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Abstract

The emergence of Multiagent systems brought new challenges to the
field of Machine Learning, as it did to many others. One of the main
challenges is to take advantage of the information available when
several agents, possibly using different learning techniques, are deal-
ing with similar problems, either in the same location (i.e. acting as
a team) or in different ones. This work aims at studying the pos-
sible advantages and pitfalls of exchanging information during the
learning process, leading to better adaptation. We will discuss the
subject of when, how and to whom ask for advice, and present the
results obtained in two experimental scenarios: the Pursuit (Predator-
Prey) Domain and a Traffic Control simulation. Results show that
exchange of information can improve the average performance of
learning agents enabling them to escape from local maxima in some
cases, although it may reduce the exploration of the space, prevent-
ing successful agents from finding better local maxima of the quality
function.

1 Introduction
Decentralization and distribution of processes became an issue in
Artificial Intelligence, as well as in several other areas of Com-
puter Science, in the past decades. In response to the new challenges
a new type of software entities was created and later labelled as



agents. These new entities are usually defined as being more au-
tonomous, distributed and intelligent than previous software tools.
Some problems require that agents adapt to new circumstances or
behave “intelligently”. Intelligence, as we perceive it, is strongly
related to the capability of learning from previous experience and
using stored knowledge to improve future behavior. Intelligent (or
adaptive) behavior is becoming a competitive factor in today’s soft-
ware. One of the main challenges is to expand the Machine Learning
(ML) paradigms from, the old single-agent perspective, to this new
world. Currently, software agents inhabit dynamic environments. Of-
ten, they must provide answers even when they have only a par-
tial and noisy view of the problem. The extension of learning to
these new environments must overcome the difficulties of this new
paradigm, but should also take advantage of its benefits. The fact
that a multitude of agents populates the software environments, and
in some cases they are learning to solve similar problems, leads to the
current research issue: “(How) can agents benefit from the exchange
of information during the learning process?”

In the following sections we will present and discuss a set of tech-
niques for selection, exchange and incorporation of information from
multiple sources. These techniques may provide a way to help a
learning agent achieve its goal more efficiently than if it was learn-
ing only from the information generated by the environment. The
main focus will be on advice-exchange, a technique introduced in
Nunes and Oliveira (2002b) to exchange information within hetero-
geneous groups of learning agents that are solving similar problems.
The heterogeneity constraint is one to which very little attention has
been given until now. Results obtained in this research direction may
point the way to more powerful learning paradigms.

The next section contains a brief review of related work. In section
3, the techniques that compose advice-exchange are explained and in
the following section (4), the experimental setup is described. Sec-
tion 5 presents the results and its discussion and finally, in section 6,



we have the conclusions and a brief word on the future work.

2 Communicating to improve learning:
Historical notes and review

The work presented below touches several points such as: coop-
eration between learning agents; mixed use of different learning
paradigms at several levels; learning trust relationships between
agents. Several of these issues have been approached in the past by
other authors. In the following sections the reader can find a sum-
mary of the main contributions in each of these subjects.

2.1 Early work on exchange of information
during learning

The work on information exchange between QL-agents (agents that
use Q-Learning (Watkins and Dayan, 1992) as a basis for their learn-
ing skills), started in the early nineties. (Whitehead, 1991) created
a cooperative learning architecture labelled Learning By Watching.
In this architecture the agent learns by watching its peers’ behavior
(which is equivalent to sharing series of state, action, quality triplets).
The work presented in (Clouse and Utgoff, 1991) is reviewed and
expanded in Clouse’s Ph.D. thesis (Clouse, 1997). This important
contribution reports the results of a strategy labeled Ask for Help,
in which QL-agents learn by asking other agents of the same type
for suggestions and perform the suggested actions. The work pre-
sented by Lin (1992) uses an expert trainer to teach lessons to a QL-
agent that is starting its own training. Tan (1993) reports the results
of sharing several types of information in the predator-prey prob-
lem. In these experiments QL-agents shared policies (internal solu-
tion parameters), episodes (series of state, action, quality triplets),
and sensation (observed states). All these experiments showed im-
provements in the average performance of agents that exchange in-
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formation.

2.2 Recent related work

The work on exchange of information between QL-agents contin-
ued in several fronts. The term joint learning was used by Berenji
and Vengerov (2000) when referring to agents that update concur-
rently the same quality values. These authors presented a study of a
“fuzzy” variant of QL-agents that cooperate during learning by up-
dating a common table of Q-values. Several researchers studied ap-
plications of Reinforcement Learning (RL) (Sutton and Barto, 1987)
variants to stochastic-games. The agents used in these domains are
often referred to as Joint-Action Learners (JAL). JAL are QL-agents
that learn, each on its own, the quality of joint actions. A joint ac-
tion is composed of its own action plus the actions chosen by all the
peers at a given time. This approach presupposes full observability
of the actions done by all agents. The first references to this concept
are in the work of Littman (1994) where agents of this type are used
to solve (i.e. attain optimal equilibrium in) zero-sum games. This
approach was labeled minimax-Q. Litmann (2001) presents a sum-
mary and comparison of the convergence properties of several types
of JAL.

The research on trust relationships between agents was mainly de-
veloped by Sen’s research group (Sen, 1996; Biswas et al., 2000;
Banerjee et al., 2000). These, as well as other related papers, focus
on several aspects of learning to trust/distrust other agents.

Many researchers have focused on the use of human advice, or pre-
programmed teachers, to help QL-agents. These approaches range
from using high-level languages to encode the advice, as in (Maclin
and Shavlik, 1994), to direct observation of a human solving a prob-
lem and replication of this behavior (Nicolescu and Matarić, 2001).

One of the most interesting works in the subject is (Price, 2003), in



which QL-agents learn by implicit imitation of pre-trained expert-
agents. This work has some very interesting characteristics: the stu-
dent agent has no knowledge of the actions done by the expert, it
can only observe its state transitions; there is no explicit communi-
cation between the expert and the student; the goals and actions of
both agents can be different.

3 Advice Exchange
The problems considered in our research have several characteristics,
they are partially-observable, non-static and distributed. A problem
is called partially-observable if any given agent can observe only a
part of the state, or have only a summarized view of the variables
that may be important to the evolution of the environment’s state.
By non-static it is meant that, from an agent’s point of view, the
same action in the same state can have different outcomes at dif-
ferent times. This is a consequence of the environment’s stochastic
nature and the interaction between different agents. Distributedness
is considered at two different levels: first, each problem is solved by
a team of agents; second, several teams are working in similar prob-
lems in different locations. Members of the same team can interact
either by communicating, or by the consequences of their actions in
a local environment (we will refer to these as partners). Members
of different teams only interact through explicit communication. The
agent’s objective is to maximize the average reward obtained in a
given period. These periods will be called epochs. In this work we
try to make as few assumptions as possible regarding the learning
algorithms used by the agents. This will allow the use of heteroge-
neous groups, in which each team of agents uses different learning
algorithms.

3.1 Exchanging information during learning
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As mentioned above, the main question addressed here is: “(How)
can communication between agents improve learning performance?”
This question can be divided into several others:

• What information to exchange?

• How to integrate this information with the usual learning process?

• When should an agent request/accept information?

• How should an agent decide where to get/send information?

In the following subsections we will address each of these questions
and propose an approach to these problems.

3.1.1 What type of information?

The most obvious way to exchange the learned knowledge is to send
a complete description of the solution to another agent (i.e. a com-
plete set of parameters for its learning structure), but this has two
major drawbacks: first, all agents would either have to be of the same
type, or be able to use different learning structures, thus heterogene-
ity would be lost; second, the solution was constructed to fit the dy-
namics of the local situation of the advisor, so, even the smallest
differences in the dynamics of the problem could render the solution
useless and destroy what was learned by the advisee.

Advice-exchange Nunes and Oliveira (2002b) uses the information
available in the environment, such as: states, actions and rewards. Us-
ing only these types of information, and statistics based on them, the
agents can communicate: states that they experience more often; the
quality of the actions they performed at a given state; the action they
would choose for a state; sequences of actions that produced good
results; etc. Different combinations of these types of information can
provide a description of the environment, of the agents’ policies and



the characteristics of the quality function that agents are trying to
maximize. The most common type of communication is for an agent
to send another its current state and receive as a reply the action
the other agent advises for that particular situation. The answer to a
query is computed using the parameters that have obtained a good
score in a previous epoch.

3.1.2 How to integrate this information with the usual learning
process?

The way to use exchanged data depends highly on the type informa-
tion that is exchanged. It is difficult to envision a process that would
be applicable to any type of information, learning algorithm and
problem. Our approach simply points a general way and exempli-
fies its application. The extension to other learning algorithms would
necessarily require adaptations.

The integration of advice with the knowledge gathered from acting
in the environment is done in a different way for each type of agent.
Nevertheless, it uses either imitation or a form of supervised learn-
ing. Most learning structures are able to integrate information given
in this form and learning from supervision information is typically
faster than from reinforcement.

When the advised action is different from the one the agent would
have chosen it can either imitate the incoming action and learn from
the result, or integrate the knowledge with its own hypothesis and
then select an action. When an agent is rewarded this information can
also be used in different ways, depending on how the action selection
was performed. In some cases, just one presentation of the advice is
not sufficient to achieve a reasonable effect and it is necessary to
replay it. Advice replay consists in storing and replaying advice at
specific times to improve the effectiveness of the procedure.

A more detailed explanation of how integration and imitation are
merged with each of the learning algorithms can be found in section
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4.3.

3.1.3 When should an agent request/accept information?

The answer to this question may depend on several factors: a) the
comparison between the advisor and advisee’s performances; b) the
comparison of the experience each has in dealing with the current
situation; c) how well defined is the response. The problem with a)
and b) is that the environment is noisy and partially-observable. This
makes it difficult to have a clear evaluation of performance and state.
Consider, for instance, the case of controlling a traffic light at a cross-
ing. The traffic volume is different depending on the time of day. At
times there are no cars in the incoming lanes for a period of time, and
on other occasions the traffic volume is over the limit of saturation.
How can we compare the agent’s policy in those two periods? What
if all surrounding agents are, by a fault in their own policy, diverting
all the traffic to one intersection. The agent at that intersection cannot
cope with so much traffic no matter what policy it chooses. Should it
be penalized by that?

Some of these matters can be dealt with by a careful choice of the
state representation, quality-function and times of evaluation. Never-
theless, it is necessary to introduce mechanisms that provide several
perspectives of the performance to overcome the noise generated by
the dynamics of the environment. Using different statistics of per-
formance, measured over different periods of time, compensates for
some of these effects, specially in the above mentioned case a). Each
agent calculates the following measures of performance:

• Average reward per epoch (Rn);

• Infinite discounted reward;

• Recent best reward;

• Short, mid and long-term average reward;



• Average reward evolution;

• Self-confidence;

The infinite discounted reward (idrn) in epoch n is defined as:

idrn = α idrn−1 + (1− α)Rn, (1)

where α ∈ [0, 1[ determines the balance between current and previ-
ous experience. Recent best reward (bn) is:

bn = max(βbn−1, Rn), (2)

where β ∈ [0.9, 1[ is a decay parameter. The short, mid and long-
term average rewards are based in Rn and calculated for fixed peri-
ods. Their calculation is, as follows:

RTn0+p =
n0+p∑

n=n0

Rn/p, (3)

where p represents the period which is different for short, mid and
long-term measures. This allows the calculation of the average re-
ward evolution en in a given epoch n, as:

en =
k=K∑

k=0

(RTn−(k+1)p −RTn−kp), (4)

where K is the number of periods to use in the calculation (in these
experiments K = 3).

An important measure in this case is the comparison of an agent’s
performance with that of others. This can help the agent to decide
whether its own actions are becoming less adequate, or if the prob-
lem is in a more difficult state due to some external reason. To help in
this respect we have introduced a parameter labelled self-confidence.
Self-confidence is increased when the performance of a given agent
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is good in comparison to that of its peers. Self-confidence is de-
creased when the performance is poor in comparison to others’. This
increase or decrease is done by multiplying the parameter by a pre-
specified value that is either slightly above, or below 1.0.

In what concerns the comparison of experience it is necessary to
know if the advisor has experienced a situation similar to the one it
is evaluating. Some algorithms keep records of the states they eval-
uate while others do not. To normalize this situation all agents keep
records of their experiences in certain epochs. The recorded epochs
are: current, last and best. The epoch in which an agent saved the pa-
rameters it uses to give advice is also recorded. With this knowledge,
an advisor can say how similar was the case in which it has used the
same option and what was its reward. This will help the advisee to
decide whether the situation is similar enough and, after accepting
the advice, what is the difference between the announced reward and
the one actually received.

To know how well defined an action is corresponds to calculating the
(un)certainty in the choice of an action. This uncertainty measure can
be represented differently depending on the learning algorithm used.
When the agent produces a quality estimate for each of the available
actions, if the variance of these qualities is low it may be interpreted
as a high uncertainty coefficient, as was done in Clouse (1997).

Another important factor in the decision of when to request/accept
information, concerns the agent’s learning stage. At different stages,
agents need different types and volumes of information. It is known
that humans go through several stages when working in a team and
learning from others. First they explore solutions individually un-
til someone finds a way to solve the problem. Then others observe,
in detail, how the problem was solved and try to mimic the solv-
ing behavior. As this phase progresses the “students” gain a growing
degree of autonomy. They tend, first, to ask for a complete demon-
stration and afterwards to ask only for small pieces of information to



clear the doubts concerning a particular aspect of the solution. At this
point, if there are several experts with different solutions, they may
try to compose a new solution from parts of different approaches. Af-
ter they have mastered the current solution the members of the group
start acting in a more autonomous way and try, each individually, to
improve on the previous solution, or find a better one. When one suc-
ceeds to find a solution that is proven better than the previous ones,
the learning process of its peers may go back to one of the previous
phases and some of the members of the group will start, once again,
to learn this new solution by imitation of the new expert’s behavior.

This process was transposed to the domain of software learning
agents, by the introduction of four different learning stages:

1. Exploration: Agents do not exchange information with their peers
and learn to choose their actions using only the reward informa-
tion provided by the environment. This stage ends when the learn-
ing performance of the agent stabilizes.

2. Novice: At this stage an agent will ask for advice frequently (in
this case for all the actions of an epoch) and keeps the same
advisor for long periods. Agents in this stage have a consider-
ably lower performance than the best of their peer’s. This phase
is ended when the performance stabilizes or when the advisee
reaches a level of performance that is very similar to that of its
advisor.

3. Stable: When an agent reaches a performance level that is close
enough to that of its advisor it will only request advice when the
choice of the next action is unclear, or when another peer reports
a higher performance in acting from a given state. A Stable agent
may choose different advisors for each new situation.

4. Expert: Expert agents are those with the best performances for a
particular role. They may request advice when it appears to be
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much better than its own options, but most of the time they are
engaged in individual exploration.

Agents evaluate the conditions to switch from one stage to the other
at the end of each training epoch. An agent can move one level down
in each epoch or as many levels up as it can by meeting the appropri-
ate conditions. The conditions concern the comparison of current or
best performances with the best that was achieved by other agents,
for example: an agent will transit from Novice to a Stable stage if
idri,n > λ idrk,n, where, idri,n, is the infinite discounted reward for
agent i at epoch n, k is the index of the agent with best performance
and λ ∈ [0, 1] a discount parameter. To change learning stages an
agent is also required to have a certain self-confidence level. This
condition prevents agents from changing stages due to a result ac-
quired in exceptional conditions and provides a more stable evalua-
tion. Different learning stages may also imply different learning pa-
rameterizations. For example, when an agent enters a Novice stage
its reinforcement learning rates are lowered and the supervised ones
are increased, so that it learns more from advice than from the en-
vironment feedback. The definition of learning stages to set learn-
ing rates and other parameters is reported in Dorigo and Colombetti
(1994). The transitions from the Exploration and Novice stages also
include another type of evaluation. An agent will leave these stages
when the, short, mid and long-term average reward evolutions are
lower than a certain threshold. This will guaranty that the learning
process is stabilized when the agent is promoted.

In the experiments reported below agents have used two different
ways to decide whether or not to get advice. The first, used in the
Predator Prey experiment, is based on the uncertainty of the selected
action. The second is based on the comparison of the reward the
advisor announces for a given state with the one expected by the ad-
visee. In the first case an agent would request advice if the best n
options were all within a given vicinity of the best. In QL-agents the



estimated quality of each option is directly available when selecting
an action, so this calculation presents no problems. In agents that
use other algorithms the output is interpreted as a classification since
the chosen action is the one with highest output. An action was con-
sidered to be unclear when the best n options were within a given
vicinity of the best. In the second case an agent would ask for advice
if:

tolerance ∗ rj(s) > ri(s), (5)

where rj(s) is the advisor’s announced reward for state s, and ri(s)
is the advisee’s expected reward. The tolerance parameter used in the
experiments was 1.0 for Stable agents and 0.9 for Experts.

3.1.4 Where to get information?

After having decided that it needs advice, the agent must choose
the best source of information. In previous experiments, reported in
(Nunes and Oliveira, 2002a, 2003), it was clear that the best advisor
was not always the agent with best performance. This can happen for
several reasons, but the most common of these is that advisor’s and
advisee’s local environments have different dynamics and respond
differently to the same actions in the same state. In this case an agent
needs to learn which of its partners it can trust, which it should not
and also which has the most successful solution for a given state or
class of states. The combination of these types of information can
help in the decision of which advisor to choose.

The decision of which peer an agent i should request advice to can
take two forms depending on whether the agent needs advice for a
full epoch (Novice agents) or for a particular situation. In the first
case, the agent will select an agent k among its peers, where:

k = argmaxj(trustij arj rli), (6)

where trustij represents the level of trust agent i has in peer j, arj
is the average reward of the advice given by peer j and rli is the role
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discount. trustij is calculated by:

trustn,ij = αtrustn−1,ij + (1− α)1/na
∑

a

rj,a/ri,a, (7)

where rj,a is the reward announced by advisor j for advised action
a and ri,a is the actual reward received by the advisee i. na is the
number of advised actions in epoch n. This update is done at the end
of each epoch. The average reward of advice given by peer j is ini-
tialized with the score achieved in the epoch where it as saved the
advice parameters and updated with the advisee’s reward. Whenever
the reward in a given epoch is higher than arj the parameters of the
current epoch are saved and arj is set to the current average reward.
The role discount is a constant that has a value of 1.0 for all peers
that have the same role and a lower value for advisors with different
roles (in these experiments the role discount was 0.7). In previous
experiments the role discount was calculated in run-time. To do this
each agent used an unsupervised learning algorithm to keep track of
the classes of states it experienced. The role discount was calculated
as a normalized measure of similarity between the class representa-
tives of the requesting agent and all its peers. This proved to have
reasonably accurate results and was abandoned only because of its
computational cost. By accurate we mean that the role discount for
agents with the same role was higher than for others and in most
cases close to 1.0.

When an agent needs advice for a particular state (s), the choice of
advisor is:

k = argmaxj(trustij rj(s) rlj), (8)

where rj(s) is the estimated reward agent j expects for state s, based
on the data stored in the epoch were advice parameters were saved.

Table 1 shows a summary of the advice-exchange procedure. This
section stated the main questions concerning exchange of informa-
tion during learning and sketched the most important components of



advice-exchange along with the reasons why they were integrated in
the procedure. Details that are algorithm or problem-dependent will
be presented in the following sections.

4 Experiments
In the following sections we will describe two experiments in which
we have tested advice-exchange. The first was the pursuit (Predator-
Prey) problem, usually considered a toy-problem although some ver-
sions are in fact difficult to solve with most learning algorithms. The
second was a simulation of an environment in which agents control
the traffic in a grid of roads by setting the color and timing of the
traffic lights at intersections. This simulation is based on real data,
graciously made available by the Lisbon City Hall’s Traffic Control
Department. The data contains the number of cars that passed in sev-
eral of the most congested avenues of the city at different days and
times during a continuous 15 days period in June 2002. The raw data
contains car counts in 5 minutes intervals.

4.1 Predator-Prey

This problem was first introduced in (Benda et al., 1985), although
the version presented here has been inspired on several variations
presented in (Tan, 1993) and (Haynes et al., 1995). One of the grid-
worlds in which experiments were performed (the 10x10 version) is
depicted in figure 1.

The problem faced by the predator consists in learning to catch a
prey in a grid world. A predator is said to have caught the prey if at
the end of a given turn it occupies the same position as the prey. The
grid-worlds (arenas) are spherical (although they are usually repre-
sented in their planar form) and each contains two agents (predators)
and one prey. The state of the environment consists on the position
of the prey relative to the agent, i.e. if an agent is at position (2,4)
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Table 1. Summary of the advice-exchange algorithm.

While not train finished
Novice : Select best advisor k (eq. 6)
While not epoch finished

1. Get state s for evaluation
2. Should get advice ?

Exploration: No, Novice: Yes
Stable/Expert: eq. 5? Yes
Otherwise, No (go to 3)
2.1 Stable/Expert: Select best advisor (k): (eq. 8)
2.2 Send agent k the current state s and request advice

Agent k: Load advice parameters,
Agent k: Evaluate state s,
Agent k: Produce an advised action (a) for state s
Agent k: Return a to advisee.
If integrating advice before acting

Supervised learning: learn(s, a)
3. Evaluate state s and produce action (a′)
4. If imitating and advised, use action a, otherwise a′

5. Receive reward (r)
5.1 If advised

If imitating, learn from the result of a′:
EA: If reward > expected reward

backpropagation(s,a′)
QL: Regular update based on s, a, r

and state after action s′ performed
5.2 If not advised or a = a′ learn from reward

(using regular QL or EA updates)
End epoch loop: Update performance statistics and trust.

End train loop



Predator

Prey

Visual Field

a) b)

Figure 1. Predator Prey environment at time t (a), and t + 1 (b). Arrows
represent movements.

and the prey is at (3,6), the state would be (1,2) (see the predator
in the bottom-left corner of figure 1 a)). The spherical shape of the
grid is taken into account when computing the relative position of
the prey as well as when moving. In the experiments reported be-
low an agent’s state also contains the position of the prey relative to
the partner. Previously published results, using only the prey’s posi-
tion relative to the deciding agent (Nunes and Oliveira, 2003) lead to
similar conclusions.

The accuracy of the state representation received by the predator de-
pends on its visual range. The predator perceives the correct position
of the prey up to a limit defined by the visual range parameter (3 in
this case). If the prey is at a distance greater than the visual range its
relative position is disturbed (by Gaussian noise with null average).
The further the prey is from the limit of the visual range, the higher
is the random noise added to the prey’s position.
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Each predator has to choose between nine possible actions in each
turn, i.e. it chooses either to move in one of the eight possible direc-
tions (four orthogonal, and four diagonal), or to remain in its current
position. Each predator moves one step in one direction in each turn.
Each agent outputs a vector of nine real numbers and the index of
the highest output defines the action to be performed.

The prey moves before the predators. To decide in which direction to
move the prey detects the presence the closest predator (closest in the
sense of being at the shortest Euclidean distance) and moves in the
opposite direction, as depicted in figure 1. If there is more than one
predator at the same distance one of the predators is picked randomly
and the prey moves away from it regardless if it is approaching the
other predator. The prey moves only nine out of each ten turns. Any
two units can occupy the same cell simultaneously at any time.

In each turn predators are given a reward that as an individual and
a global component weighted by (1 − β) and β, respectively. The
value of β in these experiments was 0.25. The individual component
is based on their distance to the prey (d). This reward is equal to 1.0,
if the predator has captured the prey, or 0.1(1.0−d/dmax) otherwise.
The constant dmax represents the maximum distance between any
two positions in the grid world. The global component is the partner’s
reward. After a successful catch the predator that caught the prey is
randomly relocated in the grid-world.

This version of the predator-prey problem does not involve either
explicit cooperation or competition between the predators, although
cooperative behavior has emerged in some experiments. The same
effect was observed using only the position of the prey as state de-
scription. Agents use either Q-Learning (QL-agents) or Evolutionary
Algorithms (Holland, 1975; Koza, 1992) (EA-agents) to learn this
task. Another type of agents, labelled Heuristic (H-agents), perform
a fixed (hand-coded) policy that always tries to reduce the distance to
the prey as much as possible. Heuristic agents do not request advice,



but they can reply to advice requests. H-agent’s policy would be op-
timal if there was only one agent in each arena considering that an
agent will not keep records of the previous movements of the prey.

The scenarios used for these experiments are the following:

1. Individual: Four arenas, each with two predators and one prey. In
each arena all predators use the same learning algorithm and they
do not exchange advice. Two arenas have EA-agents, the other
two have QL-agents.

2. Social Heterogeneous: Same as previous, except that agents may
request advice to any of its seven peers in the same or other arenas.

3. Social Heuristic: Same as previous but with an extra arena where
two H-agents are performing the same task and may also be cho-
sen as advisors.

4. Social Homogeneous: Same as the Social Heterogeneous sce-
nario, except that all agents use the same learning algorithm (ei-
ther QL or EA).

For each of the above scenarios 11 trials were made (x4, or x8, agents
of each type), each with different random seeds. Each trial ran for
9000 epochs and each epoch has 150 turns. For each trial there is a
corresponding test which runs for 1000 epochs without learning or
exchange of advice. Each agent in the beginning of the test loads
the parameters saved during training when it achieved the best score.
Partnerships were kept unchanged by this procedure. Agents do not
exchange any information except for the one necessary to perform
advice-exchange.

Two sets of experiments were made differing only in the dimension
of the grid. In the first set the grid was 10x10, and in the second
20x20 positions wide.
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In this problem advice was incorporated and not imitated. Also, trust
was computed as follows: trustij was initialized to 1.0 and multi-
plied by a factor slightly higher than 1.0 when advisor j provided
advice in epochs where the average reward was higher than the infi-
nite discounted reward. Similarly, it was multiplied by a factor lower
than 1.0 when j provided advice and the average reward was not
better than the infinite discounted reward. Trust in a given peer was
also influenced by other agents. When an agent issued a message of
“trust agent X” the receiving agent updated the trust on agent X in
the same way as if it had been an advisor for a successful epoch, thus,
increasing the trust on this advisor. An agent would issue a message
of “trust agent X” to its partner when it had a successful epoch based
on the information communicated by a single advisor. In this case
“X” would be the advisor’s partner. This policy replaced the static
role-assignment procedure and allowed agents synchronize their ad-
vice requests so that each member of a group would request advice to
a different member of the advisor-group. In situations where agents
acquire different roles during learning even when they start out in
exactly the same circumstances, the run-time definition of roles is
important for the success of advice-exchange.

4.2 Traffic Control

The Traffic Control (TC) environment consists of several detached
locations, each containing one (TC1) or two (TC2) connected cross-
ings. Each location in the TC2 scenario contains 12 lanes over an
area of, roughly, 300 x 300m. An environment contains 3 locations,
each controlled by a team of agents (QL-agents, EA-agents or H-
agents as in the previous experiment). The number of cars generated
in each time interval (of 5 minutes) is taken from a set of real data
collected in some of the most busy avenues of Lisbon. The TC envi-
ronment uses real data to calculate, at each time, the number of cars
to be inserted. At each 60 seconds interval 1/5 of the cars that must
pass through the crossing during the 5 minutes period is introduced



simulating a fixed policy traffic-light outside the scope. The insertion
of cars is done at different times in each set of adjacent lanes.

This experiment presents several difficulties. Firstly, to find the ap-
propriate timing to end training epochs. Agents must have enough
epochs to learn and simultaneously each epoch must be long enough
to have a fair estimate of an agent’s performance. An optimal situa-
tion would be to test an agent’s policy for at least one full day, but
computational constraints do not allow this. The compromise solu-
tion was one simulated hour for each epoch. To diminish the dif-
ferences in training epochs the data used is restricted to the traffic
between 8 a.m. and 8 p.m in regular working days (i.e. holidays and
weekends are discarded). All agents start each epoch with no cars in
the system.

Another difficulty is that too many mistakes induce heavy traffic
jams. In these circumstances some agents are not able to learn be-
cause they have no data (when the cars are jammed in a previous
crossing for long periods), and huge traffic jams make the simulation
too slow to provide results within a reasonable time-frame. To allow
the experiments to run with the necessary speed car movements were
simplified. Cars do not exchange lanes, nor turn at crossings and the
only limitations to their forward movement are the current speed,
the position of the car directly in front and the existence of a closed
traffic-light ahead. The movement of cars is calculated as proposed
in (Nagel and Shreckenberg, 1992) to simulate realistic drivers. The
simulation step is of one second and each epoch consists of one hour
of simulated-time, i.e. 3600 turns. Agents are asked for a new de-
cision every 20 seconds. In this problem agents imitate the advised
action and learn from the result. Training is done for 10000 epochs
and test lasts 500 epochs.

It is important, at this point, to state that we do not propose that
these techniques are adequate solutions to a real-life traffic control
problem. Even though some lessons may be taken that apply to this
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problem, as well as to others, the objective is not to supply an archi-
tecture to solve any specific problem. The choice of this particular
test-bed for evaluation is because it has all of the characteristics of
the environments these techniques are aimed at. Although the tests
are based on real data, the constraints put on the simulation that make
it possible to run several hundreds of times faster that real-time, do
not allow us, at this moment, to extrapolate the conclusions taken to
a real-life scenario.

The quality of the state is composed by a local and a global compo-
nent, weighted by a factor β (in this case equal to 0.75). The quality
qm,i,t for agent i at location m and time t is calculated by:

qm,i,t = βpi(Cl/asti,t) + (1− β)pm(Cg/astm,t), (9)

whereCl is the patience threshold of drivers for one crossing (10 sec-
onds in this case), asti,t is the average stopped time of cars currently
situated in the incoming lanes of the crossing controlled by agent i. If
asti,t is smaller than Cl it takes the value of Cl so that the first com-
ponent is always in the interval [0, 1]. pi is a penalty value that is 1.0
if all incoming lanes have an occupation-rate smaller than 1.0, and is
multiplied by a fixed value (0.75 in this case) for every full incoming
lane. The calculation of the global component is similar, although it
uses a different patience threshold (20 seconds) and atcm,t is the av-
erage stopped time for all cars in location m. This value includes the
time cars may had to wait before entering the scenario. The global
penalty value is computed across all lanes in the agent’s location.

In this experiment there are two scenarios (Individual and Social).
They are equal in all respects except that in the social scenario agents
are able to communicate.

Agents observe a state (s) composed of 10 variables (si), where si ∈
[0, 1], for all i ∈ [1, 10]:

• 1–4: Normalized occupation rate of each of the four incoming



lanes, i.e. number of cars present over the number of cars required
to fill the smallest lane in the location.

• 5–8: Incoming traffic from a given direction (0 for no traffic, 1
otherwise). It is considered that there is incoming traffic if a car
has entered the lane in the last 10s or if the lane is full.

• 9: Current color of the agent’s traffic-light (0 for red, 1 for green).

• 10: Time since the last change in the traffic-light, normalized at a
value of 180 seconds.

Each agent must choose one of two actions. Either set the North-
South lanes to green or red (the East-West lanes will automatically
switch to the opposite color). An action is requested every 20 simu-
lated seconds. Yellow times (of 5 seconds) are introduced automati-
cally when the light changes from green to red.

Heuristic agents set to green the traffic-light on the lanes with the
maximum occupation rate. To prevent quick oscillation of the traffic-
light the lanes that have green light have their occupation-rate multi-
plied by a value larger that 1.0 (1.3 in this case).

4.3 Learning Algorithms

This section contains a summarized description of the learning al-
gorithms used in the experiments. This description is focused on the
variations from their standard form that were introduced in this work.
Q-Learning and Evolutionary Algorithms will be given more atten-
tion due to their importance in these experiments. For details on the
standard versions of these algorithms the reader should consult the
referred bibliography or (Nunes and Oliveira, 2004).

Backpropagation (BP) (Rumelhart et al., 1986) is a well known
supervised learning algorithm, commonly used with networks of
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differentiable non-linear units connected by weighted links (Artifi-
cial Neural Networks, ANN). In this work we use classical, online,
backpropagation to integrate the information received by advice-
exchange in agents whose main learning algorithm is also based on
ANN and to perform state-to-quality mapping in Connectionist Q-
Learning.

Q-Learning (QL) (Watkins and Dayan, 1992) is the most commonly
used learning algorithm in the class of RL. Its most simple form,
one-level Q-Learning, is based on a table that stores the estimated
quality Q(s, a) of performing action a at state s for all state-action
pairs. When a reward rt is received, at time t, the value of Q(s, a) is
updated as follows:

Qt+1(st, a) = (1− α)Qt(st, a) + α(rt + βQmax(st+1)), (10)

where st+1 is the state of the environment after performing action
a at state st, α is the learning rate and β ∈]0, 1[ a discount factor
applied to the estimated quality of the next state (Qmax(st)), which
is given by:

Qmax(st) = max
a

(Q(st, a)), (11)

for all possible actions a when the system is in state st.

To incorporate the advice from other agents before acting, a form of
supervised learning is employed in the update of the quality values.
When an agent is advised to use action a as response to state s it will
sum a positive value (bup) to Q(s, a) and a negative value (bdown)
to all other actions available at state s (in the current experiments
bup ≈ na|bdown|, where na is the number of actions available for the
current state). A similar technique, labelled Biasing-Binary (White-
head, 1991), uses the same absolute quantity both for positive and
negative feedback. When incorporation of the knowledge is done af-
ter the reward is received, i.e. the agent is imitating and learning from
the result, this process is not necessary because QL can learn from
the reward even when the action was not its own choice.



When the state and action spaces are continuous, or too large, the
implementation of Q-Learning with quality tables is not feasible.
In these cases a discretization of the state-space may be necessary,
but even this strategy cannot cope with some problems. In the most
difficult problems, in which a discretization would either be too
coarse or need tables that would be too large to store and too time-
consuming to access, the usual solution is to use connectionist Q-
Learning (QConn) (Lin, 1992). In this approach the table that stores
a mapping of state-action pairs to their estimated quality is replaced
by a set of ANN (one for each action) trained with backpropaga-
tion. Instead of the update described in equation 10 the ANN that
corresponds to the executed action is trained using the state (s) as
the input example and rt + βQmax(st+1) as the desired response. In
the Predator-Prey problem we used standard QL and in the Traffic-
Control problem QConn.

Evolutionary Algorithms (EA) (Holland, 1975; Koza, 1992) are a
well known learning technique, with biological inspiration. The so-
lution parameters are interpreted as a specimen (or phenotype), and
its performance in a given problem as its fitness. After the evalua-
tion of all the specimens the ones with best fitness are selected for
breeding. The selected specimens are then mutated and crossed-over
to generate a new population, usually of the same size as the previous
one.

The variant of EA used in these experiments is based on the work
presented in (Glickman and Sycara, 1999), and its main characteris-
tics are:

• The genotype is the set of real-valued matrixes that correspond to
the weights an ANN of fixed size.

• Each specimen is evaluated during a certain number of epochs (3
in this case). In the first epoch of evaluation advice-exchange is
inhibited.
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• The selection strategy is elitist (keeps a number of the best speci-
mens in the next generation).

• Mutation is done by disturbing all the values of the parameters
with random noise with null average and normal distribution. The
variance of the mutation rate is slowly decayed during training.

• The crossover strategy consists on choosing two parents from the
selected pool and copying each node of the ANN (along with the
weights of all incoming connections) from a randomly chosen
parent.

Each agent contains a population of specimens. To incorporate infor-
mation given by advice an agent will use backpropagation with the
advised action as desired response. The selection process will work
on the specimens after they have been changed by the backpropa-
gation algorithm, which can be interpreted as Lamarckian learning.
Advice may be replayed at the end of each learning epoch. To do this
advice is stored after being used. When the storage-space is filled,
incoming advice will replace the oldest advice stored. Only Novice
agents may replay advice and this is done when the last epoch was
more successful than previous ones. When an agent changes advisor,
stored-advice is cleared. Advice-replay allows to incorporate knowl-
edge gathered by advice more rapidly, but it’s use must be carefully
considered because it is computationally heavy and it may reduce
the diversity of the specimens. Other options that may allow a more
effective use of advice are being studied.

Since backpropagation of the advised action implies that this is the
best action for the given state it should only be done when the agent
verifies that this is the case. When advice is integrated before acting
the agent must trust the advisor and believe that the advised action is
indeed the best response for its state. When an agent is imitating, i.e.
incorporation is done after acting, the agent can verify if the action
did produce a reward that is similar or higher than what it would ex-



Table 2. Test results in experiment 10x10 for each scenario-algorithm pair.

Scenario Alg Best Team Percent Avg
Social Heu. Heu. 0.3477 - 0.1730(+/-0.0025)
Social Heu. QL 0.4009 -0.3% 0.1942(+/-0.0074)
Social Heu. EA 0.4044 +28% 0.1883(+/-0.0116)
Social Het. QL 0.4018 -0.1% 0.1885(+/-0.0232)
Social Het. EA 0.4061 +29% 0.1892(+/-0.0148)
Social Hom. QL 0.4022 -0.0% 0.1843(+/-0.0375)
Social Hom. EA 0.3263 +3.4% 0.1466(+/-0.0234)
Individual QL 0.4023 - 0.1908(+/-0.0237)
Individual EA 0.3156 - 0.1429(+/-0.0184)

pect for that state. If the action proves to be bad advice and produces
a relatively low reward, the EA-agent will not incorporate the advice.

5 Results and Discussion
In this section the results of the experiments described above will be
presented and discussed.

5.1 Predator-Prey

The results presented in tables 2 and 3 refer to the average perfor-
mance achieved in test by the best team (labelled Best Team) and the
average individual performance of all agents (labelled Avg) in several
different cases. The team performances are calculated by adding the
rewards of both agents in a team at each epoch. The average perfor-
mance is accompanied by the correspondent standard deviation. The
column labelled Percent contains the percentual difference between
the result on its left and the same result for individual agents of the
same type (QL or EA). The measures were taken for each experiment
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Table 3. Test results in experiment 20x20 for each scenario-algorithm pair.

Scenario Alg Best Team Percent Avg
Social Heu. Heu. 0.2444 - 0.1217(+/-0.0006)
Social Heu. QL 0.2387 +19% 0.1177(+/-0.0013)
Social Heu. EA 0.2412 +3.4% 0.1179(+/-0.0018)
Social Het. QL 0.2299 +15% 0.1110(+/-0.0020)
Social Het. EA 0.2292 -1.7% 0.1122(+/-0.0019)
Social Hom. QL 0.2188 +9.22% 0.0874(+/-0.0097)
Social Hom. EA 0.2281 -6.2% 0.1118(+/-0.0018)
Individual QL 0.2004 - 0.0860(+/-0.0049)
Individual EA 0.2332 - 0.1071(+/-0.0097)

(10x10 and 20x20), scenario (Individual, Social Homogeneous, So-
cial Heterogeneous and Social Heuristic) and learning algorithm (QL
and EA).

QL and EA-agents have quite different behaviors in these two sce-
narios. In the 10x10 experiment (table 2) QL-agents are clearly bet-
ter than EA-agents and H-agents. This is achieved by learning joint
strategies in which predators push the prey towards each other. In the
20x20 experiment (table 3) joint strategies are harder to develop and
maintain, thus the best result is achieved by H-agents, and the best
learning agents are EA-agents. The difference in performance of EA
versus QL-agents, in these two experiments, was one of the main
reasons for the choice of these variants of the problem. Analyzing
the results we can observe that:

• Agents show similar or better team performances in Social sce-
narios (with the exception of EA-agents in Social Homogeneous
scenarios, in experiment 20x20).

• For the agents that show lower individual performances in each
experiment (EA-agents in 10x10 and QL-agents in 20x20), im-
provements on the team performance in Social Heterogeneous



and Heuristic environments are clear (ranging from 15% to 29%).

• The best average performances of agents occur in Social Heuristic
scenarios, even when H-agents show relatively poor performances
(as in experiment 10x10).

• Cooperation in Homogeneous environments leads to slightly bet-
ter results for the agents that have lower individual performances
in each scenario.

• The experiments do not allow for a firm conclusion on the com-
parison of the average results of the best agents in Individual ver-
sus Social Heterogeneous scenarios. In experiment 10x10 the av-
erage performance of the best agents (QL-agents) shows a slight
decrease in Social Heterogeneous scenarios. In experiment 20x20
the average performance of the best agents (EA-agents) shows a
slight increase in the same test. Both of these changes are negligi-
ble considering the standard deviations of the results.

In summary, the average performance of the best agents is main-
tained and the agents with lower individual performance learn from
their more successful peers, although they seldom surpass their per-
formances. The fact, observed in some experiments, that agents can
surpass the performance of their advisors and become Experts them-
selves, is not as frequent as expected. Nevertheless, it is interesting to
point out that QL-agents do achieve better average scores in the So-
cial Heuristic scenario of experiment 10x10 than in any other, even
when other agents have lower scores. The hypothesis that we pose for
this behavior is that H-agents lead QL-agents to a quick stabilization
of the most obvious choices. This can grant QL-agents enough time
to explore more thoroughly the possible options to their advisors’
individualistic strategy.

5.2 Traffic Control
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Table 4. Test results in experiment TC1 for each scenario-algorithm pair.

Scenario Alg Avg % Std. Dev. Best %
Individual HE 0.3424 89% +/-0.0008 0.34 88%
Individual QL 0.3832 100% +/-0.0034 0.39 99%
Individual EA 0.3059 79% +/-0.0459 0.37 94%
Social HE 0.3420 89% +/-0.0009 0.34 87%
Social QL 0.3814 99% +/-0.0059 0.39 99%
Social EA 0.3652 95% +/-0.0166 0.39 100%

The results presented in tables 4 and 5 refer to the scenarios TC1 and
TC2, respectively. The column labelled “Avg” contains the average
results for each algorithm-scenario pair. Under the label “Std. Dev”
are the standard deviations of each of the values for average perfor-
mance. The column labelled “Best” shows the average test result of
the best agent. The columns labeled % show the percentage relative
to the best result in each column, the first % column refers to the av-
erage results, and the second to the best results. Table 6, as the same
structure and refers to the global part of the reward of each team.

In the single-crossing tests (TC1, table 4), the average results for
QL agents is similar in social and individual trials, and EA-agents
have a 16% performance increase. The best results for EA-agents
have a slight improvement. As in the previous experiment, the agents
that have lower performances profit more from communication than
others. From the standard deviations we can also observe that the
behavior of EA-agents is not only better in average but also more
stable.

In the twin-crossing tests (TC2, table 5), the average results of the
best agents (QL) is, again, similar in individual and trials, but EA-
agents show a 7% improvement in performance. EA-agents seem
able to reach scores higher than QL-agents as can be seen in the Best



Table 5. Test results in experiment TC2 for each scenario-algorithm pair.

Scenario Alg Avg % Std. Dev. Best %
Individual HE 0.2708 93% +/-0.0013 0.27 68%
Individual QL 0.2852 98% +/-0.0093 0.30 75%
Individual EA 0.2638 91% +/-0.0347 0.37 93%
Social HE 0.2710 93% +/-0.0011 0.27 68%
Social QL 0.2895 100% +/-0.0111 0.31 76%
Social EA 0.2859 98% +/-0.0352 0.40 100%

results column. It is interesting to notice that the same percentual in-
crease in social trials also applies to the best results of EA-agents.
The best EA-agent’s performance is increased even when none of
their peers is able to reach scores at the same level. This seems to
indicate that, in some cases, communication can lead a agents to be-
have better is social domains than the best they are able to do in any
individual trial. Nevertheless, in average we can only say that the
agents with lower individual performance (EA-agents) can learn to
behave as the best (with only 2% difference).

If we measure only the global component of the reward we reach
similar conclusions. EA-agents improve this component by 22%, in
average. QL-agents do not fully take advantage of this rise, but they
also show a small improvement (4%).

Table 6. Global reward results in experiment TC2.

Scenario Team Avg % Std. Dev. Best %
Individual HEU 0.1041 94% +/-0.0011 0.11 59%
Individual QL 0.1024 92% +/-0.0089 0.12 64%
Individual EA 0.0865 78% +/-0.0247 0.16 89%
Social HEU 0.1044 94% +/-0.0007 0.11 59%
Social QL 0.1066 96% +/-0.0100 0.13 71%
Social EA 0.1106 100% +/-0.0274 0.18 100%
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These tests point in the same direction as the previous ones, advice
exchange does improve the average performance of the agents with
lower scores, although it may prevent exploration. As is the previous
cases not all agents reach the same performance levels and some
advisees do not reach the level of performance of the advisors.

6 Conclusions and Future Work
Advice-exchange has evolved, from a simple form of sharing ex-
periences with other agents, to the draft of an architecture that en-
ables cooperation between heterogeneous groups. Along the way,
problems such as: disturbances in the learning process (caused by
conflicting advice), learning of joint strategies from more success-
ful groups, spurious results that caused agents to trust the “wrong”
advisor, and many others, have been addressed by introducing new
concepts and tools. The initial objective was to create a process by
which agents could improve their learning skills through communi-
cation with other agents. The results presented here show that low
performance agents can improve their performance by communicat-
ing with others.

One of the goals of this work was to create a learning system that
could generate better behaviors than individual learning. So far this
was only detected in a few specific cases and it is not the rule. In fact,
communication can even hurt the learning performance by leading
all agents into an area with a local minimum early in the trial.

An important factor to consider is the delay introduced by advice-
exchange. If we exclude advice-replay the delay introduced by the
process is negligible. Advice-replay may cause considerable delays
depending on the number of stored advice. Another important delay
factor is communication between processes in different physical lo-
cations. In this simulation that factor cannot be measured since all
agents are part of the same process. The communication necessary



to allow advice-exchange is simple in structure and reasonably low
in average, although it tends to be bursty because all agents tend to
ask for advice at the same times (when another agent improves its
performance making their current solution obsolete). To give a rea-
sonable idea of the learning-time we can say that the Traffic Control
simulation, with advice-exchange, is running several hundred times
faster than real-time and more than 70% of the computation-time is
used in the movement of vehicles and not in the learning procedures.

The objectives of future work are mainly to refine the process into
an architecture that promotes better team behaviors. The identifica-
tion of the type of problem an agent is facing and the adequate con-
trol of learning parameters in run-time, based on this information,
seems to be a key point to improve performance. Other improve-
ments, based on combination of advice from different sources, ren-
dering unsolicited advice and the use of other learning algorithms,
are also scheduled for future work. In some situations it is impor-
tant to have a global view of a situation, the introduction of team
supervisors that learn from a summarized view of the state and may
influence the decisions of agents can improve the cooperation capa-
bilities of a team.

The road to new learning systems that interact with complex environ-
ments and communicate is still long. Above we have sketched what
we believe are some of the fundamental characteristics of agents that
can learn by communicating with others as well as from the environ-
ment. As was mentioned during the description, the implementation
of some of these concepts must be adapted to the type of agents or
the environment, but, by creating a set of techniques that promotes
communication and effective integration of the exchanged informa-
tion in the learning process, we can give agents the possibility to
interact with others and profit from this interaction.
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