral gaps between the bands

to the remote user through the microphone (MP) and constitai o .
the so-called echo. To cancel this echo, we take a samRe]’ have been recently proposed. In [10], it is pointed out

e T . : at in theM-band adaptive filters with critical sampling, the

of y(n), modify it by passing it through an adaptive filter . : . o .
A . . Brn s cross filters can be avoided if the analysis filters are either
S(z), and subtract the resulting signal frorfn). S(z) is the . : : .

. : . ideal filters, or the path impulse response is nonzero for the
estimate of the impulse response of the path that the signal .. .~ = . .

. “coefficient indices that are multiples 8f and zero otherwise.

y(n) takes to form the eche(n). For complete cancellation

of this echo, the impulse response of the adaptive fﬁt@r) Thus, the cross filters are unavoidable in practical appllcatlons.
It has been found [10] that the convergence performance with

may have to be very long [1}-{4]. cross filters is not better than that of fullband adaptive filter
In the above example, the adaptation of the filter is bas 1 vever. this aporoach vields a sliaht gain in com putation '

on the error signak(n). The algorithm used for adaptation Y PP y 9ntg P :
In this paper, we present a new structure for the subband

adaptive filter (SAF) with critical sampling and a new cri-
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[; (=)~ (2) ConsiderS(z). It can be decomposed into polyphase com-
ponents as
Fig. 3. Equivalent structure of Fig. 2. R R R
S(z) = So(2?) + z71S1(2%). (2.1)

The paper is organized as follows. In Section II, we develqgsing this decomposition and Noble identities [12], the con-
and analyze the SAF for the two-band case. The new Structdfiration of Fig. 3 can be transformed into Fig. 4. Note

and the new criterion, and hence, the modified LMS algorithfRat 10(n), wo,(n), z10(n), and z11(n) are the subband

are presented here. Section Il extends the proposed appro@&'fhponents of the input(n), and together, they account for
to the M-band case. Section IV discusses the improvemen{§the samples of(n) andb; (n), which are the outputs of the
in the convergence speed that the new approach yieldsfiftgrs H,(~) and H, (=), respectively. Note also that the cross
well as the issues related to the computational complexity. fifters are totally avoided in our structure. However, we have

Section V, we present some simulation results to demonstrgigy copies 0fSo(2) and 3, (z), each of lengthL/2, where L
the convergence performance of the proposed approach. Fa@otes the length of(2).

performance of the SAF in the presence of additive noise is
also brought out here. Finally, Section VI concludes the papgy- Adaptive Algorithm

The filtersSy(z) and S, (=) are to be adapted. We usg(n)

ande; (n) to adapt the coefficients of these filters. From Fig. 4,
Consider the system identification model of the echo cafe have

cellation problem as shown in Fig. 2. The input signal passes

throughS(z), which may be unknown and/or slowly varying.  Ey(z) = Yo(2) — Xoo(2)S0(2) — Xo1(2)S1(z)  (2.2)
The output of this system is corrupted by a sigivdh.), which

is the system noise in acoustic echo canceler. To estimate #uisl

unknown/time varying system, the input is passed through a R R

synthetic filter$(z) whose coefficients are adapted in such a  £1(2) = Y1(2) — X10(2)S0(7) — X11(2)51(2).  (2.3)
way that the power of the error signaln) is minimized.

Il. DEVELOPMENT AND ANALYSIS OF SAF FOR 2-BAND CASE

Note that when the spectrum g@fn) is flat, the power of
bo(n) is equal to that ob; (n), assuming that the filterHy(z)
A. f the SAF 0 L
Structure of the S and H,(z) are of equal bandwidth with identical passband
An equivalent structure of the above system identificatiqgsponses. When(n) is colored, the power of(n) will be

model is given in Fig. 3. Here, the output signals from thgitferent from that of,(n). We define a cost function as
filters S(z) and $(z) are divided into subbands, decimated,

subtracted, and combined through an appropriate filter bank J(n) = E(aped(n) + arei(n)) (2.4)

to form the error signak(n). The signalN(n) is not shown

here; we do not consider it in the analysis of the SAF, buthere oy and «; are proportional to the inverse of the
its effect on the performance of the SAF will be studiegowers ofbo(n) andb;(n), respectively, and(-) denotes the
through simulations in Section VH,(z) and H;(z) are the expectation operator. This cost function gives higher weight to
analysis filters, andy(») and £ () are the synthesis filters. the error corresponding to the subband of lower signal power.
These filters form a perfect reconstruction pair. We used cosiAie we show later in Section 1V, this cost function brings down
modulated paraunitary filter banks in our simulations, althoudghe eigenvalue spread of the weighted sum of the correlation
the paraunitary property is not needed for our developmanttrices of the input signals to the adaptive filter, thereby
and analysis. resulting in improved rate of convergence.
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The gradient-based algorithm for adaptation is given by and define the coefficient error vector at thid iteration as

DS 2 2.5) vi(n) =s; — §1(n) (2.19)
. 1) —s aJ E—o0.1 L ) where s, and s; denote the coefficient vectors 6f(z) and
Sun(n +1) =su(n) - M5’ =Hhrh g T S1(z), respectively, ando(n) and3; (n) denote the coefficient

(2.6) vectors ofSy(z) and S1(z), respectively, at theth iteration.
) Using the input-output relation of the decimator, we can write
vyhere§0k(n) and3$;,(n) are thekth coefficients ofSo(z) and the 2 transform ofyo(n) (see Fig. 4) as
S1(z), respectively, at theth iteration, and. is the step size.

From the cost function (2.4), we have Yo(z) = 3[Ho(z"/)Y (21/%)S(2*/?)
_1/2 _1/2 _1/2
9. deg(n) der(n) + Ho(—2/9)YY(—279)S(—="")] (2.20)
— =20 F | eo(n)— + 20 E| e1(n)— S
0ok Dok S0k which in view of (2.17) can be expressed as
@) So(z) 1/2 1/2 1/2 1/2
07 —2aoE<Co( )860(”)> +2a1E<el( ydaln )>. Yo(z) = =5~ [Ho(z )Y (2777) + Ho(== )Y (=2 7)]
Déur b1 951k 51(2) 1/2 1/2y,—(1/2)
(2.8) + 5 [Ho(z /)Y (z7/%)z
The partial derivatives ofZy(z) and E;(z) with respect to + Ho(=#2)Y (=24/%)(=2)" /2], (2.21)
Sor and 3y, are given by Noting that
PE0l2) _ _ Xoo(z)e (2.9  Xoo(z) = 5[Ho(z"/*)Y (") + Ho(=2'/*)Y (=2'/?)]
a%SOk (2.22)
a}(z) =—Xio(2)z7" (2.10) and
Sok
OEo(z) - 211 Xoy(2) = L [Ho(#/2)Y (21/2)2= (/)
T ' + Ho(=2/)Y (=2%)(=2)" /Y] (2.23)
F1(z
8(%1(7) =—X11(2)27". (2.12) (2.21) can be simplified as
1%
Taking the inverse: transform of (2.9)—(2.12) and combining Yo(#) = So(2)Xoo(2) + S1(#)Xo1(2). (2.24)
the results with (2.5)—(2.8), we obtain Similarly, we obtain
Sor(n + 1) = 50x(n) + 2p[eo E(co(n)zoo(n — k)) Yi(z) = So(2)X10(2) + S1(2)X11(2). (2.25)
E 2.13
A FaBla(m)zion - k)] @13 combining (2.24) and (2.25) with (2.2) and (2.3), we get
$1r(n + 1) = 81(n) + 2u[aoE(co(n)zor (n — k)
—‘rOélE(Gl( )3711(71 ))] (2.14) EO(Z) :XOO( )[SO( ) (Z)]
+ Xoi(z S (2.26)
o e remiane e B = )
Now, we replace the true gradient by the instantaneous 1 Lot#)120l % §
gradient and express the update equations as + X11(2)[S1(2) — 51(2)). (2.27)
Sor(n 4+ 1) = Sou(n) + 2u[ageo(n)zoo(n — k) Taking _the ihnverse/:i tr_ansform fof (2.26) hand (2.27) and
+ aver(m)wro(n — k)] (2.15) expressing the results in vector form, we have
s16(n +1) = 31x(n) + 2p[aoco(n)ror(n — k) co(n) = x50 (n)wo(n) + zg; (n)v1 (n) (2.28)
+ arer(n)zi1(n — k). (2.16) e1(n) =x1o(n)vo(n) + z1, (n)vi(n) (2.29)

These are the LMS adaptation equations for the coefficieMgere zi(n) = [zu(n) zu(n —1) - au(n — (L/2) +
of So(z) and 5, (z). It is to be noted that the filterSo(z) and L), 4,k = 0,1.

51(z) in the two subbands are constrained to be the same. Using (2. 28) and (2.29) in (2.15) and (2.16) and the def-
initions of (2.18) and (2.19), the recursive relations for the

C. Asymptotic Convergence Analysis coefficient error vector can be obtained as

We will now study the convergence of the coefficient error vo(n + 1) =vo(n) — 2pansoo(n)zde(n)ve(n)
vector with the above adaptation rule. — 2uaomoo(n)zd; (n)vy(n)
We decomposes(z) as ~ 2penzio(n )5”10( Yoo(n)
S(z) = So(2?) + 27151 (%) (2.17) — 2parz10(n)zi; (n)vi(n) (2.30)
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vi(n+1) =wvi(n) — 2uaozor (n)xly(n)ve(n) o) g
— 2pevgzor (n)xgy (n)vi (n) ' '
— 2panx11(n)xly(n)ve(n) il —(M %L)H
— 2panz11(n)xl (n)vy(n). (2.31) eoln)

Expressing (2.30) and (2.31) in vector form, we have

[vo(n—l—l)} B [vo(n)}

vi(n+1)]  |vi(n)
— 2pfagAg(n) + a1 A1 (n)] [:?EZH
(2.32)
where
_ [xoo(n)xly(n)  zoo(n)zdi(n)
AO(TL) — |:$01 (n)z%g(n) -'501(”)-1"%1(71):| (2.33) f .
z10(n)xy(n)  zi0(n)xt(n) Fig. 5. SAF for M-band case.
Al(ﬂ) - |:1'11(71)1'%2(71) 1'11(71)1'%1(n):| (2.34)

) ) o I1l. EXTENSION TO M-BAND CASE
We now consider the mean behavior of the coefficient error

vector, as is usually done in the LMS algorithm analysis [8].
Taking expectation on both sides of (2.32), we have

E[vo(n + 1)} _B [vo(n)}

Here, we decompose the adaptive filtd(z) into M
olyphase components

S(Z) = S‘O(ZM) + Z_lgl(zjw) +---+ Z—M+15~M_1(ZM)'

vi(n+1) v1(n) (3.1)

vo(n) Each of the polyphase components can be moved across the
~ 2uBlaoAo(n) + cri(n)]E L’l(”)} decimator. The SAF structure for this case is shown in Fig. 5.
(2.35)  As seen from the figure, there ai¢ filters, each of length
L/M, at the output of each analysis filter. These filters have
where we have implicitly assumed the independence of tiebe adapted. The cost function in this case is the extension
two terms appearing on the right-hand side of (2.32), whidH (2.4)
Lsnggssllgdm;de in such analysis. Equation (2.35) can now b9 = Elaoed(n) + a1e2(n) + -+ an 1621 (n)] (3.2)
where the constantag, ay,---,ap 1 are inversely propor-
|:E(110(7’L+1)):| = I — 29| {E(”O(”))} (2.36) tional to the powers of(n),b1(n),---,bar—1(n), respec-
E(vi(n+1)) E(v, tively. This is, again, a weighted cost function, with more
weight given to the error corresponding to the subband of
lower signal power. Following the steps as in the two-band
case, we can obtain the adaptation equations for the filter
coefficients as

where

and I, denotes the identity matrix of orddr. X M1
It can be shown [10] tha® is positive definite. Let the Si(n +1) =3p(n) + 2 Z arer(n)au(n — 1)

ordered eigenvalues @& be denoted as
k_07177(M_1)

L
M Shes S A (2.38) izO,l,---,(M—l) (3.3)
We can then show [8] that the mean coefficient error vector

: ; Extending the analysis of the two-band case, we have
converges to zero asymptotically if

' vo(n + 1) vo(n)
0 — 2.39 vi(n+1) vi(n)
SHE<N (2.39) E : = [I}, — 2uB|E : (3.4)
The convergence rate, however, depends on the eigenvalue Lvy—1(n+1) var—1(n)

spread. We show in later sections that our formulation (c
function) brings down this eigenvalue spread, forcing it close
to unity with increasing value of\/. & =P+ P+ +an_1Py_1 (3.5)
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o where @, is the autocorrelation matrix given in (3.6). For
Rle™) " M = 4, &, is given by
o - .'L'k()(n)
pl Triln
' o= B| [0V fafyn) afi(n) afa(n) ala(n)] | ()
Ty2(n)
+ —+ + 0 + + + :l,'kg(n)
w -7  —3rf/4 —=x/2 -—x/4 w/4 /2 3n/4 E w
. , with
Fig. 6. Sample spectrum af(n).
x30(n) = [ +4n) bp(I + 4n + 4)]7. (4.2)
with Thus, we have (4.3), shown at the bottom of the page, where
Tro(n)
ohaln) | o , ri(m) = Elbi(n)br(n +m)]. (4.4)
o, =F : 4 4 RN Y L , :
§ : [ho(n) 21 (n) Tk a-1(n)] We now assume the analysis filtelo(e’), Hi(e’™),
T 1(n) Hy(e’), and Hs(e’*) to be ideal with bandwidth of /4. All
E=0,1,---,(M—1). (3.6) these filters can be obtained from a prototype lowpass ideal

filter of passband-~ /8 to /8, which is denoted byH (¢7*),
As in the two-band case, the matudxis positive definite. The by cosine modulation. We can thus express
mean coefficient error vector converges to zero asymptotically jwy Fw—w) Fwtwe)
if the step size is chosen accordingdte: 1+ < (1/Amax), where Hy(e’") = Hie )+ H(e *) (4.5)
Amax IS the maximum eigenvalue . wherewy, = (2k + 1)(/8), k = 0, 1,2, 3.

7 7 7

Now, P,(c?*) can be written as
IV. CONVERGENCE PERFORMANCE 2
AND COMPUTATIONAL COMPLEXITY P,(e) = Z (P(I@=0)) 1 peitetey)  (4.6)
In this section, we bring out how our formulation forces k=0

close to a scalar multiple of an identity matrix, i.¢® — 31| »
is close to zero, whergA||r denotes the Frobenius norm 4f
and/ is a scalar constant, thereby leading to improved rate
convergence of the adaptation algorithm. We do this by taki

where P(e/*) is unity between—x/8 and 7/8 and zero
glsewhere. The power spectrum &f(n), which is denoted
lpa Py(e?), is then given by

a sample spectrum for the input signal and considering ideal Pu(&??) = Py(¢?™)| Hi (") 4.7
filters for the analysis bank. We also discuss the computational Y
complexity of the proposed scheme. which, in view of (4.5), can be expressed as

A. Structure of® Pi(e7) = Py (7)) | H (eI 2

Jw J(wwy ) y|2
For the purpose of clarity, we consider the four-band case +Py(e")|H e I (4.8)
with L = 8 (length ofS(z) = 8), and hence, the corresponding=;om (4.6) and the fact thalf (¢/(=w1)) and P(ci (wFwi))
vectors{zy(n)} will be of length 2. We assume that the powepaye the same characteristics, (4.8) simplifies to
spectrum ofy(n), P,(e’*), is piecewise flat, as shown in ' ' '
Flg 6. Pk(cgw)) _ ’yk[P(C](w_wk)) + P(C](w-l—wk))]' (49)
Recall that ) _ ,
Let p(n) be the inverse Fourier transform &f(¢?*). We

3 .
can then write
k=0 ri(n) = 2vkp(n) cos(wn), k=0,1,2,3. (4.10)

(r6(0)  7r(4) rR(1) 7(5) m(2) r(6) TR(3) 7R(7)]
7k(4) Tk (0) Tk (3) 7‘k(1) 7‘k(2) Tk (2) 7‘k(1) 7‘k(3)
7k(1) Tk (3) Tk (0) 7k(4) 7k(1) Tk (5) Tk (2) 7k(6)

@

-7’1«&7) 7‘1«&3) 7‘1«'(6) 7‘1«&2) 7‘1«&5) 7‘1«&1) 7‘1«&4) 7’1«&0)-
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Recall thatay, which is the weight applied teZ(n) in (3.2), additions for everyM input samples. In addition to the above

is ¢/~k, Wherec is a proportionality constant. Let computations, we have the complexity of the filter banks.
3 There are two analysis banks and one synthesis bank. With

q(n) = Z apr(n). (4.11) efficient implementations, the computations required by th_ese
o banks can be made considerably low (these computations,

however, depend on the quality of the analysis filters, and
Then, from (3.5), (4.3), and (4.11), we can exprésas they may become more significant as the filters approach the
[q(0) q(4) q(1) q(5) ¢(2) q6) ¢3) ¢(7)7 ideal case). Thus, for every input samples, the total number
q4) q(0) q(3) q(1) q2) q2) 1) q(3) of computations required af@L + 1)M multiplications and
q(1) a(3) q(0) ¢(4) o) o) o2) ¢6)| 2LM additions.

: . . . . . . . Now, the computations required in the fullband filter case
- | . : : : : : : - | are as follows. For the convolution of the input with the
: : : : : : : : estimated impulse response, which is of lenfithve needL
multiplications/input sample and. — 1) additions/input sam-

: : : : : : : : ple. In the adaptation, we nedd + 1) multiplications/input
- sample, L additions/input sample, and one subtraction/input
La(?) a®) a(6) a2) o5 o) ) Q(((z)l).iZ) sample to get the error signal. Thus, the fullband adaptive
filter requires(2L+1) multiplications and2L) additions/input
Combining (4.10) and (4.11) and substitutigy, for az, we sample. Thus, the computational complexity of the proposed
get SAF is nearly same as that of fullband adaptive filter.

3
g(n) = 2cp(n) > _ cos(wyn). (4.13) V. SIMULATION RESULTS
k=0

In this section, we study the convergence performance of
Sincew, = (2k + 1)(#/8),k = 0,1,2,3, it is easy to show the SAF using simulations. The input signal is a first-order

that 33_, cos(wyn) is nonzero only forn = 8m,m = autoregressive (AR) process with white Gaussian noise as the
.-, —2,-1,0,1,2,---. Now, because of the nature ofdriving input. That isy(n) is modeled ag(n) = py(n—1)+
P(e?), its inverse Fourier transform(n) is a sinc function w(n), whereu(n) is a white Gaussian noise sequence. In our
with zeros atn = 8m for m = ---,—-2,—-1,1,2,---. simulations, we fixedp at 0.9. The system noise is a white
Thereforeg(n) is nonzero only for. = 0. Thus, the matrix? Gaussian noise sequence that is independent ofthg

is diagonal with identical diagonal elements. Thawfts+ 51, We considered two sets of simulations. In the first set, the

where 3 = ¢(0). This means that the eigenvalue spread déngth of S(z) [and of S(z)] was kept at 80, i.e.L = 80,
@ is unity. It is well known that the convergence rate of thevhereas in the second set, this was increased to 1000. In each
LMS algorithm is fastest under this condition. case, the coefficients of the filtéi( =) were chosen randomly.

In practice, however, i) analysis filters have finite transitiomhe normalized coefficient error vector norm and mean square
bandwidth and finite attenuation in the stopband, and ii) tlror (in decibels) at time:, which is defined as
power spectrum of the input signal may not be piece-wise flat. -
In such a casep will not be a scalar multiple of the identity 10 log;q — (n)v(n)
matrix. However, as we increase the number of bahfisit s's
tends to a scala_r multiple of, provid_ed_the analysis_ fiIter; and 10logy,c2(n), respectively, where v7(n) _
are of good quality (but not necessarily ideal). The S|mulat|o[gg(n)vlT(n) vl (n)], ands” = [sTsT..-sT ], are

results given in the next section corroborate this fact. used to depict the convergence performance. We normalized
the inputy(n) such that the variance of the resulting sequence
at the output ofS(z) was unity. In each case, i.e., fér= 80

We will now discuss the computational complexity of thend 1000, we considered two levels of system noise: no noise
proposed approach. For the convolutions of subband signaid —30 dB noise. In the simulations, we discarded the first
with the polyphase components 6&f(z), the computations 2000 samples of(n) so that the actual AR sequence used
are carried out once for ever§/ input samples. Thus, for was nearly stationary. The coefficienfe;} were computed
every M input samples, we performd/2 convolutions of as the inverse of the powers éb,(n)} estimated from the
length (L/M), M additions, each involving{ elements and overall samples used in the adaptation. The selection of the
M subtractions to get/ subband error signals. This comes tatep size, was made as follows.

B. Computational Complexity

(LM) multiplications and L.Af) additions for everyM input In the fullband case, we used a normalized LMS algorithm,
samples. whereas in the sub-band case, the algorithm as given by (3.3)
In the adaptation, we need to calculatg, vy, ---,ap—1.  was implemented, initializing the coefficients 8fz) to zero

Since we compute them only once, we do not consider threeach case. The best possible value;faibest in the sense
computations required for their calculations. As the filtethat it yields fastest convergence with the converged value
coefficients are adapted once evétyinput samples, the adap-as close to the noise level as possible) was found by trial
tation algorithm require§M + M L) multiplications and A/ L) and error. Since the value @f has to satisfy the condition
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Fig. 7. Convergence performance of the SAF for different valuedfofnvith system noise absent (filter lengfh = 80 and step size$u values) are
0.675, 0.0038, 0.0033, and 0.0028 for fullbadd, = 2, M = 4, and M = 8, respectively).
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Fig. 8. Convergence performance of the SAF for different value/ofvith system noise level of30 dB (filter lengthL = 80 and step sizesu(values)
are 0.675, 0.0038, 0.0033, and 0.0028 for fullband,= 2, M = 4, and M = 8, respectively).

0 < p < 1/Amax, Whered,,.x is the maximum eigenvalue of Recall that the adaptations are carried out once for edéry

@ and¢® does not depend on the system noise level [see (3.5)jput samples in the SAF case. This means thatMbe= 2,

the best value fop, was found for the noise level 630 dB, the time elapsed fok adaptations span3k input samples

and the same was used in the no-noise case. Note that wheereas forAl = 8, it spans8k input samples. We therefore
value of . so found depends on the value &f. The norm present the plots for different values 84 as a function of

and mean square error (MSE) curves were averaged overt2& number of input samples. Further, the delays introduced
Monte Carlo runs. by the analysis bank alone and that introduced by the cascade
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Fig. 9. MSE curves, depicting the convergence performance of the SAF, with system noise lex3él dB (filter length = 80 and step sizeéu values)
are 0.675, 0.0038, 0.0033, and 0.0028 for fullband,= 2, M = 4, and M = 8, respectively).
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Fig. 10. Convergence performance of the SAF for different valued/oWith system noise absent (filter length= 1000 and step size$u values) are
0.50, 0.0005, 0.00035, and 0.00025 for fullbadd, = 2, M = 4, and M = 8, respectively).

of analysis and synthesis banks are taken into account whibethe passband was maintained nearly the same for all values
plotting the coefficient error vector norm and MSE curvesf M. In particular, we used filters (analysis and synthesis)
respectively. That is, the norm and MSE curves are plottedth lengths 20, 40, and 80 fa¥/ = 2,4, and8, respectively.
without the effect of the filter bank delay. We may point out Figs. 7-9 correspond to the first set, i.e., for= 80. The

here that for both cases &f (i.e., L = 80 and L = 1000), the plots of Fig. 7 (for the no-noise case) clearly show that the
lengths of the analysis filters (as well as the synthesis filtex)nvergence rate goes up willd. Since the system noise is
were increased witli/ so that the ratio of the transition bandzero, the converged value will be (theoretically speaking).
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Fig. 11. Convergence performance of the SAF for different valued/ofvith system noise level of-30 dB (filter lengthL = 1000 and step size$u
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Fig. 12. MSE curves depicting the convergence performance of the SAF with system noise lev&éd oB (filter length L = 1000 and step size$u
values) are 0.50, 0.0005, 0.00035, and 0.00025 for fullbddd= 2, = 4, and M = 8, respectively).

The curves of Fig. 8 (which correspond to the system noigives the MSE curves for-30 dB noise. Note, once again,
level of —30 dB), on the other hand, show that the coefficiethat the converged value is slightly above the system noise
error vector norm converges to about 1.5 dB above the systiawel and that the convergence rate increases with

noise level in the fullband and subband cases, whereas the ratéigs. 10-12 correspond to the second set, i.e., foe

at which this happens goes up with increasing valug/ofThe 1000. In this case, we used 20000 data samples to study the
difference between the converged value and the system naisevergence. Note from the plots that the convergence rate
level is mainly because of the misadjustment noise. Fig.gdes up withA/. The converged value is about 3 dB higher
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EIGENVALUE SPREAD OF THE® MATRIX canceler based on frequency bin adaptive filtering (FBAPjdc. IEEE
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New York: Springer-Verlag, 1986.

[7] D. G. Messerschmitt, “Echo cancellation in speech and data transmis-
sion,” IEEE J. Select. Areas. Commumol. SAC-2, Mar. 1984.

than the noise level (see Figs. 11 and 12), which is more thga] B. widrow et al, “Adaptive noise cancellation: Principles and applica-

the value in Figs. 8 and 9. This is because the misadjustmep; tions,” Proc. IEEE vol. 83, no. 12, Dec. 1975.
Bﬁ W. Kellermann, “Analysis and design of multirate systems for cancel-

noise level is usually higher when the filter length is larger. In"" |ation of acoustical echoesProc. IEEE ICASSP1988, pp. 2570-2573.
the present case, the filter length is around 12 times that of fié] A. Gilloire and M. Vetterli, "Adaptive filtering in subbands with
filter used in the simulations corresponding to Figs. 7-9. We ggﬂgz'llzﬁg‘nr’}frgéérﬁg’ﬁ:'Sei’;?g”gg‘éz ;ri‘g;é)l_p"ff%a"tg’; t‘l’;gzo_“lsg?:fho
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Choosing a sample input spectrum that is piecewise flat and
assuming ideal analysis filters, we have shown in Section IV
how our formulation force# to 51. With overlapping analysis
filters and an input signal whose spectrum is not piece-wi
flat, we conjectured tha® tends to a scalar multiple of the
identity matrix asM is increased. To substantiate this, w
computed the eigenvalue spread (which is measured as
ratio of the maximum to the minimum eigenvalue) of de
matrix for different values of\/ and for different filter lengths = , nent rica ,
and presented the resuls in Table I. ng, Unversiy of Minok, Utana, His ressarchy
Note that the eigenvalue spread comes down by a fac.u quantization, and multirate signal processing.
of 55 in the case of. = 80 and 45 for L = 1000 as M is
increased to 8. This reduction in the eigenvalue spread results
in the increased convergence rate with
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