
A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model

TOBY J. TEOREY

Computing Research Laboratory, Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48109-2122

DONGQING YANG

Computer Science and Technology, Peking Uniuersity, Beijing, The People’s Republic of China

JAMES P. FRY

Computer and Information Systems, Graduate School of Business Administration, The University of Michigan,
Ann Arbor, Michigan 48109-1234

A database design methodology is defined for the design of large relational databases.
First, the data requirements are conceptualized using an extended entity-relationship
model, with the extensions being additional semantics such as ternary relationships,
optional relationships, and the generalization abstraction. The extended entity-
relationship model is then decomposed according to a set of basic entity-relationship
constructs, and these are transformed into candidate relations. A set of basic
transformations has been developed for the three types of relations: entity relations,
extended entity relations, and relationship relations. Candidate relations are further
analyzed and modified to attain the highest degree of normalization desired.

The methodology produces database designs that are not only accurate representations
of reality, but flexible enough to accommodate future processing requirements. It also
reduces the number of data dependencies that must be analyzed, using the extended ER
model conceptualization, and maintains data integrity through normalization. This
approach can be implemented manually or in a simple software package as long as a
“good” solution is acceptable and absolute optimality is not required.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-
data models

General Terms: Databases, Design

Additional Key Words and Phrases: Entity-relationship model, integrity, logical design,
relational databases

INTRODUCTION approach has been a low-level bottom-up
activity synthesizing data elements into

Relational database design has been ac- normalized relations using the inter-data-
complished with a variety of approaches, element dependencies resulting from the
including the top-down, bottom-up, and requirements analysis [Codd 1970, 1974;
combined methodologies. The traditional Martin 1982; Date 1984; Smith 19851.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0360-0300/86/0600-0197 $00.75

Computing Surveys, Vol. 18, No. 2, June 1986

198 l T. J. Teorey, D. Yang, and J. P. Fry

CONTENTS

INTRODUCTION
1. ER MODELING AND EXTENDED

CONSTRUCTS
1.1 Original Classes of Objects (ER Model)
1.2 Extended Classes of Objects (EER Model)
1.3 Fundamental EER Constructs

2. EER MODELING OF REQUIREMENTS
(STEP 1)
2.1 Design Step 1 Details
2.2 An Example Database:

Cohpany Personnel and Projects
3. TRANSFORMATION OF THE EER MODEL

TO RELATIONS (STEP 2)
3.1 Transformation Rules
3.2 Design Step 2 Details
3.3 Example

4. NORMALIZATION OF RELATIONS
(STEP 3)
4.1 Design Step 3 Details
4.2 Example

5. REFINEMENTS TO THE LOGICAL
DESIGN PROCESS
5.1 Addition of More Semantics

to Conceptual Modeling
5.2 Relation Refinement for Usage Efficiency

6. CONCLUSION
APPENDIX: SUMMARY OF LOGICAL

RELATIONAL DATABASE
DESIGN STEPS

ACKNOWLEDGMENTS
REFERENCES

Although the traditional process is vital to
the design of relational databases, its com-
plexity, particularly in large databases, can
be overwhelming to the point where prac-
tical designers often do not bother to mas-
ter it or even use it with any regularity. At
the theoretical level a top-down approach
has been investigated with regard to the
universal relation assumption [Beeri et al.
1978; Kent 19811. In practice, typically a
few basic relations are defined by the re-
quirements analysis process, and then a
combination of the top-down and bottom-
up approaches is used. The combined ap-
proach has recently become much more
popular because of the introduction of a
well-established conceptual design tool, the
entity-relationship model, into this process
[Date 1984; Sweet 1985; Yang et al. 19851.

This relational database design approach
uses both the ER model and the relational
model in successive stages. It benefits from
the simplicity and ease of use of the entity-
relationship model and the structure (and
associated formalism) of the relational
model. In order to achieve this approach, it
is necessary to build a framework for trans-
forming the variety of ER constructs into
relations that can be easily normalized.
Before we do this, however, we first define
the major steps of the relational design
methodology.

The logical relational design methodol-
ogy (LRDM) is both a refinement and an
extension of the design methodology pro-
posed in Teorey and Fry [1982]. The basic
steps of this methodology, as shown in
Figure 1, are summarized as follows:

The entity-relationship (ER) model has Step 1. Extended ER Modeling of Re-
been most successful as a tool for commu- quirements. The data requirements are

nication between the designer and the end
user during the requirements analysis and
conceptual design phases because of its ease
of understanding and its convenience in
representation [Chen 19761. One of the
reasons for its effectiveness is that it is a
top-down approach using the concept of
abstraction. The number of entities (i.e.,
the objects that we want to collect infor-
mation about) in a database is typically an
order of magnitude less than the number of
data elements. Therefore, using entities as
an abstraction for data elements and focus-
ing on the interentity relationships greatly
reduces the number of objects under con-
sideration and simplifies the analysis. Al-
though it is still necessary to represent data
elements by attributes of entities at the
conceptual level, their dependencies are
normally confined to the other attributes
within the entity or, in some cases, to those
attributes associated with other entities
that have a direct relationship to their
entity.

The major interattribute dependencies
are between the entity keys (unique iden-
tifiers) of different entities that are cap-
tured in the ER modeling process. Special
cases, such as dependencies among data
elements of unrelated entities, can be
analyzed upon identification in the data
analysis.

Computing Surveys, Vol. 18, No. 2, June 1986

Step 1
Requirements
analysis and
extended ER(EER)
modeling

Logical Design Methodology for Relational Databases l 199

Candidate relations associated with all de-
rived FDs and MVDs are then normalized
to the highest degree desired using standard
manual normalization techniques. Redun-
dancies that occur in normalized candidate
relations are then analyzed further for pos-
sible elimination, with the constraint that
data integrity must be preserved.

EER
diagrams

Step2
Transformation of
EER diagrams to
relations

candidate
relations Step3 v

Normalization
of relations

normalized
candidate
relations

V

To physical design
and implementation

Figure 1. Relational database design: basic steps.

The LRDM methodology simplifies the
approach to designing large relational
databases by reducing the number of data
dependencies that need to be analyzed.
This is accomplished by introducing a con-
ceptual design step in the traditional rela-
tional modeling approach. The objective
of this step is to capture an accurate rep-
resentation of reality using the extended
ER model. Data integrity is preserved
through normalization of the candidate re-
lations formed from the transformation of
the extended ER model. Processing effi-
ciency for query, update, and maintenance
of integrity constraints is considered to be
part of physical design and is not discussed
here.

analyzed and modeled using an extended
ER diagram that includes semantics for
optional relationships, ternary relation-
ships, and subtyping (categories). Pro-
cessing requirements are assumed to be
specified using natural language expres-
sions, along with the frequency of occur-
rence. Logical views from multiple sources
are integrated into a common global view
of the entire database.

Next we build the foundation for the
LRDM by defining the extended ER model
and providing a graphical representation
scheme for it.

1. ER MODELING AND EXTENDED
CONSTRUCTS

Step 2. Transformation of the Extended
ER Model to Relations. On the basis of a
categorization of extended ER constructs
and a set of mapping rules, each relation-
ship and its associated entities are trans-
formed into a set of candidate relations.
Redundant relations are eliminated.

The entity-relationship approach initi-
ally proposed by Chen, although modified
and extended by others, still remains the
premier model for conceptual design. It
is used to represent information in terms
of entities, their attributes, and asso-
ciations among entity occurrences called
relationships.

Step 3. Normalization of Relations.
Functional dependencies (FDs) are derived
from the extended ER diagram to represent
the dependencies among data elements that
are keys of entities. Additional FDs and
multivalued dependencies (MVDs), which
represent the dependencies among key and
nonkey attributes within entities, are de-
rived from the requirements specification.

Powerful extensions to data models
providing greater semantics have been
proposed by others ISmith and Smith 1977;
Hawryszkiewycz 19841. Other researchers
have focused their extensions primar-
ily on the ER model, in particular the ab-
straction concepts such as generalization
[Scheuermann et al. 1980; Atzeni et al.
1981; Navathe and Cheng 1983; Sakai
1983; Elmasri et al. 1985; Ling 19851. Ter-
nary relationships and composite attrib-
utes were also studied by Ling [1985].

Computing Surveys, Vol. 18, No. 2, June 1986

200 l T. J. Teorey, D. Yang, and J. P. Fry

?elationship
01

(4 (b)

Figure 2. Extended ER (EER) model representations.

Other work has concentrated on such top-
ics as existence constraints [Webre 1981;
Sakai 19831 or on more general integrity
constraints [Lenzerini and Santucci 1983;
Oren 19851.

There is also a large body of work devoted
to the transformation of the ER model to
the relational model. Most of the earlier
work focused on the original ER model
[Wong and Katz 1980; Date 1985; Martin
1983; Howe 1983; Hawryszkiewycz 1984;
Briand et al. 19851. Existence dependency
was added by Webre [1981]. Later trans-
formation algorithms included abstraction
in an extended ER model [Elmasri et al.
1985; Ling 19851. Transformations based
on a normal form for ER models have a
theoretical basis and a strong potential for
future applications [Chung et al. 1981;
Jajodia and Ng 1983,1984; Ling 19851. We
take a more pragmatic approach by synthe-
sizing recent research and applying it to
current model implementation methods
[Yang et al. 19851.

1.1 Original Classes of Objects (ER Model)

Initially, Chen proposed three classes of
objects: entities, attributes, and relation-
ships (Figure 2a). Entity sets (we drop the
term set in our discussion) were the prin-
cipal objects about which information was
to be collected and usually denoted a per-
son, place, thing, or event of informational
interest. Attributes were used to detail the
entities by giving them descriptive prop-

Computing Surveys, Vol. 18, No. 2, June 1986

erties such as name, color, and weight.
Finally, relationships (formerly called
relationship sets) represented real-world
associations among one or more entities.

There are two types of attributes: iden-
tifiers and descriptors. The former is used
to uniquely distinguish among the occur-
rences of an entity, whereas the latter is
used to describe an entity occurrence. En-
tities can be distinguished by the “strength”
of their identifying attributes. Strong enti-
ties have internal identifiers that uniquely
determine the existence of entity occur-
rences. Weak entities derive their existence
from the identifying attributes (sometimes
called external attributes) of one or more
“parent” entities. Relationships have se-
mantic meaning, which is indicated by the
connectivity between entity occurrences
(one to one, one to many, and many to
many), and the participation in this con-
nectivity by the member entities may be
either optional or mandatory. For example,
the entity “person” may or may not have a
spouse. Finally, each of the entities may
have one or more synonyms associated with
it. The diagrams for representing entities,
relationships, and attributes are shown in
Figure 2a.

1.2 Extended Classes of Objects
(EER Model)

The original ER model has long been effec-
tively used for communicating fundamen-
tal data and relationship definitions with

Logical Design Methodology for Relational Databases l 201

the end user. Using the ER model as a
conceptual schema representation, how-
ever, has proved difficult because of the
inadequacy of the initial modeling con-
structs. View integration, for example, re-
quires the use of abstraction concepts such
as generalization [Navathe et al. 19861.
Data integrity involving null attribute val-
ues requires defining relationships such
that a null set on either side of the relation-
ship is either allowed or disallowed. Also,
certain relationships of degree higher than
2 (binary) may be present and are awkward
(or incorrect) when represented in binary
form. The extended ER model provides
simple representations for these commonly
used concepts and is compatible with the
simplicity of the original ER model.

The introduction of the category abstrac-
tion into the ER model resulted in two
additional types of objects: subset hier-
archies and generalization hierarchies
[Navathe and Cheng 1983; Elmasri et al.
19851. The subset hierarchy specifies
possibly overlapping subsets, while the
generalization hierarchy specifies strictly
nonoverlapping subsets. Both subset ob-
jects will transform equivalently to a rela-
tional data model scheme, but they will
differ significantly with regard to update
(integrity) rules.

Subset Hierarchy Definition. An entity
El is a subset of another entity Ez if every
occurrence of El is also an occurrence of
EP.

A subset hierarchy is the case in which
every occurrence of the generic entity may
also be an occurrence of other entities that
are potentially overlapping subsets (Figure
2b). For example, the entity EMPLOYEE
may include “employees attending college,”
“employees who hold political office,” or
“employees who are also shareholders” as
specialized classifications.

Generalization Hierarchy Definition. An
entity E is generalization of the entities El,
EP, E, if each occurrence of E is also
an occurrence of one and only one of the
entities El, E2, . . . , E,,.

A generalization hierarchy occurs when
an entity (which we call the generic entity)

is partitioned by different values of a com-
mon attribute (Figure 2b). For example, the
entity EMPLOYEE is a generalization of
ENGINEER, SECRETARY, and TECH-
NICIAN. The generalization object (EM-
PLOYEE) is called an “IS-A” exclusive
hierarchy because each occurrence of the
entity EMPLOYEE is an occurrence of one
and only one of the entities ENGINEER,
SECRETARY, TECHNICIAN.

1.3 Fundamental EER Constructs

The following classification of EER con-
structs is defined to facilitate development
of a concise and easy to understand EER
diagram.

(1) Degree of a relationship. The degree
of a relationship is the number of entities
associated with the relationship. An n-ary
relationship is of degree n. Unary, binary,
and ternary relationships are special cases
in which the degree is 1, 2, and 3, respec-
tively. This is indicated in Figure 3.

(2) Connectivity of a relationship. The
connectivity of a relationship specifies the
mapping of the associated entity occur-
rences in the relationship. Values for con-
nectivity are either “one” or “many.” For
a relationship among entities El, E2, . . . ,
Ei, ..., E, a connectivity of “one” for
entity Ei means that given all entities ex-
cept Ei, there is at most one related entity
occurrence of Ei.

The actual number associated with the
term “many” is called the cardinality of the
connectivity. Cardinality may be repre-
sented by upper and lower bounds. Figure
3 shows the basic constructs for connectiv-
ity: one to one (unary or binary relation-
ship), one to many (unary or binary
relationship), and many to many (unary or
binary relationship). The shaded area in
the unary or binary relationship diamond
represents the “many” side, while the
unshaded area represents the “one” side
[Reiner et al. 19851.

We use an n-sided polygon to represent
n-ary relationships for n > 2 in order to
show explicitly each entity associated with
the relationship to be either “one” or
“many” related to the other entities. Each
corner of the n-sided polygon connects to
an entity. A shaded corner denotes “many”

Computing Surveys, Vol. 18, No. 2, June 1986

202 l T. J. Teorey, D. Yang, and J. P. Fry

CONCEPT

DEGREE
unary

binary

ternary

CONNECTIVITY
I : 1

1 :n

m:n

MEMBERSHIP
CLASS

mandatory

optional

REPRESENTATION 1 EXAMPLE

I OF

-o- 1 DEPT j-+jMPLOYEEI

DEPT EMPLOYEE

CONTAINS

-+-/~IPL~Y;!---++ PROJECT]

1 OFFICE 1

OCCUPIED-BY 4 EMPLOYEE

Figure 3. Fundamental EER constructs: relationship types.

and an unshaded corner denotes “one.” The
ternary relationship (see Figures 3 and 6b,
Section 2.1, Step 1.3) illustrates this type
of association, which is much more complex
than either a unary or binary relationship.
An entity in a ternary relationship is con-
sidered to be “one” if only one occurrence
of it can be associated with one occurrence
of each of the other two associated entities.
It is “many” if more than one occurrence
of it can be associated with one occurrence
of each of the other two associated entities.
In either case, one occurrence of each of
the other entities is assumed to be given.

The relationship SKILL-USED in Fig-
ure 3 associates the entities EMPLOYEE,
PROJECT, and SKILL. Each entity in this

example is considered “many” (e.g., each
employee with a given skill could work on
many projects). This is functionally equiv-
alent to the meaning of the functional de-
pendencies in Figure lob (Section 3.1.3) for
this relationship. In Figure 10 we see that
each entity considered “one” appears on
the right-hand side of exactly one FD. No
entity considered “many” ever appears on
the right-hand side of an FD. Equivalent
FDs are used to express ternary relation-
ships in Ling [19851.

A ternary relationship cannot be reduced
to equivalent binary relationships if the
relation used to represent it is in 4NF. For
example, SKILL-USED in Figures 3 and
lob (Section 3.1.3) is in 4NF and cannot be

Computing Surveys, Vol. 18, No. 2, June 1986

Logical Design Methodology for Relational Databases l 203

SKILL-USED

(a)

SKILL-AVAILABLE

‘4l

(b)

Figure 4. Nondecomposable and decomposable ternary relationships ex-
pressed as relations. (a) 4NF relation (nondecomposable); (b) 3NF relation
decomposable to 4NF relations.

decomposed (Figure 4a). However, SKILL-
AVAILABLE, which has the same ER
representation as SKILL-USED, is not in
4NF if all the skills of an employee can be
used on all projects worked on by that
employee (Figure 4b). In such a case
SKILL-AVAILABLE can be decomposed
into two many-to-many binary relation-
ships between EMPLOYEE and PROJ-
ECT, and EMPLOYEE and SKILL. Each
of these two new relationships represents a
relation in 4NF.

(3) Membership class in a relatidnship.
Membership class specifies whether either
the “one” or “many” side in a relationship
is mandatory or optional. If an occurrence
of the “one’‘-side entity must always exist
for the entity to be included in the system,
then it is mandatory. When an occurrence
of that entity need not exist, it is considered
optional. The “many” side of a relationship
is similarly mandatory if at least one entity
occurrence must exist, and optional other-
wise. The optional membership class, de-
fined by a “0” on the connectivity line
between an entity and a relationship, is
shown in Figure 3. Membership class is

implied by existence dependency in the
real-world system; for example, an inde-
pendent (strong) entity associated with a
dependent (weak) entity cannot be op-
tional, but the weak entity may be optional.
Weak entities are sometimes depicted with
a double-bordered rectangle (see Figure 2).

(4) Object class of entities and relution-
ships. The basic objects are the n-ary
relationships with their associated entities.
Objects resulting from abstraction are the
generalization hierarchy and the subset
hierarchy (see Figure 2). The generalization
hierarchy implies that the subsets are a full
partition, such that the subsets are disjoint
and their combination makes up the full
set. The subset hierarchy implies that the
subsets are potentially overlapping.

2. EER MODELING OF REQUIREMENTS
(STEP 1)

The objective of requirements analysis is
manifold: (1) to delineate the data require-
ments of the enterprise, (2) to describe the
information about the objects and their
associations needed to model these data

Computing Surveys, Vol. 18, No. 2, June 1986

204 . T. J. Teorey, D. Yang, and J. P. Fry

requirements, and (3) to determine the bute. For example, in the above store and
types of transactions that are intended to city example, if there is some descriptive
be executed on the database. We use the information such as STATE and POPU-
extended entity-relationship (EER) model LATION for cities, then CITY should be
to describe these objects and their inter- classified as an entity. If only CITY-NAME
relationships, and assume natural language is needed to identify a city, then CITY
expressions to describe transactions. should be classified as an attribute.

The EER model enhances the designer’s
ability to capture the real data require-
ments accurately because it requires one to
focus on greater semantic detail in the data
relationships. The semantics of EER allows
for direct transformations of entities and
relationships to at least 1NF relations and
specifies clear guidelines for integrity con-
straints. Also, abstraction techniques, such
as generalization, provide useful tools for
integration of user views to define a global
conceptual schema. Further discussion of
the requirements data collection process
can be found in Martin [1982], Teorey and
Fry [1982], and Yao [1985].

(2) Multivalued attributes should be clas-
sified as entities. If more than one value of
a descriptor corresponds to one value of
identifier, this descriptor should be classi-
fied as an entity instead of an attribute,
even though it does not have descriptors
for itself. For example, in the above store
and city example, if one store (a chain)
could be located in several cities, then
CITY should be classified as an entity even
if it only needs an identifier CITY-NAME.

Let us now look more closely at the
basic objects and their relationships that
should be defined during the requirements
analysis.

2.1 Design Step 1 Details

Step 1.1. Classify entities and attributes.

Although it is easy to define entity,

(3) Mahe an attribute that has a many-
to-one relationship with an entity. If a de-
scriptor in one entity has a many-to-one
relationship with another entity, the de-
scriptor should be classified as an entity,
even if it does not have its own descriptors.
For example, if two entities have been de-
fined, STORE (with identifier STORE-
NUMBER, descriptors OWNER and
CITY) and STATE, because there is a
many-to-one relationship between CITY
and STATE, CITY should be classified as
an entity.

attribute, and relationship constructs (cf.
Section l.l), it is not so easy to distin-
guish their role in modeling the database.
What makes an object an entity, an attri-
bute, or even a relationship? For example,
stores are located in cities. Should CITY
be an entity or an attribute? Registra-
tion records are kept for each student. Is
REGISTRATION-RECORD an entity or
a relationship? What is a “normalized”
entity?

(4) Attach attributes to entities that they
describe most directly. For example, attri-
bute OFFICE-BUILDING should be an
attribute of the entity DEPARTMENT
instead of the entity EMPLOYEE.

The following guidelines for classifying
entities and attributes will help the de-
signer converge to a normalized relation-
ship database design.

(1) Entities have descriptive information;
identifying attributes do not. If there is de-
scriptive information about an object, the
object should be classified as an entity. If
only an identifier is needed for an object,
the object should be classified as an attri-

(5) Avoid composite identifiers as much
as possible, If an entity has been defined
with a composite identifier, that is, an iden-
tifier composed of two or more attributes,
and the components of the identifier are all
identifiers of other entities, then eliminate
this entity. The corresponding object could
be defined as a relationship in a subsequent
step. If an entity has been defined with a
composite identifier, but components of the
identifier are not identifiers of other enti-
ties, then there are two possible solutions.
One is to eliminate this entity and define
new entities with components of the corn- ’
posite identifier as entity identifiers, and
in a subsequent step define a relationship
to represent this object. The other solution

Computing Surveys, Vol. 18, No. 2, June 1986

is to keep the entity with the composite
identifier if it is reasonably natural.

As an example, if an entity REGISTRA-
TION-RECORD has been defined, with
STUDENT and COURSE as a composite
identifier, then the entity REGISTRA-
TION-RECORD could be eliminated, and
two new entities STUDENT and COURSE
could be defined; later in a subsequent step,
a relationship between STUDENT and
COURSE could be defined to represent the
object REGISTRATION-RECORD. In an-
other example, if an entity VOLLEY-
BALL-TEAM has been defined, with
COUNTRY and GENDER as a composite
identifier, then it seems suitable to keep
this entity because defining an entity GEN-
DER is not very natural.

The procedure of identifying entities
and attaching attributes to entities is iter-
ative: classifying some objects as entities,
attaching identifiers and descriptors to
them, then finding some violation to the
above guidelines, changing some objects
from entity to attribute or from attribute
to entity, then attaching attributes to the
new entities, etc.

Step 1.2. Identify the generalization
hierarchies and subset hierarchies.

If there is a generalization or subset
hierarchy among entities, then reattach at-
tributes to the relevant entities. Put iden-
tifier and generic descriptors in the generic
entity, and put identifier and specific de-
scriptors in the subset entities.

For example, suppose that the following
entities were identified in the EER model:
EMPLOYEE (with identifier EMP-NO
and descriptors EMP-NAME, HOME-
ADDRESS, DATE-OF-BIRTH, JOB-
TITLE, SALARY, SKILL), ENGINEER
(with identifier EMP-NO and descrip-
tors EMP-NAME, HOME-ADDRESS,
SPECIALTY), SECRETARY (with iden-
tifier EMP-NO and descriptors EMP-
NAME, DATE-OF-BIRTH, SALARY,
SPEED-OF-TYPING), TECHNICIAN
(with identifier EMP-NO and descrip-
tors EMP-NAME, SKILL, YEARS-
OF-EXPERIENCE). We identify that

Logical Design Methodology for Relational Databases l 205

I LOCATED-IN \

CLUB SCHOOL

Figure 5. Transitive relationships.

EMPLOYEE is a generalization of EN-
GINEER, SECRETARY, and TECHNI-
CIAN. Then we reattach attributes to the
entities. We put identifier EMP-NO and
generic descriptors EMP-NAME, HOME-
ADDRESS, DATE-OF-BIRTH, JOB-
TITLE, and SALARY in the generic entity
EMPLOYEE; we put identifier EMP-NO
and specific descriptor SPECIALITY in
entity ENGINEER, we put identifier
EMP-NO and specific descriptor SPEED-
OF-TYPING in entity SECRETARY; and
we put identifier EMP-NO and specific de-
scriptors SKILL, YEARS-OF-EXPERI-
ENCE in entity TECHNICIAN.

Step 1.3. Define relationships.

We now deal with objects that were
not classified as entities or attributes, but
represent associations among objects. We
define them as relationships. For every re-
lationship the following should be specified:
degree, connectivity, membership class,
and attributes.

The following are some guidelines for
defining relationships.

(1) Redundant relationships should be
eliminated. Two or more relationships that
are used to represent the same concept are
considered redundant. Redundant relation-
ships are more likely to result in unnor-
malized relations when transforming the
EER model into relational schemas. Note
that two or more relationships are allowed
between the same two entities as long as
the two relationships have different mean-
ings. They are not considered redundant.

One important case of redundancy is
transitive dependency (see Figure 5). If
BELONGS-TO is a many-to-one relation-

Computing Surveys, Vol. 18, No. 2, June 1986

206 . T. J. Teorey, D. Yang, and J. P. Fry

(a) (b)

Figure 6. Comparison of binary and ternary relationships.

ship between STUDENT and CLUB, LO-
CATED-IN is a many-to-one relationship
between CLUB and SCHOOL, ATTENDS
is a many-to-one relationship between
STUDENT and SCHOOL, and both BE-
LONGS-TO and LOCATED-IN are man-
datory, then ATTENDS is redundant and
should be eliminated.

(2) Ternary relationships must be de-
fined carefully. We define a ternary rela-
tionship among three entities only when
the concept (association) cannot be repre-
sented by several binary relationships
among those entities. For example, there is
an association among entities TEACHER,
STUDENT, and PROJECT. If each stu-
dent can be involved in many projects and
can work under the instruction of several
teachers for any of these projects, and if
each teacher can instruct many students
on any project, then two binary relation-
ships could be defined instead of one ter-
nary relationship (Figure 6a). If, however,
each student can be involved in several
projects and work under the instruction of
several teachers, but, if for every project
the student works under the instruction of
exactly one teacher, then a ternary rela-
tionship must be defined (Figure 6b).

The meaning of connectivity for ternary
relationships is important. Figure 6b shows
that for a given pair of occurrences of STU-
DENT and PROJECT, there is only one
corresponding occurrence of TEACHER;
however, for a given pair of occurrences of
TEACHER and STUDENT, there could
be many corresponding occurrences of
PROJECT.

Step 1.4. Integrate multiple views of en-
tities, attributes, and relationships.

Computing Surveys, vol. 18, No. 2, June 1986

Typically, when the design is large and
more than one person is involved in re-
quirements analysis, multiple views of data
and relationships occur. These views must
eventually be consolidated into a single
global view to eliminate redundancy and
inconsistency from the model. View inte-
gration requires the use of such extended
ER semantic tools as identity (identifying
synonyms), aggregation, and generaliza-
tion.

Recent research has advanced view
integration from a representation tool
[Teorey and Fry 19821 to heuristic algo-
rithms [Elmasri and Wiederhold 1979;
Navathe and Gadgil 1982; Navathe et al.
1984; Elmasri et al. 1985; Navathe et al.
19861. These algorithms are typically inter-
active, allowing the database designer to
make decisions based on suggested alter-
native integration actions. Adopting an
ER extension called the entity-category-
relationship model [Elmasri et al. 19851,
Navathe and others have organized the dif-
ferent classes of objects and relationships
into forms that are either compatible or
incompatible for view integration [Navathe
et al. 19861. A category is defined as a
subset of entities from an entity type, thus
representing a form of generalization hier-
archy. An object class is a set of entities
that is either an entity type or category.

Prior to actual integration, the algorithm
performs several functions on object
classes: First, it establishes naming conven-
tions for object classes and attributes to
resolve synonyms and homonyms; second,
it defines the candidate keys and attribute
domains for each object class; and third, it
defines mappings between equivalent attri-
butes of corresponding object classes. The I

Logical Design Methodology for Relational Databases l 207

PART-OF

SKILL

- \ CONTAIN& /’

BELONGS-TO

PRF-ASSOC PC

Figure 7. Company personnel and project database (EER diagram).

integration process is applied to four pos-
sible forms of object class similarity: iden-
tical domains, contained (subset) domains,
overlapping domains, and disjoint domains.
Overlapping domains closely correspond to
our definition of two categories related to
each other in a subset hierarchy, and the
disjoint domain form corresponds to a gen-
eralization hierarchy. The subset domain is
similar to the relationship between a cate-
gory and its generic entity type.

Relationships are classified in terms of
their degree, the role of each object class in
the relationship, and various constraints,
such as cardinality constraints, that may
differ among object classes. Relationships
with equal degree, the same roles, and the
same cardinality constraints are easy to
merge. Those with differing characteristics
are more difficult and in some cases impos-
sible to merge.

Although much more work is needed to
understand the semantic impact of view
integration techniques, it is clear that cur-
rent ER extensions have significantly

advanced the automatability of the view
integration process.

2.2 An Example Database: Company
Personnel and Projects

We define a simple database design prob-
lem to illustrate the major steps in this
relational database design methodology.
Let us suppose it is desirable to build a
company-wide database for a large engi-
neering firm that keeps track of all per-
sonnel, their skills and projects assigned,
departments worked in, and personal
computers allocated. Each employee is
given a job title (engineer, technician, sec-
retary, manager). Engineers and techni-
cians work on an average of two projects at
one time, and each project could be head-
quartered at a different location (city). We
assume that analysis of the detailed re-
quirements for data relationships in this
company results in the global-view EER
diagram in Figure 7, which becomes the
focal point for developing the normalized

Computing Surveys, Vol. 18, No. 2, June 1986

208 l T. J. Teorey, D. Yang, and J. P. Fry

relations. Each relationship in Figure 7 is
based on a verifiable assertion about the
actual data in the company. Analysis of
those assertions leads to the transforma-
tion of EER constructs into candidate
relations, as shown in Figures 8-12 and
summarized in Figure 13 (see Section 3).
Attributes are not included in Figures
8-13 for simplicity, but are defined later
in this example.

As an example of view integration, the
generalization of EMPLOYEE over JOB-
TITLE could represent the consolidation
of two views of the database, one based on
EMPLOYEE as the basic unit of personnel
and the other based on the classification of
the employees by job titles and special re-
lationships with those classifications, such
as the allocation of personal computers
(PCs) to engineers.

3. TRANSFORMATION OF THE EER MODEL
TO RELATIONS (STEP 2)

3.1 Transformation Rules

We now look at each EER construct in
more detail to see how each transformation
rule is defined and applied. Our example is
drawn from the company personnel and
project database EER schema, illustrated
in Figure 7 (Section 2.2), which indicates
the transformation of all types of EER
constructs to relations.

We note that the basic transforma-
tions result in three types of relations
[McGee 1974; Martin 1983; Sakai 1983;
Hawryszkiewycz 19841:

(1) Entity relation with the same infor-
mation content as the original entity. This
transformation always occurs for entities
with binary relationships that are many to
many, one to many on the one (parent)
side, or one to one on one side; entities
with unary relationships that are many to
many; and entities with any ternary or
higher degree relationship, generalization
hierarchy, or subset hierarchy.

(2) Entity relation with the embedded
foreign key of the parent entity. This
transformation always occurs with binary
relationships that are one to many for the
entity on the many (child) side and one to

Computing Surveys, Vol. 18, No. 2, June 1986

one for one of the entities, and with a unary
relationship that is one to one or one to
many for each entity.

(3) Relationship relation with the for-
eign keys of all the entities that are thus
related. This transformation always occurs
for relationships that are binary and many
to many, relationships that are unary and
many to many, and all relationships that
are ternary or of a higher degree.

The following rules are set forth for han-
dling null values in these transformations.
Nulls are only allowed for foreign keys of
any optional entity in an entity relation,
but are not allowed for foreign keys of any
mandatory entity in an entity relation.
Nulls are also not allowed for any foreign
key in a relationship relation.

3.1.1 Two Entities, One (Binary) Relationship

The one-to-one relationship between enti-
ties is illustrated in Figure 8a, b, and c.
When both entities are mandatory (Figure
8a), each entity becomes a relation, and the
key of either entity can appear in the other
entity’s relation as a foreign key. One of
the entities in an optional relationship (see
DEPARTMENT in Figure 8b) should con-
tain the foreign key of the other entity in
its transformed relation. The other entity
(EMPLOYEE) could also contain a foreign
key (of DEPARTMENT), with nulls al-
lowed, but would require more storage
space because of the much greater number
of EMPLOYEE entity occurrences than
DEPARTMENT entity occurrences. When
both entities are optional (Figure 8c), either
entity could contain the embedded foreign
key of the other entity, with nulls allowed.

The one-to-many relationship is shown
as either mandatory or optional on the
“many” side without affecting the transfor-
mation. On the “one” side it may be either
mandatory (Figure Bd) or optional (Figure
8e). In all cases the foreign key must appear
on the ‘%nany” side, which represents the
child entity, with nulls allowed for foreign
keys only in the optional “one” case.

The many-to-many relationship, shown
here as totally optional, requires a relation-
ship relation with primary keys of both
entities (Figure 8f). The same transforma-

1 APPRENTICEI

6 SPONSORED
-BY

Every apprentice has one sponsor,
andeverysponsorsponsorsone
apprentice.

Relations:
APPRENTICE(EMP-NO, SPON-EMP-JO)
SPONSOR(SPON-EMP-NO, .: .T

Null SPON-EMP-NO not allowed
in APPRENTICE.

(4

Every department must have a manager.
An employee can be a manager of at
most one department.

DEPARTMENT(DEPT-NO, EMP-NO) ‘--- --
EMPLOYEE(EMP-NO,)

Null EMP-NO not allowed in DEPARTMENT

(b)

Some personal computer (PCs) are
allocated to engineers, but not
necessarily to all engineers.

Relations :
ENGINEER(EMP-NO, p_C-No)
PC(PC-NO,)

Null PC-NO allowed in ENGINEER.

(c)

0 CONTAINS

Every employee works in exactly one
department. Every department could
contain many employees.

Relations :
DEPARTMENTtDEPT-NO,)
EMPLOYEE(EMP-NO, .,_DEE:NC>

Null DEPT-NO not allowed in EMPLOYEE

(4

SECRETARY Q

(ENGINEER)

Each engineer can have at most one
secretary. One secretary could work
for several engineers.

Relations :
ENGINEER(EMP-NO, ,sE_C-EMP-NO) -----
SECRETARYtEMP-NO,)

Null SEC-EMP-NO allowed in ENGINEER

(4

Every professional association could have
many members who are engineers, or no
engineers. Every engineer could belong to
many professional associations, or none.

Relations :
PRF-ASSOC(PA-NO..)
ENGINEERtEMP-NO,)
BELONGS-TO(PA-Nfl EMP-NO)

(f)

Figure 8. Binary relationship transformation rules.

210 l T. J. Teorey, D. Yang, and J. P. Fry

tion applies to either the optional or man-
datory case. Embedded foreign keys are not
possible because of the “many” property in
both directions.

3.1.2 One Entity, One (Mary) Relationship

One entity with a one-to-one relationship
implies some form of entity occurrence
pairing, as specified by the relationship
name, and this must be either completely
optional or completely mandatory. In both
the mandatory case (Figure 9a) and the
optional case (Figure 9b) the pairing entity
key appears as a foreign key in the resulting
relation. In both cases the two key attri-
butes are taken from the same domain but
are given different names to designate their
unique use. The one-to-many relationship
requires a foreign key in the entity relation
for both the optional case (Figure SC), with
nulls allowed, and the mandatory case (Fig-
ure 9d), with nulls not allowed. The many-
to-many relationship is shown as optional
(Figure 9e) and uses a relationship relation;
it could also be defined as mandatory (using
the word “must” instead of “may”) but
having the same transformation as the
optional case.

3.1.3 n Entities, One (n-ary) Relationship

@ > 2)

An n-ary relationship has n + 1 possible
varieties of connectivity: all n sides with
connectivity “one,” n - 1 sides with con-
nectivity “one” and one side with connec-
tivity “many,” n - 2 sides with connectivity
“one” and two sides with “many,” and so
on, until all sides are “many.” The four
possible varieties of a ternary relationship
are shown in Figure 10. All varieties are
transformed by creating a relationship re-
lation containing the primary keys of all n
entities; in each case, however, the meaning
of the keys is different. When all relation-
ships are “one” (Figure lOa), the relation-
ship relation consists of three possible
distinct candidate keys. This represents the
fact that there are three functional depend-
encies (FDs) needed to describe this rela-
tionship. The optional “one” allows null
foreign keys; the mandatory “one” does not.

Computing Surveys, Vol. 18, No. 2, June 1986

When all relationships are “many” (Fig-
ure lob), the relationship relation is all key
unless the relationship has its own attri-
butes. In general the number of entities
with connectivity “one” determines the
lower bound on the number of FDs.

3.1.4 Generalization and Subset Hierarchies

The generalization hierarchy resulting in
disjoint subsets is produced by partition-
ing the generic entity by different values
of a common attribute, for example, JOB-
TITLE in Figure 11. The transformation
of disjoint subset generalization produces
a separate relation for the whole set (the
generic entity) and each of the subsets. The
generic entity relation contains the generic
entity key and all common attributes, in-
cluding the common attribute used for par-
titioning. This, of course, assumes that
such an attribute for partitioning actually
exists. When the attribute does not exist,
it must be created.

Each subset relation contains the generic
entity key and only attributes specific to
that subset. Update integrity is maintained
by requiring all insertions and deletions to
occur in both the set (generic entity) rela-
tion and relevant subset relation. If the
change is to the key, then one subset, as
well as the set relation, must be updated. A
change to a nonkey attribute affects either
the set or one subset relation.

Overlapping subsets are produced by par-
titioning the generic entity by values of
different attributes (Figure 12). The trans-
formation of this construct produces sepa-
rate relations for the generic entity and
each of the subset entities. The key of each
relation is the key of the generic entity, and
whereas the generic entity relation contains
only common attributes, the subset rela-
tions contain attributes specific to that sub-
set entity. Thus the transformation rules
for the disjoint and overlapping subsets are
the same.

The integrity rules between these two
cases are different, however. With overlap-
ping subsets, deletion from the set (generic
entity) relation cascades to anywhere from
none to all of the subsets. Also, before
insertion into a subset relation, it is

APPRENTICE

w
Logical Design Methodology for Relational Databases l 211

Every apprentice has exactly one of the
other apprentice as a partner in a Project

Relations :
APPRENTICE(EMP-NO, ~-E~P-~O)

PARTNER-OF

EMPLOYEE

v
MARRIED-TO

64

An employee could have one of the other
employee as his or her spouse.

Relations :
EMPLOYEEtEMP-NO, S_P-EE-NO) -

Null SP-EMP-NO allowed in EMPLOYEE

(b)

GROUP-LEADER-OF

Engineers are divided into groups for
certain projects. Each group has a leader

Relation :
ENGINEER(EMP-NO, .,_ENG=E_M_P=N@

Null ENG-EMP-NO allowed in ENGINEER.
(c)

w
TUTORS

Every apprentice tutors one of the other
apprentices, One may be tutored by several
other apprentices.

Relation :
APPRENTICE(FMP-NO, ., _AP_P:E_M!3Q)

Null APP-EMP-NO not allowed in APPRENTICE.

(4

PROJECT

6
Each project may require special
communication with many other projects.

Relations :

SPEC-COMM-WITH

PROJECT(PROJ-NO, .)
SPEC-COMM-WITH(PROJ-NAME, RELA-PROJ-NAME)

(4

Figure 9. Unary relationship transformation rules.

Computing Surveys, Vol. 18, No. 2, June 1986

(ENGINEER 1

An engineer will use one casebook for a given
project. Different engineers use different
casebooks for the same project. No engineer
will use the same casebook for different
projects, but different engineers can use the
same casebook for different projects,

USE-CASEBOOK

PROJECT CASEBOOK

USE-CASEBOOK

Relations :
ENGINEER(ENP-NO, 1
PROJECT(PROJ-NAME, 1
CASEBOOK(BOOK-NO, 1
USE-CASEBOOK(ENP-NO, PROJ-NAME, BOOK-NO)

FDs : ENP-NO, PROJ-NAME ---> BOOK-NO
BOOK-NO, PROJ-NAME ---> ENP-NO
ENP-NO, BOOK-NO ---> PROJ-NAME

(a)

ENGINEER

I

Employees use a wide range.of different
skills on each project they are associated
with.

lelations :
.NPLOYEE(FNP-NO, 1
SKILLCSKILL-NO, 1
PROJECT(PROJ-NAME,)

/ SKILL-USEDVMP-NO. SKILL-NO. PROJ-NAME)

FDs : ENP-NO, SKILL-NO, PROJ-NO ---> @I
(all key)

SKILL-USED

(b)

Figure 10. Ternary relationship transformation rules.

EMPLOYEE i-1
Employees are assigned to one or more
projects, but can only be assigned to at most
one project at a given location.

Relations :
EMPLOYEE(EMP-NO, 1
PROJECT(PROJ-NAMF,)
LOCATION(LOC-NAME, .I
ASSIGNED-TO(EMP-NO. LOC-NAME,PROJ-NAME)

FDs : EMP-NO. LOC-NAME ---> PROJ-NAME

ASSIGNED-TO

APPRENTICE w
SPONSORS A

Apprentices work on projects under instructions of
sponsors. No sponsor can instruct any given
apprentice on more than one project. No apprentice
can work on any given project under the instructlon
of more than one sponsor.

Relations :
APPRENTICE(FMP-NO,)
SPONSOR(EMP-NO,)
PROJECT(PROJ-NAME,)
SPONSORS(SPON-EMP-NO, APP-EMP-NO, PROJ-NAME)

FDs : APP-EMP-NO,SPON-EMP-NO ---> PROJ-NAME
APP-EMP-NO,PROJ-NAME ---> SPON-EMP-NO

SPONSORS

APP-EMP-NO 1 SPON-EMP-NO PROJ-NAME I
101
101
207
207
512
512
763

3
9
9
4
4
9
6

(4

BETA
EPSILON
ALPHA
DELTA
GAMMA
ALPHA
BETA

Figure 10. (continued)

214 . T. J. Teorey, D. Yang, and J. P. Fry

Different types of employees are
partitioned by values of a common
attribute JOB-TITLE.

JOE-TITLE

Relations :
EMPLOYEE(EMP-NO, JOB-TITLE,

common attributes)
EMP.MANAGER(EMP-NO,

specific attributes)
EMP.SECRETARY(EMP-NO,

specific attributes)

MANAGER SECRETARY TECHNICIAN EMP .TECHNICIAN(EMP-NO,
specific attributes)

Figure 11. Generalization hierarchy.

Employees with special situations
are shown as overlapping subsets
based on partitions on values of
different attributes.

Relations :
EMPLOYEE(EMP-NO,

common attr-lbutes)
EMP.STUDENT(EMP-NO,

specific attributes)
EMP.POLITICIAN(EMP-NO<

specific attributes)

Figure 12. Subset hierarchy.

necessary to check whether a tuple with the to establish their uniqueness. Otherwise
same key value exists in the set relation. A they have the same transformation prop-
change to a nonkey attribute affects the set erties as strong entities, and no special rules
or one of the subsets. A change to a key are needed. When a weak entity is already
affects the set and anywhere from none to derived from two or more strong entities in
all of the subsets. the ER diagram, it can be directly trans-

formed into an entity relation without

3.1.5 Multiple Relationships further change.

Multiple relationships among n entities are
always considered to be completely inde-
pendent. Each one-to-one or one-to-many
relationship results in entity relations that
are either equivalent or that differ only in
the addition of a foreign key and thus can
be merged into a single entity relation con-
taining all foreign keys. Many-to-many re-
lationships result in relationship relations
that are unique and cannot be merged.

3.1.6 Existence-Dependent (Weak) Entities

Weak entities differ from (strong) entities
only in the need for keys from other entities

3.1.7 Aggregation

The aggregation abstraction can occur
among entities or relate attributes to a sin-
gle entity [Smith and Smith 19771. Aggre-
gation among entities, defined by the
PART-OF relationship, is a special case
of the collection of one-to-one or one-to-
many binary relationships and can be
transformed as defined in Section 3.1.1.
For example, BICYCLE can represent the
whole entity, while SEAT, PEDALS,
HANDLEBARS, etc., represent its parts,
each part being an entity with its own
distinct attributes.

Computing Surveys, Vol. 18, No. 2, June 1986

Logical Design Methodology for Relational Databases 9 215

3.2 Design Step 2 Details

The following steps summarize the basic
transformation rules given in Section 3.1.

Step 2.1. Transform each entity into a
relation containing the key and nonkey at-
tributes of the entity. If there is a many-
to-one relationship between an entity and
another (or same type) entity, add the key
of the entity on the “one” side (the parent)
into the relation. If there is a one-to-one
relationship between an entity and another
(or same type) entity, then add the key of
one of the entities into the relation for the
other entity. The addition of a foreign key
due to a one-to-one relationship can be
made in either direction. One strategy is to
maintain the most natural parent-child re-
lationship by putting the parent key into
the child relation. Another strategy is based
on efficiency: Add the foreign key to the
relation with fewer tuples.

Every entity in a generalization hier-
archy or subset hierarchy is transformed
into a relation. Each of these relations con-
tains the key of the generic entity. The
generic entity relation also contains nonkey
values that are common to all the entities
so related, and the other relations contain
nonkey values specific to each subtype en-
tity. Another option is to include all sub-
type attributes in the supertype (generic)
entity and allow null values.

Step 2.2. Transform every many-to-
many binary (or unary) relationship into a
relationship relation with the keys of the
entities and the attributes of the relation-
ship.

Step 2.3. Transform every ternary (or
higher n-ary) relationship into a rela-
tionship relation using the rules given in
Figure 10.

Entity normalization is normally pre-
served under these transformations. The
introduction of a foreign key into an entity
relation will not result in additional func-
tional dependencies in a normalized rela-
tion if the EER diagram is correct, that is,
if all attributes are associated with the
proper entities. If the EER diagram is not
correct, however, additional FDs could oc-
cur, causing some denormalization. After

such a transformation, normalization could
easily be reestablished using any of the
well-known methods [Bernstein 1976;
Fagin 1977; Ullman 1980; Lien 1981;
Zaniolo and Melkanoff 1981; Maier 1983;
Martin 1983; Yao 19851.

3.3 Example

The transformation of EER diagrams to
candidate relations is applied to our exam-
ple database of company personnel and
projects, as shown in Figures 7-12, and
summarized in Figure 13. A summary of
the transformation of all entities and
their relationships to candidate relations
(Steps 2.1-2.3) is illustrated in Table 1.
Primary keys are italicized. We include
some of the most typical nonkey attributes
we assume have been obtained from the
requirements analysis.

4. NORMALIZATION OF RELATIONS
(STEP 3)

Normalization of candidate relations is ac-
complished by analyzing the FDs and
MVDs associated with those relations.
Further analysis is then needed to elimi-
nate data redundancies in the normalized
candidate relations.

4.1 Design Step 3 Details

Step 3.1. Derive the primary FDs from
the EER diagram.

Primary FDs represent the dependencies
among data elements that are keys of en-
tities, that is, the interentity dependencies.
Secondary FDs, on the other hand, repre-
sent dependencies among data elements
that comprise a single entity, that is, the
intraentity dependencies (see Step 3.2).
Table 2 shows the type of primary FDs
derivable from each type of EER construct
defined in Section 1.3 and consistent with
the derivable candidate relations in Figures
8-12. In fact, each primary FD is associated
with exactly one candidate relation that
represents a relationship among entities in
the EER diagram.

On the basis of the transformations in
Table 2 we summarize the basic types of

Computing Surveys, Vol. 18, No. 2, June 1986

216 l T. J. Teorey, D. Yang, and J. P. Fry

SKILL DEPARTMENT DIVISION

li*ulil) (,,,...I /OIPT-NOI

SKILL-USED

PROJECT EMPLOYEE

ASSIGNED-TO

LOCATION

EMP.MANAGER EllP.ENGINEER EMP.TECHNICIAN EMPSECRETARY

BELONGS-TO

PA-NO EMP-NO

PRF-ASSOC PC

Figure 13. Company personnel and project database candidate relations.

Table 1. Transformation of Entities and Relationships to Relations (Example)

Step 2.1. Entities to relations

1. DIVISION(DZV-NO, . . . , HEAD-EMP-NO)
2. DEPARTMENT(DEZ’T-NO, DEPT-NAME, ROOM-NO, PHONE-NO,. . . , DIV-NO,

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

MANAG-EMP-NO)
EMPLOYEE(EMP-NO, EMP-NAME, JOB-TITLE,. . . , DEPT-NO, SPOUSE-EMP-NO, PC-NO)
SKILL(SKILL-NO, . . .)
PROJECT(PROJ-NAME, . . .)
LOCATION(LOC-NAME, . . .)
EMP.MANAGER(EMP-NO, . . .)
EMP.ENGINEER(EMP-NO, , . .)
EMP.TECHNICIAN(EMZ=-NO, . . .)
EMP.SECRETARY(EMZ’-NO, .)
PC(PC-NO, .)
PRF-ASSOC(PA-NO, . . .)

Step 2.2. Binary or unary relationships to relations

13. BELONGS-TO(PA-NO, EMP-NO)

Step 2.3. Ternary (or any n-ary) relationships to relations

14. SKILL-USED(EMP-NO, SKILL-NO, PROJ-NAME)
15. ASSIGNED-TO(EMP-NO, LOC-NAME, PROJ-NAME)

Computing Surveys, Vol. 18, No. 2, June 1986

Logical Design Methodology for Relational Databases

Table 2. Primary FDs Derivable from EER Relationship Constructs

Degree Connectivitv Primarv FD

l 217

Unary

Ternary

Binary 1 to 1

1 to l(opt)

l(opt) to l(opt)

1 to many
l(opt) to many
Many to many

1 to 1

l(opt) to l(opt)

l(opt) to many
1 to many
Many to many

1 to 1 to 1

1 to 1 to many

1 to many to many
Many to many to many

Generalization hierarchy
Subset hierarchy

Keycone A) + key(one B)
Key (one B) + keytone A)
Key(one A) + keytone B)
Keytone B) --) keycone A)
Keytone A) --) keytone B)
Key(one B) + keytone A)
Key(many) + keytone)
Key(many) -+ keytone)
Composite key + 0

Key(one A) + key(one B)
Keytone B) --) keyfone A)
Keytone A) + keytone B)
Keycone B) + key(one A)
Key(many + key(one)
Key(many) + key(one)
Composite key + 0

Key(A), key(B) ---) key(C)
Key(A), key(C) -+ key(B)
Key(B), key(C) + key(A)
Keytone A), key(many) + key(one B)
Keycone B), key(many) + key(one A)
Keycmany A), key(many B) + key(one)
Composite key + 0
(Secondary FD only)
(Secondary FD only)

primary FDs derivable from EER relation-
ship constructs:

(1) key (many side) +
key (one side);

(2) key (one side A) +
key (one side B);

(3) key (many side A),
key (many side B) -+
key (one side);

(4) key (one side A),
key (many side) +
key (one side B);

(5) key (one side A),
key (one side B) +
key (one side C);

(6) composite key + 0.

Types (1) and (2) represent an embedded
foreign key functionally determined by the
primary key in a unary or binary relation-
ship; types (3)~(5) apply only to ternary
relationships; and type (6) applies to all
degrees of relationships in which the rela-
tion is represented as all key. Functional
dependencies for higher degree n-ary rela-
tionships can be obtained by extending
(3)-(6).

Step 3.2 Examine all the candidate re-
lations for MVDs and secondary FDs.

Each candidate relation is examined to
determine what dependencies exist among
primary key, foreign key, and nonkey attri-
butes. If the EER constructs do not include
nonkey attributes, the data requirements
specification (or data dictionary) must be
consulted.

Step 3.3. Normalize all candidate rela-
tions to the highest degree desired, elimi-
nating any redundancies that occur in the
normalized relations.

Each candidate relation now has possibly
some primary FDs, secondary FDs, and
MVDs uniquely associated with it. These
dependencies determine the current degree
of normalization of the relation. Any of the
well-known techniques for increasing the
degree of normalization can now be applied
to each relation, with the desired degree as
stated in the requirements specification.

The elimination of data redundancy
tends to minimize storage space and update
cost without sacrificing data integrity. In-
tegrity is maintained by constraining the

Computing Surveys, Vol. 18, No. 2, June 1986

218 l T. J. Teorey, D. Yang, and J. P. Fry

new relation schema to include all data
dependencies existing in the candidate nor-
malized relation schema. A relation B that
is subsumed by another relation A can be
potentially eliminated. Relation B is sub-
sumed by another relation A when all the
attributes in B are also contained in A and
all data dependencies in B also occur in A.
As a trivial case, any relation containing
only a composite key and no nonkey attri-
butes is automatically subsumed by any
other relation containing the same key at-
tributes, because the composite key is the
weakest form of data dependency. If, how-
ever, relations A and B represent the ge-
neric and specific cases, respectively, of
entities defined by the generalization (or
subset) hierarchy abstraction, and A sub-
sumes B because B has no additional spe-
cific attributes, the designer must collect
and analyze additional information to de-
cide whether or not to eliminate B.

Table 3. Functional Dependencies Derived
from the EER Diaaram IExamoleI

1. DIV-NO + HEAD-EMP-NO
2. HEAD-EMP-NO -+ DIV-NO
3. DEPT-NO + DIV-NO
4. DEPT-NO + MANAG-EMP-NO
5. MANAG-EMP-NO + DEPT-NO
6. EMP-NO + DEPT-NO
7. EMP-NO + JOB-TITLE
8. EMP-NO + SPOUSE-EMP-NO
9. SPOUSE-EMP-NO + EMP-NO

10. EMP-NO + PC-NO
11. PC-NO + EMP-NO
12. EMP-NO, SKILL-NO, PROJ-NAME + 0
13. EMP-NO, LOC-NAME + PROJ-NAME
14. EMP-NO, PA-NO --+ 0

Table 4. Secondary Functional
Dependencies (Example)

1. DEPT-NO + DEPT-NAME
2. DEPT-NO -+ ROOM-NO
3. ROOM-NO + PHONE-NO
4. EMP-NO + EMP-NAME

A relation can also be subsumed by the
construction of a join of two other relations
(a “join” relation). When this occurs, the
elimination of a subsumed relation may
result in the loss of retrieval efficiency,
although storage and update costs will tend
to be decreased. This trade-off must be
further analyzed in physical design with
regard to processing requirements to deter-
mine whether elimination of the subsumed
relation is reasonable.

PHONE-NO) and deleting PHONE-NO
from the DEPARTMENT relation.

4.2 Example

In Step 3.1 we obtain the primary FDs by
applying the rules in Table 2 to each rela-
tionship in the EER diagram in Figure 7.
The results are shown in Table 3.

In Step 3.2 we determine the secondary
FDs and MVDs from the EER diagram or
requirements specification. Let us assume
that the dependencies given in Table 4 are
derived from the requirements specifica-
tion.

This example contains no data redun-
dancies that can be eliminated without los-
ing some degree of normalization. In Table
1 neither SKILL-USED nor ASSIGNED-
TO relations can be subsumed by joins of
other relations. SKILL-USED has been
defined as 4NF and cannot be lossless de-
composed. ASSIGNED-TO contains the
functional dependency EMP-NO, LOC-
NAME + PROJ-NAME, which cannot be
reconstructed with any of the other rela-
tions. Thus the final normalized relations
are now completely defined (Table 5). In
general, we observe that the candidate re-
lations are good estimators of the final
schema and normally require very little
refinement.

Normalization of the candidate relations
is accomplished in Step 3.3. In Table 1,
only the DEPARTMENT relation is not at
least 3NF due to the transitive functional
dependency DEPT-NO + ROOM-NO +
PHONE-NO. This is easily resolved by
creating the relation ROOM(ROOM-NO,

5. REFINEMENTS TO THE LOGICAL
DESIGN PROCESS

5.1 Addition of More Semantics
to Conceptual Modeling

Conceptual modeling of databases is by no
means confined to the ER approach. A
number of other schools of thought have
received attention and some perhaps offer

Computing Surveys, Vol. 18, No. 2, June 1986

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

Logical Design Methodology for Relational Databases l 219

Table 5. Normalized Relations (Example)

DIVISION(DZV-NO. HEAD-EMP-NO. . . .)
DEPARTMENT(Dk”-NO, DEPT-NAME, ROOM-NO,. . , DIV-NO, MANAG-EMP-NO)
EMPLOYEE(EMP-NO, EMP-NAME, JOB-TITLE,. . . , DEPT-NO, SPOUSE-EMP-NO, PC-NO)
SKILL(SKILL-NO, . .)
PROJECT(PROJ-NAME, . . .)
LOCATION(LOC-NAME, .)
EMP.MANAGER(EMP-NO, . . .)
EMP.ENGINEER(EMP-NO, . . .)
EMP.TECHNICIAN(EMP-NO, . . .)
EMP.SECRETARY(EMP-NO, . . .)
PC(PC-NO, . . .)
PRF-ASSOC(PA-NO, . . .)
BELONGS-TO(PA-NO, EMP-NO)
SKILL-USED(EMP-NO. SKILL-NO. PROJ-NAME)
ASSIGNED-Tb(EMP-hi0, LOC-NAME, PROJ-NAME)
ROOM(ROOM-NO, PHONE-NO)

a richer semantic base than the ER model.
The application of the semantic network
model to conceptual schema design was
shown by Bachman [1977] and McLeod
and King [1979], and the binary relation-
ship model concepts were studied by Abrial
[1974], Bracchi et al. [1976], Nijssen et al.
[1979], IS0 [1982], and Kent [1984]. The
significant semantic network concepts have
been incorporated into the EER model de-
scribed here, but the binary relationship
model incorporates considerably more se-
mantics than either the ER or EER models
[ISO 19821. Other extensions to the original
ER model, such as the inclusion of the time
dimension, have also been described else-
where [Bubenko 1977; Clifford and Warren
1983; Ferg 19851.

The binary relationship approach is the
basis of the information analysis method
called NIAM [Verheijen and Van Bekkum
19821. This approach defines a lexical ob-
ject type, nonlexical object type, and role;
these roughly correspond to the attribute,
entity, and relationship concepts in the ER
model. However, the binary relationship
model tries to avoid making entity-attri-
bute decisions as early in the conceptual
modeling process as with the ER model.
One difference between the models is that
role names in the binary relationship model
are directional between two lexical object
types or between a lexical and nonlexical
object type. The binary relationship model
also includes the EER concepts of subtyp-
ing (generalization), relationship connec-

tivity (cardinality), and membership class
(mandatory or optional existence).

One of the most significant advantages
of the binary relationship model is the in-
clusion of constraints on role occurrences:
identifier, subset, equality, uniqueness, and
disjoint. Identifiers are included in the ER
model, but not all the variations explicitly
defined in the binary relationship model.
The disjoint constraint can be modeled by
the generalization and subset hierarchies in
EER, but the subset, equality, and unique-
ness contraints have no equivalent in EER.
Further work is needed to investigate the
potential of these constraints as additional
extensions to the ER model and whether
semantic equivalence can be achieved be-
tween these (and other) approaches.

5.2 Relation Refinement for Usage Efficiency

Database design techniques for network
and hierarchical systems often make use of
processing requirements to refine the logi-
cal schema before the physical design phase
if there are obvious large efficiency gains to
be made [Teorey and Fry 1982; Bertaina et
al. 1983; Hawryszkiewycz 19841. The justi-
fication for this approach is that once phys-
ical design begins, the logical schema is
considered to be fixed and is thus a con-
straint on efficiency. The database designer
would obviously like to remove this inflex-
ibility if possible. A similar technique would
be useful in relational database design if it
were to result in more efficient database

Computing Surveys, Vol. 18, No. 2, June 1986

220 l T. J. Teorey, D. Yang, and J. P. Fry

schemas without loss of data integrity and
were relatively easy to implement.

This approach is not considered part of
logical design by many, whereas others de-
fine it as a separate step between logical
and physical design. We take the latter view
and think of it as a prephysical design step,
definitely not part of conceptual design, but
potentially an extension of logical design
defined as broader in scope than conceptual
design. Regardless of where this step be-
longs, its goal is to refine a relational
schema. Its algorithm is based on a process-
oriented or usage view of the data to in-
crease the database efficiency for current
processing requirements and yet retain all
the information content of the functional
dependency or natural view of data. Thus
the database would still be an accurate
representation of real-world relationships,
more efficient, and potentially more adapt-
able to future processing requirements. The
results of this algorithm could be used to
specify alternative logical structures to be
considered during physical design, and thus
provide the physical designers with more
feasible solutions to choose from. More ef-
ficient databases are therefore likely to be
defined.

One approach is to assume that all attri-
butes are initially assigned to relations on
the basis of functional dependencies, and
that the relations are at least 3NF. Effi-
ciency for the current query requirements
could increase by redundantly adding attri-
butes, used together in a query, to an exist-
ing relation so that all attributes needed for
that query would reside in a new relation,
called a join relation. This is known as
materializing the join [Schkolnick and
Sorenson 19801. Query processing time
might be greatly reduced because fewer
joins would be needed. However, the side
effects of this redundancy include an
increase in storage space required, an in-
crease in the update and referential integ-
rity cost, potential denormalization and
loss of integrity, and program transforma-
tions for all applications containing joins
that are materialized. Further research is
needed to demonstrate the practicality of
this step.

Computing Surveys, Vol. 18, No. 2, June 1986

6. CONCLUSION

We have shown that a practical step-by-
step methodology for relational database
design can be derived using a variety of
extensions to the ER conceptual model.
The methodology has been illustrated with
a simple database design problem, showing
each design step in detail. The strategy of
first modeling the natural data relation-
ships and later refining the design for nor-
malized relations was emphasized as clearly
separable phases. The methodology pro-
duces nearly reproducible designs from a
given requirements specification and can
be easily implemented as an interactive
database design tool.

APPENDIX: SUMMARY OF LOGICAL
RELATIONAL DATABASE
DESIGN STEPS

1. Extended ER (EER) modeling of re-
quirements
1.1 Identify entities and attach attri-

butes to each.
1.2 Identify generalization and subset

hierarchies.
1.3 Define relationships.
1.4 Integrate multiple views of entities,

attributes, and relationships.

2. Transformation of the EER model to
relations
2.1 Transform every entity into one

relation with the key and nonkey
attributes of the entity.

2.2 Transform every many-to-many bi-
nary (or unary) relationship into a
relationship relation.

2.3 Transform every ternary (or higher
n-ary) relationship into a relation-
ship relation.

3. Normalization of relations
3.1 Derive the primary FDs from the

EER diagram.
3.2 Examine all the candidate relations

for MVDs and secondary FDs.
3.3 Normalize all candidate relations to

the highest degree desired, eliminat-
ing any redundancies that occur in
the normalized relations.

Logical Design Methodology for Relational Databases l 221

ACKNOWLEDGMENTS CODD, E. 1970. A relational model for large shared
data banks. Commun. ACM 13, 6 (June),

The authors wish to thank Emerson Hevia and the 377-387.
referees for their critique of the manuscript. CODD, E. 1974. Recent investigations into relational

data base systems. In Proceedings of the ZFZP
REFERENCES Congress. North-Holland, Amsterdam.

ABRIAL, J. 1974. Data semantics. In Data Base Man-
agement, Proceedings of the ZFZP TC2 Conference
(Cargese, Corsica). North-Holland, Amsterdam.

ATZENI, P., BATINI, C., LENZERINI, M., AND
VILLANELLI, F. 1981. INCOD: A system for
conceptual design of data and transactions in the
entity-relationship model. In Entity-Relationship
Approach to Information Modeling and Analysis.
ER Institute, Saugus, Calif.

BACHMAN, C. 1977. The role concept in data models.
In Proceedings of the 3rd International Conference
on Very Z&ge’Data Bases (Tokyo, Oct. 6-8).
IEEE, New York, pp. 464-476.

BEERI, C., BERNSTEIN, P., AND GOODMAN, N.
1978. A sophisticate’s introduction to database
normalization theory. In Proceedings of the 4th
International Conference on Very Large Data
Bases (Berlin, Sept. 13-15). IEEE, New York,
pp. 113-124.

BERNSTEIN, P. 1976. Synthesizing 3NF Relations
from functional dependencies. ACM Trans.
Database Syst. I, 4 (Dec.), 272-298.

BERTAINA, P., DILEVA, A., AND GIOLITO, P. 1983.
Logical design in CODASYL and relational
environments. In MethodoZogy and Tools for
Data Base Design, S. Ceri, Ed. North-Holland,
Amsterdam, pp. 85-117.

BRACCHI, G., PAOLINI, P., AND PELAGAT~I, G.
1976. Binary logical associations in data mo-
delling. In Modelling in Data Base Management
Systems, Proceedings of the ZFZP TC2 Conference
(Freudenstadt, West Germany). North-Holland,
Amsterdam.

BRIAND, H., HABRIAS, H., HUE, J., AND SIMON, Y.
1985. Expert system for translating an E-R dia-
gram into databases. In Proceedings of the 4th
international Conference on EntityIRekionship
Approach (Chicago). IEEE Computer Society
Press, Silver Spring, Md., pp. 199-206.

BUBENKO, J. 1977. The temporal dimension in in-
formation modelling. In Architecture and Models
in Data Base Management Systems, G. Nijssen,
Ed. North-Holland, Amsterdam.

CHEN, P. 1976. The entity-relationship model-
Toward a unified view of data. ACM Trans.
Database Syst. 1, 1 (Mar.), 9-36.

CHUNG, I., NAKAIUURA, F., AND CHEN, P. 1981. A
decomposition of relations using the entity-
relationship approach. In Entity-Relationship
Approach to Information Modeling and Analysis,
P. Chen, Ed. North-Holland, Amsterdam.

DATE, C. 1984. A Guide to DB2. Addison-Wesley,
Reading, Mass.

DATE, C. 1985. An Introduction to Database Systems,
vol. 1,4th ed. Addison-Wesley, Reading, Mass.

ELMASRI, R. AND WIEDERHOLD, G. 1979. Data
model integration using the structural model. In
Proceedings of ACM SZGMOD International
Conference on Management of Data (Boston,
May 30June 1). ACM, New York, pp. 319-326.

ELMASRI, R., HEVNER, A., AND WEELDREYER, J.
1985. The category concept: An extension to the
entity-relationship model. Data Knowl. Eng. 1, 1,
75-116.

FAGIN, R. 1977. Multivalued dependencies and a new
normal form for relational databases. ACM
Trans. Database Syst. 2,3 (Sept.), 262-278.

FERG, S. 1985. Modeling the time dimension in
an entity-relationship diagram. In Proceedings
of the 4th Znternationnl Conference on the
Entity-Relationship Approach (Chicago). IEEE
Computer Society Press, Silver Spring, Md.,
pp. 280-286.

HAWRYSZKIEWYCZ, I. 1984. Database Analysis and
Design. SRA, Chicago.

HOWE, D. 1983. Data Analysis and Data Base
Design. Arnold, London.

IS0 1982. Concepts and terminology for the concep-
tual schema and the information base. J. van
Griethuysen, Ed. ISO/TC97/SCS/WG3-N695
Report. ANSI, New York, 180 pp.

JAJODIA, S., AND NC, P. 1983. On the representation
of relational structures by entitycrelationship
Diagrams. In The Entity-Relationship Approach
to Software Engineering; G. C. Davis-et al., Eds.
Elsevier North-Holland, New York, pp. 223-248.

JAJODIA, S., AND NC, P. 1984. Translation of entity-
relationship diagrams into relational structures.
J. Syst. Softw. 4, 123-133.

KENT, W. 1981. Consequences of assuming a univer-
sal relation. ACM Trans. Database Syst. 6, 4
(Dec.), 539-556.

KENT, W. 1984. Fact-based data analysis and design.
J. Syst. Softw. 4,99-121.

LENZERINI, M., AND SANTUCCI, G. 1983. Cardinality
constraints in the entity-relationship model. In
The Entity-Relationship Approach to Software
Engineering, G. C. Davis et al., Eds. Elsevier
North-Holland, New York, pp. 529-549.

LIEN, Y. 1981. Hierarchical schemata for relational
databases. ACM Trans. Database Syst. 6, 1
(Mar.), 48-69.

CLIFFORD, J., AND WARREN, D. 1983. Formal se- LING, T. 1985. A normal form for entity-relationship
mantics for time in databases. ACM Trans. diagrams. In Proceedings of the 4th International
Database Syst. 8, 2 (June), 214-254. Conference on the Entity-Relationship Approach

Computing Surveys, Vol. 18, No. 2, June 1986

222 l T. J. Teorey, D. Yang, and J. P. Fry

(Chicago). IEEE Computer Society Press, Silver
Spring, Md., pp. 24-35.

MAIER, D. 1983. Theory of Relational Databases.
Computer Science Press, Rockville, Md.

MARTIN, J. 1982. Strategic Data-Planning Method-
ologies. Prentice-Hall, Englewood Cliffs, N.J.

MARTIN, J. 1983. Managing the Data-Base Environ-
ment. Prentice-Hall, Englewood Cliffs, N.J.

MCGEE, W. 1974. A contribution to the study of data
equivalence. In Data Base Management, J. W.
Klimbie and K. L. Koffeman, Eds. North-
Holland, Amsterdam, pp. 123-148.

MCLEOD, D., AND KING, R. 1979. Applying a
semantic database model. In Proceedings of
the 1st International Conference on the Entity-
Relationship Approach to Systems Analysis and
Design (Los Angeles). North-Holland, Amster-
dam, pp. 193-210.

NAVATHE, S., AND CHENG, A. 1983. A methodology
for database schema mapping from extended en-
tity relationship models into the hierarchical
model. In The Entity-Relationship Approach to
Software Engineering, G. C. Davis et al., Eds.
Elsevier North-Holland, New York.

NAVATHE, S., AND GADGIL, S. 1982. A methodol-
ogy for view integration in logical database de-
sign. In Proceedings of the 8th International
Conference on Very Large Data Bases (Mexico
City). VLDB Endowment, Saratoga, Calif.,
pp. 142-152.

NAVATHE, S., SASHIDHAR, T., AND ELMASRI, R.
1984. Relationship merging in schema integra-
tion. In Proceedings of the 10th International
Conference on Very Large Data Bases (Singa-
pore). VLDB Endowment, Saratoga, Calif.,
pp. 78-90.

NAVATHE, S., ELMASRI, R., AND LARSON, J. 1986.
Integrating user views in database design. IEEE
Computer 19, 1, 50-62.

NIJSSEN, G., VAN ASSCHE, F., AND SNIJDERS, J.
1979. End user tools for information systems
requirement definition. In Formal Models and
Practical Tools for Information System Design,
H. Schneider, Ed. North-Holland, Amsterdam.

OREN, 0. 1985. Integrity constraints in the con-
ceptual schema language SYSDOC. In Proceed-
ings of the 4th International Conference on the
Entity-Relationship Approach (Chicago). IEEE
Computer Society Press, Silver Spring, Md.,
pp. 288-294.

REINER, D., BRODIE, M., BROWN, G., FRIEDELL, M.,
KRAMLICH, D., LEHMAN, J., AND ROSENTHAL,
A. 1985. The database design and evaluation
workbench (DDEW) project at CCA. Database
Eng. 7,4,10-15.

SAKAI, H. 1983. Entity-relationship approach to log-
ical database design. In Entity-Relationship Ap-
proach to Software Engineering, C. G. Davis,
S. Jajodia, P. A. Ng, and R. T. Yeh, Eds. Elsevier
North-Holland, New York, pp. 155-187.

SCHEUERMANN, P., SCHEFFNER, G., AND WEBER, H.
1980. Abstraction capabilities and invariant
properties modelling within the entity-relation-
ship approach. In Entity-Relationship Approach
to Systems Analysis and Design, P. Cben, Ed.
North-Holland, Amsterdam, pp. 121-140.

SCHKOLNICK, M., AND SORENSON, P. 1980.
DENORMALIZATION: A performance oriented
database design technique. In Proceedings of
the AZCA 1980 Congress (Bologna, Italy). AICA,
Brussels, pp. 363-377.

SMITH, H. 1985. Database design: Composing fully
normalized tables from a rigorous dependency
diagram. Commun. ACM 28,8 (Aug.), 826-838.

SMITH, J., AND SMITH, D. 1977. Database abstrac-
tions: Aggregation and generalization. ACM
Trans. Database Syst. 2,2 (June), 105-133.

SWEET, F. 1985. Process-driven data design. Data-
mation 31,16,84-85, first of a series of 14 articles.

TEOREY, T., AND FRY, J. 1982. Design of Database
Structures. Prentice-Hall, Englewood Cliffs, N.J.

ULLMAN, J. 1980. Principles of Database Systems.
Computer Science Press, Potomac, Md.

VERHEIJEN, G., AND VAN BEKKUM, J. 1982. NIAM:
An information analysis method. In Information
Systems Design Me0wdolagies, Olle, Sol, and
Verrvn-Stuart. Eds. North-Holland, Amsterdam,
pp. 537-590.

WEBRE, N. 1981. An Extended E-R model and its
use on a defense project. In Proceedings of the
2nd International Conference on the Entity-
Relationship Approach, (Washington, D.C.).
North-Holland, Amsterdam, pp. 175-194.

WONG, E., AND KATZ, R. 1980. Logical design and
schema conversion for relational and DBTG
databases. In Entity-Relationship Approach to
Systems Analysis and Design, P. Chen, Ed. North-
Holland, Amsterdam, pp. 311-322.

YANG, D., TEOREY, T., AND FRY, J. 1985. A practical
approach to transforming extended ER diagrams
into the relational model. Computing Research
Laboratory CRL-TR-6-85, Electrical Engineer-
ing and Computer Science Dept., Univ., of
Michigan, Ann Arbor.

YAO, S. 1985. Principles of Database Design: Vol. 1,
Logical Organizations. Prentice-Hall, Englewood
Cliffs, N.J.

ZANIOLO, C., AND MELKANOFF, M. 1981. On the
design of relational database schemas. ACM
Trans. Database Syst. 6, 1 (Mar.), l-47.

Received January 1986; revised May 1986; final revision accepted September 1986.

Computing Surveys, Vol. 18, No. 2, June 1986

