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ABSTRACT 
Data-driven array architectures seem to be important alternatives 
for coarse-grained reconfigurable computing platforms. Their use 
has provided performance improvements over microprocessors 
and shorter programming cycles than FPGA-based platforms. As 
with other architectures, in data-driven architectures loop 
pipelining plays an important role to improve performance. 
Usually this kind of pipelining can be achieved using the dataflow 
software pipelining technique or other software pipelining 
approaches. Although performance improvements are achieved, 
those techniques heavily depend on the insertion of pipelining 
stages and thus require complex balancing efforts. Furthermore, 
those techniques statically define the pipelining and do not take 
fully advantage of the dynamic scheduling attainable by the data-
driven concept. This paper presents a novel scheme to pipeline 
loops in data-driven architectures, orchestrated by a handshaking 
protocol. Using the new approach, self loop pipelining is naturally 
achieved. The scheme is based on duplicating cyclic hardware 
structures, in order they are autonomously executed, with 
synchronization being achieved by the data flow. It can be applied 
to nested loops, requires less aggressive pipeline balancing efforts 
than usual software pipelining techniques, and innermost loops 
with conditional structures can be pipelined without conservative 
pipelining implementations.  

We show results of using the proposed technique when mapping 
algorithms in imperative programming languages to the PACT 
eXtreme Processing Platform (XPP). The results confirm 
improvements over the use of conventional loop pipelining 
techniques. Better performance and fewer resources are achieved 
in a number of cases. 

Categories and Subject Descriptors 
D.1.2 [Programming Techniques]: Automatic Programming—
Program Synthesis; D.3.4 [Processors]: Optimization; C.1.3 

[Processors Architecture] — Other Architecture Styles — Data-
flow architectures; 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Software Pipelining, Data-Driven Architectures, Dataflow, 
Reconfigurable Computing, Compilation. 

1. INTRODUCTION 
Coarse-grained reconfigurable arrays are becoming suitable 
choices for extending traditional computing engines (e.g., Von 
Neumann-style microprocessors) [16]. They efficiently realize 
spatial computing [11][4], which might be important to meet the 
energy consumption and computing demands of the future 
computing systems (e.g., embedded systems). 
A number of coarse-grained architectures with dataflow semantics 
(e.g., KressArray [17], XPP [2], and WaveScalar [28]) have been 
focus of recent academic and commercial efforts, with 
encouraging results. They resemble many of the concepts of 
processor arrays, introduced in the 80’s [31][12], namely 
wavefront [23] and data-driven arrays [22]. Those architectures 
devised a scalable and effective fashion to directly support the 
dataflow computational model and spatial computing. In data-
driven architectures, the availability of operands triggers the 
execution of the operation to be performed on them [31]. 
Therefore, data-streams can be processed through the processing 
elements (PEs) of the array without requiring centralized memory 
elements such as RAMs. Their suitability for reconfigurable 
computing platforms also comes from the fact that data-driven 
arrays naturally support computing in space.  
Also for the future ASIC scenario, some researchers advocate the 
use of hardware structures behaving in a static dataflow fashion 
[5][4]. One of the reasons is the avoidance of centralized control 
units, which is an envisaged goal since the evidence that 
interconnection delays are becoming predominant. Even 
asynchronous dataflow fine-grained arrays, based on FPGAs 
(Field Programmable Gate Arrays), may become a valid 
alternative to synchronous FPGAs [29]. 
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Since dataflow schemes are becoming increasingly important, 
efficient schemes to map computational structures to data-driven 
architectures are focus of recent research work. The increasing  
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number of available hardware resources requires a different view 
when mapping algorithms to reconfigurable computing 
architectures. Rather than the traditional resource constrained 
problem, this is now more a question of how to take advantage of 
the large number of available hardware resources [4]. When 
mapping loops, one of the most efficient optimization is loop 
pipelining. Loop pipelining usually leads to significant 
performance improvements. Since in most reconfigurable 
architectures the memory elements to implement the pipeline 
stages are already on chip, it is worth to be applied. As far as 
dataflow computing is concerned, efficient loop execution has 
been achieved through dataflow software pipelining [14][15], 
which strongly depends on efficient balancing techniques to 
achieve maximum throughput. In data-driven architectures one 
can take advantage of their intrinsic features to schedule 
operations based on the control and data flow. This paper presents 
self loop pipelining (SLP), a technique to map computational 
structures in order that loop pipelining is dynamically achieved. 
SLP requires less balancing efforts (i.e., reduced number of 
registers or reduced size FIFOs) than previous dataflow software 
pipelining techniques. The technique has been briefly introduced 
in [7], but a heuristic to apply SLP and results with complex 
examples have not been presented. This paper discusses the 
technique and shows substantial results when targeting the XPP 
architecture [2]. The major contributions of this paper are:  
(1) A loop pipelining scheme, SLP, that fully takes advantage of 

the dynamic scheduling naturally achieved by the handshake 
support is presented;  

(2) The use of SLP to pipeline nested loops is also shown;  
(3) Limitations and SLP suitability are presented and discussed;  

(4) Compiler techniques to include SLP in the optimizations 
repertory are presented;  

(5) Examples of applying SLP are illustrated and experimental 
evidence of the importance of the technique is shown for a 
number of benchmarks. 

This paper is organized as follows. Next section briefly introduces 
data-driven issues. Section 3 explains self loop pipelining and 
shows how it can be applied to loops. Section 4 discusses 
compilation strategies to include SLP. Section 5 shows 
experimental results using the technique with a set of benchmarks. 
Section 6 describes the related work. Finally, section 7 gives 
some concluding remarks and delineates ongoing and future 
work. 

2. DATA-DRIVEN ARRAY 
ARCHITECTURES 
In the data-driven computational model, with static dataflow 
semantics [31], self-timed is achieved by a handshaking protocol 
and there is no need to statically schedule operations. Operations 
are executed as soon as data are available on their inputs and their 
output data have been consumed. The interconnection of 
functional units (FUs) naturally creates a pipelined dataflow 
structure and data streams may continuously flow through the 
structure without additional control or centralized schedulers. 

A data-driven array mainly consists of a matrix of N×M PEs 
(processing elements) and interconnection resources (see in 
Figure 1 a simplistic scheme of the XPP architecture [2], as an 
example). Dataflow operations, which are implemented by PEs, 
include usual arithmetic and logic operations, and especial 
operations to deal with conditional branches (e.g., SWITCH and 
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Figure 1. Simple diagram of the PACT XPP architecture. PAEs may include an ALU or a memory. The PAEs with memories 
are located in the left and rightmost columns of the array. Each PAE also includes two more elements: FREG and BREG. 

These elements can perform special operations, can be used as pipeline stages, or for vertical routing. 
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MERGE operations [31]). The execution of an operation (also 
known as the firing of a node) involves the removal of the data 
items in the input ports, and the production of data items in output 
ports. Some architectures use an enabling rule to fire the 
execution of the operation, i.e., the execution besides the data-
driven concept has forms of control. Such rules can be dependent 
on runtime decisions and permit to implement control flow (e.g., 
loops, if-then-else structures, etc.). As aforementioned, a 
centralized control unit is not needed, and it is the data flow that 
dynamically imposes the execution of a particular operation 
(notice, however, that it is possible to statically define an order 
among operations using control tokens). Both data and control 
tokens may flow concurrently through the array structures, and 
fine-grain parallelism and multiple flows of control are naturally 
exposed.  
SWITCH operations are used to route data items to one of the two 
outputs based on a control event (usually named control token). 
Standard MERGE operations do not have an enabling rule and 
just output the first data item present in one of the two inputs. 
There are, however, different implementations of MERGE. One 
MERGE uses a control signal to select between the two input data 
tokens and discards the data token (i.e., the token is consumed but 
not copied to the output) not selected. According to the enable 
rule, there are also different MERGE implementations. One only 
triggers the execution when the control token and the two data 
tokens are ready, the other one triggers the execution as soon as 
the control token and the selected data token are ready (this type 
of evaluation is called lenient in [5]). Other special operators are 
specifically used to discard tokens, e.g., the T- and F-Gates used 
in some dataflow machines, which only copy input data to output 
when the control token has value “true” or when has value 
“false”, respectively [12]. 
Enhanced data-driven arrays support the semantics of imperative 
programming languages to manipulate array variables (e.g., 
load/store operations). When memories are located in special PEs, 
array structures are used to access them, and MERGE operations 
without discard are needed to multiplex data tokens. For instance, 
in the XPP the implementation of load/store operations is realized 
with array structures connected to the target memory (internal or 
external). Other architectures directly support load/store as PE 
operations (e.g., WaveScalar [28]). 
The array interconnections are responsible to flow data and 
control tokens. Their bit-width is a property dependent on the 
granularity of the PE. Some arrays include explicit lines for 
control events (e.g., XPP). Other architectures merge control 
events in data lines. The interconnection topologies between PEs 
vary widely with the architecture. Some of the arrays use special 
horizontal and vertical connection resources (e.g., XPP). Others 
explicitly use PEs for routing and provide interconnections 
between PEs in a mesh (e.g., KressArray [17]) or in a hexagonal 
topology (e.g., [22]). 
Each configuration defines the operations in the PEs and the 
interconnections among them. Additional units are needed to 
control reconfiguration. For efficient support of the 
reconfiguration flow (i.e., sequences of configurations), 
architectures may include an on-chip configuration manager (CM) 
and a configuration cache (CC) as is the case in the XPP (see 
Figure 1). Such amenities enable efficient and effective 
implementations of large programs by using temporal partitioning 

(i.e., programs are split in sequences of sections being each 
section implemented by the array resources), especially when the 
number of resources to map a given algorithm exceeds the 
available array resources [8]. 
This kind of architectures can be programmed with a structural 
language, a functional or dataflow language, or an imperative 
language.  

3. SELF LOOP PIPELINING (SLP) 
Software pipelining (see, e.g., [1] for a survey) is a scheduling 
technique to pipeline loops (i.e., overlap computations of 
subsequent loop iterations) and usually leads to significant 
performance improvements. Usual software pipelining techniques 
statically define epilogue, kernel, and prologue sections. 
Pipelining loops in data-driven architectures does not need a 
scheduler of operations. It can be simply achieved by creating a 
structure connecting the operations of the loop body and the 
hardware structures responsible for the loop iterations (see Figure 
2a and 2b). With this scheme, similar to dataflow software 
pipelining [14], efficient loop execution can be achieved (see 
Figure 2b). In Figure 2b, the CNT module represents a counter 
which starts at a given number and keeps incrementing it by a 
pre-defined value until a certain limit is not exceeded. Using a 
data-driven model with handshaking, the counter only furnishes a 
new count value if the previous one has already been consumed. 
To enable optimum software pipelining, full balancing of paths is 
required (see Figure 2b), i.e., the counter indexing consecutive 
elements of the arrays A, B and C, requires that the two paths 
arriving to the destination memory where array C is located have 
the same number of pipeline stages. The two paths are related to 
the operations computing the data items to be stored in the array 
C, and to the address generation structure. Hence, to accomplish 
loop pipelining and maximum throughput, balancing is performed 
through the addition of pipeline stages (sequences of registers or 
FIFOs behaving in a data-driven manner) in certain paths of the 
dataflow structure1.  
This is partially needed because loop iterations are controlled by a 
centralized unit (as an image of the source imperative 
programming model). Since operations are triggered by the 
presence of data during runtime, the computational structures, 
needing explicit control from the hardware structures ensuring the 
loop iterations, do not require a centralized unit. Specifically, 
multiple hardware structures generating loop iterations can be 
used (see Figure 2c). This is the main idea of self loop pipelining. 
The original centralized counter, responsible for the control 
iterations of the FOR loop, is duplicated and two decentralized 
counters are responsible to control the loop behavior2. The 
counters are decoupled and synchronize indirectly due to the data 
flow. As is depicted, there are now two independent paths 
furnishing the index value (i) to access array elements (see Figure 
2c).  

                                                                 
1 Traditional loop pipelining implementations strongly depend on 

pipeline balancing techniques. This is also true in the context of 
dataflow software pipelining. 

2 Note that another valid SLP implementation would use three 
counters (one for each memory). 
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… 
for(i=0;i<N;i++){ 
  C[i]=A[i]*B[i]; 
} 
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Figure 2. Loop pipelining on data-driven machines: (a) simple 

example - each array is mapped to a distinct memory; (b) 
traditional loop pipelining; (c) the proposed self loop 

pipelining technique. Rectangles in gray represent pipeline 
stages using the handshake protocol (they can be implemented 

as registers, FIFOs or queues). 
 
Figure 3 shows a more complex example. In this case, the eight 
references to array variable x are implemented with a counter 
producing 8 indexes (ix) for each i produced by the counter 

related to the FOR loop. In Figure 3, COPY represents a generator 
of N-copies of the value of the input data token to the output. The 
operators SE-PAR and PAR-SE are the operators presented in [7]. 
In this case they represent a self controlled 1:8 DEMUX (after 
demuxing 8 data items in the input, it re-starts with the next 8 
items that may arrive) and a similar 8:1 MUX. As can be seen, the 
decoupled loop control structures are responsible to stream the 
data according to the consumption rate and maybe ahead of each 
other in the loop iteration space. 
Albeit the possible presence of conditional paths taking different 
latencies on different loop iterations, most approaches on 
pipelining loops enforce, using balancing, a fixed and statically 
known loop body latency. This is the case of the dataflow 
software pipelining technique initially presented. Considering 
different latencies on the loop body requires much more complex 
implementations and might lead to difficulties to control the 
pipeline. This is especially true when operations are statically 
scheduled. One of the approaches considering, at some extension, 
different latencies is the one presented in [24]. However, that 
scheme requires complex centralized control units. In our 
approach there is no problem with different latencies on the loop 
body, since the pipelining rather than statically is dynamically 
achieved by the data-driven mechanism. The throughput of the 
loop is achieved by hardware structures, decoupled, decentralized 
and replicated (as has been illustrated in Figure 2 and Figure 3) 
and thus the technique does not require balancing of all the paths 
implementing conditional constructs (e.g., if-then or if-then-else). 
Obviously, some paths connecting functional units still need 
balancing to achieve maximum throughput. 
As has been shown, SLP is relatively simple to apply to innermost 

 
 … 
for(i=0;i<N;i++) { 
  x0=x[0+i*8]; 
  x7=x[7+i*8]; 
  f0 = x0+x7; 
  g0 = MSCALE(twoc1d16*(x0-x7)); 
 
  x1=x[1+i*8]; 
  x6=x[6+i*8]; 
 
  f1 = x1+x6; 
  g1 = MSCALE(twoc3d16*(x1-x6)); 
 
  x2=x[2+i*8]; 
  x5=x[5+i*8]; 
 
  f3 = x2+x5;  
  g3 = MSCALE(twoc5d16*(x2-x5)); 
 
  x3=x[3+i*8]; 
  x4=x[4+i*8]; 
 
  // main calculation code 
  // previous variables are used and 
  // the 8 variables y0-7 are computed 
  … 
 
  y[i*8+0] = y0; y[i*8+1] = y1;  
  y[i*8+2] = y2; y[i*8+3] = y3; 
  y[i*8+4] = y4; y[i*8+5] = y5; 
  y[i*8+6] = y6; y[i*8+7] = y7; 
} 
… 
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Figure 3. Example of applying self loop pipelining: (a) sample code of the LeeDCT example [18]; (b) possible SLP implementation. 

When a counter CNT reaches the limit generates an event on output U. An event arriving at input GO in counters starts a new 
counting after the previous one has finished. 
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loops, but is it applicable to nested loops? An example with two 
nested loops is shown in Figure 4. Figure 5 presents the dataflow 
graph (DFG) of a possible data-driven implementation of the 
example (notice that pipeline levels are omitted). Values in circles 
and rectangles represent a value generated once and as much as 
needed by an input, respectively. Figure 6 depicts the use of SLP 
to the innermost loop (Loop 2 in Figure 4). The duplicated 
structures are related to the computation of the indexes for 
loading values from the sd array (see line 4 in Figure 4) and to 
assignments to the scalar variable sum (line 4 in Figure 4). Figure 
6 shows the DFG of the new structure. To apply the technique to 
the outer loop (Loop 1 in Figure 4), other duplications are 
employed in a similar manner. A structure can be used to assign 
zero to the scalar variable sum (line 2 in Figure 4), in each 
iteration of Loop 1. Two other structures can be used to control 
each of the structures referred above. Finally, a structure can be 
used to furnish the index i to the array ac (line 6 in Figure 4). 
Figure 7 depicts the DFG after applying the technique to the 
outermost loop, as well. The latter uses 6 hardware structures to 
control the loop iterations instead of the 2 original ones (see 
Figure 5). In this case, the duplication of various modules to 
control the iterations of each loop permits to start a new iteration 
of the outer loop before the end of its previous iteration, as is 
shown in the temporal diagrams of Figure 8. 

 … 
1. for (i = 0; i < M; i++){   // Loop 1 
2.     sum = 0; 
3.     for(k = 0; k < N; k++) {  // Loop 2 
4.        sum += sd[k+i*N]; 
5.     } 
6.     ac[i] = (sum >> SHIFT); 
7. } 
… 

 
Figure 4. Median example: source code. 
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Figure 5. Median example: DFG representation of the nested 
loops in the example without using the SLP technique. 
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Figure 6. Median example: DFG after applying SLP to the 
innermost loop. 
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Figure 7. Median example: possible DFG representation after 
applying SLP to both inner and outermost loops. 
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Figure 8. Temporal behavior for the median example (see 
Figure 4): (a) SLP applied to the innermost loop (see Figure 

6); (b) SLP applied to the two nested loops (see Figure 7). The 
dashed arrow indicates that the outer loop starts a new 

iteration before the end of the previous one. 
 

4. COMPILING TO DATA-DRIVEN 
ARCHITECTURES 
Besides work on using dataflow languages [21] to program 
dataflow machines, some successful efforts translate imperative 
programming languages to dataflow models (e.g., [20][3][8]). 
Imperative programming languages can be transformed to the 
Program Dependence Web (PDW) [20], a representation that 
extends the Static Single Assignment (SSA) form [10] and the 
Program Dependence Graph (PDG) [13]. The PDW contains all 
the needed information for control-, data-, and demand-driven 
interpretation, and thus it can be used to generate the DFG akin to 
the required dataflow structure. 
Mapping computational structures to data-driven machines is 
almost direct when straight-line code is input and each operation 
in the code can be directly implemented by a PE of the 
architecture. The handshaking mechanism permits to abstract the 
mapping from the timing details associated when the 
computational structures are implemented using a data-path and a 
centralized control unit (timing-driven model).  

Selection points are explicitly represented in the SSA-form by Φ-
functions. Those points can be directly implemented with 
MERGE operations with discard. The PDW uses the Gated Single 
Assignment (GSA) to generate the control conditions. Instead of 
using only the SSA Φ-functions, the PDW uses three types of 
functions (µ, γ, and η). µ-functions are used to represent selection 
points between loop carried values and loop initializations 
(MERGE operation). γ-functions are used to control forward data 
flow (MERGE operation). Finally, η-functions are used to control 
passage of values out of loop bodies (i.e., they are used to forward 
final data values after loop completion). Those η-functions can be 
translated to SWITCH nodes.  
To enable the firing of some operations, control tokens are used, 
either directly (i.e., as a form of predicate execution controlled by 
guards) or as control mechanisms to cease the data flow. 
Architectures with PEs with firing rules enabled by special 
control inputs can implement almost directly predicated execution 
(e.g., XPP). When these types of firing rules are not directly 
supported, special operators can be added to enable/disable the 
data flow to destinations (to forward a copy or to discard the input 

data item). Nevertheless, when speculative execution is used 
firing rules to enable/disable certain operations are not needed as 
long as data items generated in paths not taken are discarded. As 
opposite to non dataflow, where operations using a certain 
assignment are scheduled to time steps where data are already 
available, here we have to ensure that only data that must be used 
arrive to destination. 
To achieve an optimized implementation several compiler 
optimizations are still required (see, for instance, [5]), such as 
array dependence analysis and elimination of redundant memory 
accesses (e.g., inter-iteration register promotion [9]). In data-
driven arrays, pipeline balancing is usually performed during the 
place and route phases (as is the case in the XPP-VC compiler 
[8]). 
As aforementioned, self loop pipelining is achieved by replicating 
N times the cyclic hardware structure responsible to control a 
certain loop. From each loop header the variable that controls the 
loop iterations is identified and the related DFG nodes are marked 
as being part of the loop control structure. The identification of 
those DFG structures starts by the µ node associated to the loop 
control variable and collects all the nodes constituting a path from 
the output of the µ node to one of the inputs. Then, a simple 
template matching scheme is used to expose counters. Although 
this scheme works well for well-behaved loops (WHILE, DO-
WHILE, or FOR loops with loop control based on a comparison, 
between two scalar variables or a scalar variable and a literal, and 
increment or decrement operations, executed on every iteration), 
and most loops in DSP (digital signal processing) applications are 
of this kind, it does not resolve other types of loop control. Study 
to surpass this restriction is the subject of ongoing work. 
After identification of each loop control structure, a DFG of the 
loop body is used to apply SLP. A simple heuristic depicted in 
Figure 9 is currently being used. To decide about the cloning of 
loop control structures, this heuristic uses an unconstrained ALAP 
(as late as possible) scheduling scheme. Duplication of structures 
is based on the costs to pipeline a path from the source (hardware 
structure responsible for the loop iterations) to a sink and the cost 
of the loop control structures to be cloned (see line 8 in Figure 
9)3. This scheme is used to make a trade-off between forwarding 
data computed by loop control structures and re-computing them 
by duplicating those structures.  

5. EXPERIMENTAL RESULTS 
We have performed several experiments using the XPP [2] as the 
target architecture. The architecture uses a global synchronization 
clock. It performs each PE operation and communicates each data 
item between elements (i.e., PEs or interconnection registers) in a 
single clock cycle. We have used 32-bits as the XPP bit-width. 
The XPP can be programmed with a structural language named 
NML [2]. A tool to place and route designs in NML and to 
generate the binary code for each configuration and the code to 
program the configuration manager is provided. This tool tries to 
fully balance paths previously specified with NML directives. A 
higher abstraction level is provided by a compiler that translates 
programs in a C-subset to one or more NML designs [8]. The 

                                                                 
3 When targeting the XPP, the control structures of well-behaved 

FOR type loops are implemented with counters, being each 
counter implemented by a single PAE of the architecture. 
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compiler is based on the pipeline vectorization technique [32] to 
pipeline well-behaved innermost loops. 
 

Input: DFG with loop regions identified 
Output: transformed DFG  
 
1.  foreach innermost loop Lk with Ctrk as  
     loop control structure do 
2.      Sinks=Find Sinks(Lk, Ctrk); // list of DFG nodes  
         of Lk directly connected to Ctrk  
3.      Determine ALAP Latencies (loop body Lk); 
4.      Ordering Sinks according to ascendant  
         ALAP Latencies(Sinks); 
5.      for i in 1 to NumSinks-1 do 
6.         Sinki = Sinks(i); 
7.         Sinki+1 = Sinks(i+1); 
8.         if (PipelineCost(ALAP(Sinki+1)-ALAP(Sinki))  
            ≥ Cost(Ctrk)) then 
9.             Ctrt=CloneAndConnect(Ctrk, Sinki+1); 
10.           for j in i+2 to NumSinks-1 do 
11.               Connect(Ctrt, Sinkj); 
12.           end for; 
13.       end if; 
14.    end for; 
15. end for; 

 
Figure 9. Heuristic to apply SLP to innermost loops. 

 
A number of benchmarks (see Table 1 for main characteristics) is 
used to test self loop pipelining and to compare it with a 
traditional loop pipelining scheme assisted with pipeline 
balancing, particularly the pipeline vectorization technique 
included in the XPP-VC compiler [8]. The benchmarks include 
DSP kernels and other more complex DSP tasks. They include 
benchmarks from Texas Instruments [30] (identified in Table 1 by 
TI), from the MediaBench repository (identified in Table 1 by 
MB) [19], and the LeeDCT benchmark (see [18]). 
For experiments with adpcm and LeeDCT we use an XPP array 
with 16 × 16 ALU-PAE cells and two columns with 16 MEM-
PAE cells each. For all the other experiments, an array with 8 × 8 
ALU-PAEs and 2 × 8 MEM-PAEs is used. 
With respect to the XPP-VC compiler, all the selected 
benchmarks have innermost loops that are pipelined, and we have 
done the experiments using all the efforts to execute fully-
balanced implementations. Note that sometimes this is impossible 
to achieve due to the unavailability of the required amount of 
resources to insert the needed number of register stages. 
Table 2 shows results using the pipeline vectorization included in 
XPP-VC and using the SLP scheme. The numbers representing 
clock cycles (#ccs) in Table 2 are related to the execution of each 
configuration in the array and do not include the reconfiguration 
time needed. The reconfiguration time depends on the structures 
of a certain configuration and is not of special interest for the 
comparison. The number of resources (#elements) represents the 
sum of the used elements of the array (FREG, BREG, ALU, or 
MEM). The numbers in the last two columns illustrate the 
percentage of resources and percentage of execution cycles 
between pipeline vectorization and SLP. Negative and positive 

percentages mean lower or higher number of resources or clock 
cycles used by SLP, respectively. 
The results show that our approach leads to performance 
improvements and to reductions in the number of the used 
resources over pipeline vectorization. For all but one case, the use 
of SLP achieves better performance (from 1.2% to 68.4% fewer 
execution cycles). With respect to used resources, most of the 
examples use fewer PAEs when SLP is used. For the Median 
example, we exploit the use of the technique on nested loops. The 
use of 4 (last but one result in last row of Table 2) or 7 hardware 
cyclic structures (last result in last row of Table 2) lead, 
respectively, to reductions on execution cycles of 25.5% and 
46.2% than using pipeline vectorization. Obviously, since we 
have used examples with the innermost loops fully pipelined by 
the XPP-VC compiler, better improvements can be achieved with 
examples having innermost loops not pipelined by the XPP-VC.  
The adpcm is one example with conditional structures in the loop 
body which are pipelined by SLP without enforcing the longest 
path latency of the loop body for each loop iteration. For the 
weighted vector sum benchmark, SLP has permitted reductions on 
the number of clock cycles of 54.4% (without using pipeline 
balancing) and 68.4% (using pipeline balancing). 
As is recognized, traditional loop pipelining techniques depends 
heavily on pipeline balancing to achieve good performance. As 
an example, for the median example the results presented in Table 
2, using pipeline vectorization and pipeline balancing, represent 
86.4% fewer clock cycles using 18.2% more resources than the 
same example without pipeline balancing. With respect to SLP, 
no pipeline balancing has been needed.  
Although a first reaction about innermost loops would spot that 
the duplication of the hardware structures, to control loop 
iterations, does not lead to performance improvements and/or 
resource savings, this is not the case since almost all of our 
experimental results indicate the opposite. Note, however, that the 
savings in the number of resources heavily depends on the type of 
operations directly supported by the target architecture. The 
improvements achieved with SLP have origins in the more 
relaxed pipeline balancing requirements and in the unneeded 
matching of branches on conditional constructs. We call the 
reader’s attention to the fact that in the XPP it is not possible to 
implement pipeline stages greater than one with a single PAE 
unit. Thus, sequences of pipeline stages are implemented using 
various PAE units. This is one of the reasons for resource savings 
when using SLP. 
There is strong evidence that using SLP, pipeline balancing may 
not be needed or may be required less aggressively, which also 
results in fast compilation. Furthermore, since we are duplicating 
and decoupling hardware structures, the number of memory 
stages needed for balancing is lower. 

6. RELATED WORK 
Software pipelining has been focus of intense research efforts [1]. 
It has been considered for both microprocessor and application 
specific architectures. Due to the need of a statically-defined 
scheduler, algorithms to schedule loop operations are used. One 
of the schemes is Modulo Scheduling, which can be efficiently 
performed by Rau’s Iterative Modulo Scheduling (IMS) algorithm 
[26]. When targeting specific architectures, authors have 
considered two approaches: the existence of specific epilogue, 

112



 

Benchmark Source Data size and
parameters 

add_array - Arrays with 1
Sad - Arrays with 2
adpcm decoder MB 1,024 data va
LeeDCT  PVRG 8 × 8 elemen
Max TI 256 elements
auto correlation TI N=256, M=1
weighted vector 
sum 

TI 256 elements

block move TI 256 elements
Gouraud TI 128 elements
Median TI N=16, M=25

 

 
Benchmark wit

add_array 
Sad 
adpcm decoder 
LeeDCT (1st loop) 
LeeDCT (2nd loop) 
Max 
auto correlation 
weighted vector sum 

block move 
Gouraud 
Median 

 

kernel, and prologue hardware structures; 
schemes to avoid the explicit epilogue and
Software pipelining has been applied to r
platforms by several researchers, espe
innermost loops to FPGAs (see, for inst
approaches restrict loop pipelining to w
some cases the freedom to use specif
provided loop pipelining techniques in the
memory writes [24], for instance. H
implement the restoring step that might be
branch is not taken can be used. Research
hardware architectures has also consider
One of the approaches uses Rau’s algorith
loops in the Garp architecture [6]. 
Pipeline vectorization [32] has been 
innermost loops when compiling C progra
technique is applied to innermost loops
regular loop-carried dependences (i.e.,
Table 1. Main characteristics of the benchmarks 

 other Description 

024 elements See Figure 2. Add two arrays. 
56 elements Sum of absolute differences (used in MPEG and JPEG) 
lues Decoder audio algorithm. 
ts Compute the Discrete Cosine Transform (DCT). It uses two sequential loops. 
 Calculate the maximum value in a vector. 
6 Perform M autocorrelations each of length N 
 Perform an N-element vector sum of two vectors with one vector weighted by 

a constant. 
 Move the elements of one array to the other. 
 Gouraud shading of a scanline of pixels. 
6 See Figure 4. Compute the median for each window of samples. 

 
Table 2. Results with loop pipelining. 

h Pipeline Vectorization 
(#elements/#ccs) 

with Self Loop Pipelining 
(#elements/#ccs) 

% 
resources 

% clock 
cycles (ccs)

23/1069 21/1045 -8.7 -2.2
38/787 35/531 -7.9 -32.5

103/15,408 91/11,304 -11.7 -26,6
237/41 144/33 -39.2 -19.5
261/63 228/55 -12.6 -12.7

36/1,041 23/1,029 -36.1 -1.2
47/17,033 47/16,658 0 -2.2

33/1,166 26/532
31/368

-21.2 
-6.1 

-54.4
-68.4

17/1,094 14/625 -17.6 -42.9
70/668 65/531 -7.1 -20.5

33/1,107 31/1,062 -6.1 -4.1

40/825
47/596

+21.2 
+42.4 

-25.5
-46.2

or the use of predicated 
 prologue structures. 
econfigurable hardware 
cially when mapping 
ance, [32], [27]). Most 

ell-behaved loops. In 
ic hardware structures 
 presence of conditional 
ardware structures to 
 needed when a certain 
 on new reconfigurable 
ed software pipelining. 
m to pipeline innermost 

adapted for pipelining 
ms to the XPP [8]. The 

 without true and with 
 those with constant 

dependence distances). Pipelining of loops with conditional 
structures including array references is not considered. 
The previous approaches use centralized control units obtained by 
static scheduling of the loop operations and therefore, when 
mapping to data-driven array architectures with handshake, may 
achieve the best performance.  
More related to our work is dataflow software pipelining [14][15], 
a software pipelining scheme specially developed to pipeline 
innermost loops in dataflow machines. Compared to traditional 
software pipelining techniques, such approach naturally exploits 
the dynamic scheduling obtained by the data flow. A similar 
scheme to dataflow software pipelining has been included by 
Budiu et al. in a C compiler to asynchronous circuits [4][5]. 
All the previous approaches rely heavily on pipeline balancing to 
achieve maximum throughput by using FIFOs (e.g., [5]) or 
connections of register stages (e.g., [8]). They clamp the latency 
of the loop body to the longest path latency even if conditional 
branches are present. The technique proposed in this paper solves 
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these problems in a number of cases, and thus it can be an 
efficient optimization option when compiling to data-driven 
arrays (e.g., [8]) or application specific circuits using handshake 
(e.g., [4]). The use of our approach in the presence of loop-carried 
array dependences requires further studies. Although at a first 
glance this constraint seems to be quite restrictive, it has not 
disabled the mapping of representative DSP kernels as shown by 
the experimental results. In [5], token generators are used to 
control the amount of slip between two operations that may be 
ahead of the each other on loop iterations. It is a scheme to 
enforce that memory dependences are satisfied when loop 
iterations are dynamically scheduled, by explicitly representing 
the dependence distance. This scheme can also be efficiently used 
in conjunction with SLP to deal with loop-carried array 
dependences and is the subject of our ongoing work. 
The use of explicit epilogue and prologue structures by usual 
software pipelining approaches might lead to resource problems, 
especially in array architectures without PEs with load/store 
operations. In that case, more references to an array imply 
additional PEs for the hardware structures responsible to 
interfacing with the memory where the array is stored. Moreover, 
explicit epilogue and prologue schemes also require, besides the 
PEs to implement the kernel, PEs to implement the computational 
structures of the epilogue and prologue. The SLP technique does 
not require epilogue and prologue structures, which may also be 
an important property when targeting data-driven arrays. 
In the context of coarse-grained reconfigurable architectures, a 
software pipelining approach without explicit epilogue and 
prologue has also been recently used [25]. Although the approach 
integrates placement, scheduling, and routing, and is able to 
generate more than one configuration when hardware 
virtualization is needed, it was not proposed for data-driven array 
architectures and thus, compared to the approach presented in this 
paper, does not take advantage of dynamic scheduling. 

7. CONCLUSIONS 
This paper introduces a novel form of loop pipelining, named self 
loop pipelining (SLP), suitable to pipeline a large set of loops 
when targeting data-driven reconfigurable arrays. It involves 
replication of the hardware structures responsible for the control 
of loop iterations. Loops are naturally executed in a pipelining 
fashion, with synchronization being achieved by the data flow. By 
dynamically scheduling operations, SLP can outperform statically 
scheduled software pipelining techniques. Therefore, the 
technique, an enhancement scheme for dataflow software 
pipelining, can be thought as an optimization to extend the 
repertory of loop optimizations that may be included in an 
advanced compiler targeting data-driven arrays. 
The technique can be applied to DO-WHILE, WHILE, and FOR 
loops, including nested loops. Innermost loops with conditional 
constructs can also be pipelined without conservative pipelining 
implementations (which usually enforces the critical path length 
of the loop body). The technique requires less sophisticated 
balancing efforts than previous software pipelining techniques. 
The technique has been applied when mapping a number of 
benchmarks to the XPP. The results, by achieving performance 
improvements and in some cases even fewer required resources, 
strongly prove its importance. 

Ongoing work aims techniques to overcome loop-carried array 
dependences and further experiments with other data-driven 
architectures. 
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