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Symbols 
 
x   object (instance, example, case) 
d   number of object features 
n   number of objects 
w   number of weights (MLP) 
x   vector (d-dimensional) 
t   target value 
t
)    estimate of t 
X   instance set 
S   sample of n objects randomly drawn 
P   discrete probability 
p   pdf 
Pe   error probability 

DXx ~∈    x drawn from X according to the distribution D 
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1  Supervised Learning 
 
 

1.1 Supervised Learning Model 
 

Objects

Supervisor

X

      Sampling
(distribution D )

Xn
T

t

Learning
Algorithm /
     Machine /
       Model

t

 
 
 
X - Object (instance) space 
Xn - Sample with n objects 
T - Target values domain (e.g. {0, 1}) 
 
 
Consider the hypothesis: 

)(
:

xhtx
TXh

=→

→
)  , 

 
and the hypothesis space : }:{ XxhH →= . 

 
Often, x is a d-dimensional vector, x: 
 

)(
:

xx ht
TXh d

=→

→ℜ≡
)  . 
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Learning Objective: 
 
 
Given the sample or training set { }nXtS ∈= xxx ));(,( , find in H a 
hypothesis h that verifies: 
 
 

Xth ∈∀= xxx ),()(  
 
 
 
 
 

Estimated Model
       (Theory)

Hypotheses Space

    Training   Set
         (Facts)

Predicted Values
        (Results)

Induction Deduction

Transduction  
 
 
 

Supervised Learning = Inductive Learning 
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Example: 
 
 
Given:  

{ },1,0,2 =ℜ= TX  
 

{ }TtXXtS n ∈⊆∈= )(,));(,( xxxx ; 
 

{ }2
0 ,),(;: ℜ∈+=→= wxw'wx whTXhH , 

 
(parametric hypothesis space). 

 
 
 
Determine   XthHh ∈∀=∈ xxwx ),(),(,    (i.e., determine w, w0). 
 
 
 
 
 

How to determine h(x, w) ? 
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1.2  Empirical Risk and ERM Principle 
 

 
Hypothesis Risk 
 
Let: 
 

A ={α}: action/decision space (e.g. A=T). 
 
 
λ(α, h(x,w)): cost/risk of action/decision α when the machine 

receives x and has parameter w. 
 
 
 
Risk (individual) of x: 
 

   ∫=
A

αααλ dphhR ),()),(,()),,(( xwxxwx  
 
 
Risk of hypothesis h: 
 
 

∫=≡
AXx

ddphhRhR αααλ xxwxwx ),()),(,()),(()(  
 
 
 

 
Objective: find w that minimizes R(h) 
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1 - Classification Case 
 
 
λ(α, h(x,w)) = λ(ω, h(x,w)),  with:  
 

• ω ∈ Ω ={ ωi ; i=1,..., c}, set of c classes. 
• T = { ti = t (ωi); i=1,..., c} 

 

∑ ∫
=

=
c

i
X ii dphhR

1
),()),(,()( xxwx ωωλ  

 
 

Special case: 
 





≠
=

=
),()(if1
),()(if0

)),(,(
wx
wx

wx
ht
ht

h
ω
ω

ωλ  

 
Thus: 
 

 
PePedpPhR

c

i
i

c

i
ij

X
j

j

=== ∑∑ ∫
==

≠
∪ 11

)()()|()( ωω xxx
 

 
Let D be the distribution of x in X: 
 
 
 

DX
hPehR
~

)()(
∈

=
x

 true error of h. 

 
 
Bayes’ minimum risk rule: 
 

)|(1)|()|( xxx i
ij

ji PPR ωωω ∑
≠

−==  

Minimize R(ωi | w)  Max. Prob. a Posteriori 
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2 - Regression Case 
 
 
 
λ(α, h(x,w)) = λ(y, h(x,w)),     y = g(x) + ε . 
 
 
 
Special case: 
 
 

( )2),()),(,( wxwx hyhy −=λ  
 
 

dydyphyhR
XxT∫ −= xxwx ),()),(()( 2

 
 
 
 

Minimize R(h)  LMS 
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Empirical Risk Minimization  (ERM) Principle: 
 
 
Given a training set S, with n instances, determine the function h(x,w) 
that minimizes: 
 
 
 

∫=
S

ddphnhR αααλ xxwx ),()),(,(),(  
 

(i.e., in the sample/training set S) 
 
 
 
Minimum (optimal) empirical risk:  
 
 
 

)),((min)),(( *
emp nhRnhR ww

w
=  

 
(in the sample/training set S) 
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 Classic Theory of Statistical Classification 
 
 
 
 
Fundamental assumption: 
 
The distribution of the instances in any sample S is known and 
stationary. 
 
 
 
 
 
Classic situation: 
 
 

• The distributions of the instances are Gaussian. 
 

• The a posteriori probabilities, computed according the Bayes Law, 
also determine the model/hypothesis (linear, quadratic, etc.). 

 
• The ERM hypothesis is obtained through the estimation of the 

distribution parameters. 
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Example: 
 
Classification with: 
 

• { }1,0;7 =ℜ= TX  (two classes) 
• Gaussian distributions of x with equal covariance, C  

 
{ }2

0 ,),(;: ℜ∈+=→= wxw'wx whTXhH → linear model 
 

• w, w0 determined by S. 
 
 

E[Pet(w*,n)]

E[Ped(w*,n)]

min Pe(w)
  w

 
δ 2=3 (square of the Battacharyya distance). 

 
 
There are exact formulas to compute: 
 

[ ]),(E nhPet :  Average test error. 
    
   )(),( hPehPet =∞  
 

[ ]),(E nhPed :  Average training error (average empirical risk). 
 
   )(),( hPenhPe empd =  
 

))((min w
w

hPe : Optimal Bayes error. 
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 General Situation 
 
 

• The distributions of the instances are arbitrary. 
• The model is unknown and has to be estimated. 

 
 

n

R(h(w*),n)

Remp(h(w*),n)

min R(w)
 w

 
 
 
 

),( nhRemp  : Optimal empirical risk, obtained by ERM 
   ( )(),( hPenhPe empd = for classification) 
 

),( nhR :  True risk of the ERM hypothesis 
   ( )(hPe for classification) 
 

))((min w
w

hR : Optimal risk 

 
 
The ERM principle is said to be consistent if: 
 

)(min),( w
w

RnhR
n ∞→
→  

 
and 

 
)(min),( w

w
RnhR

n
emp

∞→
→  
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Fundamental Theorem of the  

 
Statistical Learning Theory 

 
(Vapnik, Chervonenkis, 1989): 

 
 
 
For bounded cost functions the ERM principle is consistent iff: 
 
 

0,0))(())((suplim >∀=




 >−
∞→

εεww
w

hRhRP empn  

 
 
 

(i.e., consistency must be assesses in a “worst case” situation) 
 

 

n

sup|R(h(w))-Remp(h(w))|

 
 
The theorem does not tell us: 
 

• Whether or not there is convergence in probability of a given 
hypothesis. 

• Assuming that such convergence exists, what is the minimum n 
required for the empirical error to be below a given value. 
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2 PAC Learning 
 

2.1 Central Issues of Learning 
 
 
 
 
 
Sample complexity: 
 

What is the n = card(Xn) needed for the learning algorithm to 
converge (with high probability) to effective learning? 

 
 
 
Computational complexity: 
 

What computational effort is required for the learning algorithm 
to converge (with high probability) to effective learning? 

 
 
 
Algorithm performance: 
 

How many objects will be misclassified (error) until the 
algorithm converges to effective learning? 
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2.2 Definitions 
 
 
X - Instance domain. 
 
 

X = Set of persons 
 
 
C - Concept space, XC 2⊆  (set of dichotomies of X) 
 
 

C = {Caucasian, Portuguese, obese, ...} 
 

c = obese 
 
 

tc - Target function, concept indicator  
 
 

}1,0{:obese →∈ XTt  
 

tobese(John) = 1 
 
 

Frequently, we take ctc ≡ : obese(John) = 1 
 
 
D - Sample distribution, stationary 
 
 

D = distribution of persons in a supermarket 
 
 
Note: When the sample distribution of the objects obeys a known model, one is able, 
in principle, to determine an exact answer to the preceding questions (parametric 
statistical classification). 
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L - Set of learning algorithms  
 
 

}:{ HSlL →=  
 

The learner Ll ∈  considers: 
 

• A training set S, generated according to D. 
• A set of possible hypothesis H having in view to learn the 

concept. 
 
Example: 
 

},,,)width(,)height(;)(
:}1,0{:{

2102101122 ℜ∈≡≡++=
→=

wwwxxxxwxwxwxh
XhH

 

 
 

ch - Set induced by h in X 
 

{ }1)(; =∈= xhXxch  
 

Example: 

}1;{ 0 =+∈= wXxch x'w ; [ ]21 ww='w , 







=

2

1

x
x

x  

 
 

 X = {Persons}

c = obese

ch

x1

x2
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Pe - Error (true error) of hypothesis h 
 

( ))()()()(
~

xhxcPhPehPe
DXxD ≠=≡

∈  

 
The error depends on the distribution D: 
 
 
 

X = {Persons}

ch

x1

DFootball Stadium
x2 c = obese

X = {Persons} DSupermarket

c = obese

x1

x2

ch

 
 

Consistent hypothesis 
 

h is consistent  iff  )()(, xhxcXx n =∈∀ , i.e., Peemp(h)=0 
 

X = {Persons}

c = obese

ch+ +

++

o

o

x1

x2

+ +

+

o
o

o
o
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2.3  PAC Concept 
 
 

Given Ll ∈ , generating hypothesis h, is it realistic to expect Pe(h)=0? 
 
In general  ( XX n ≠ ), there may exist several hs consistent with the 
training set and we do not know which one learns the concept. 
 
 
 
 

X = {Persons}

c = obese

ch1+ +

++

o

o

x1

x2

ch2

 
 

h1 e h2 are both consistent; however, h2 learns the concept better (smaller 
true error). 
 
 
One can only hope that: 

 
ε≤)(hPeD ,  

ε : error parameter. 
 
    The learner is approximately correct... 
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As the training set is randomly drawn there is always a non-null 
probability that the drawn sample contains misleading instances. 
 
 

 
X = {Persons}

c = obese

ch1
+

+
++

o
o

o
o

+ +

o
o

x2

x1

o o
o

 
 
Thus, we can only expect that: 
 
 
 

δε −≥≤ 1))(( hPeP D   
δ : confidence parameter. 
 
 

The learner is probably approximately 
correct... 
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Definition of PAC learning - Probably Approximately Correct: 
 
 
 
 
Let C represent a set (class) of concepts defined in X and l a learner using 

XX n ⊆  and a hypothesis space H. 
  
C  is  PAC-learnable  by l (l is a PAC learning algorithm for C), if: 
 
 

,5.0,0,,),i(, <<∀∀∈∀ δεδεXnDCc  
 

δε −≥≤∈∈ 1))((,determines hPePHhLl , 
 
 
in polynomial time in 1/ε, 1/δ, n and size(c). 
 
 
 
 
 
 
size(c) - Number of independent elements used in the representation of 

the concepts. 
 
 
Representation size(c) 
Boolean canonical conjunctive expression Nr of Boolean literals 
Decision tree Nr of tree nodes 
Multi-layer perceptron (MLP) Nr of MLP weights 
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2.4 Examples 
 
1 - The concept class corresponding to rectangles aligned with the axes in 

2ℜ , is PAC-learnable (see e.g. Kearns, Vazirani, 1997). 
 
 
 

x

y
R

++
++ +
++ -

--
- -

--
R'

 

• R : concept to be learned 
 
• The learner l generates 

the hypothesis R' : 
rectangle that perfectly 
fits the positive 
examples. 

 
 

Thus: RR ⊂'  and R'-R is the reunion of 4 rectangular strips (e.g. T ' ) 
 
 

x

y
R

+
++ +
++ ---

- -

--
R'

+ T'}{T
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Given ε  let T be the strip (for a given D) corresponding to: 

4
)( ε

=∈TP x . 

What is the probability that:  4
)'( ε

>∈TP x  ? 
 

TTTTP ⇒⊃⇒>∈ '
4

)'( εx  does not contain any point of Xn. 
 
 
Probability that T does not contain any point of Xn: 
 

n







 −

4
1 ε

 

Hence: 
 

( ) ⇒





 −=






 >∈

n

TxPP
4

1
4

' εε
 

 

( )( ) ⇒





 −=≤>−

n

RRP
4

1
4

with' εδδε  

 
δε −≥≤ 1))(( hPeP  

 
 
Therefore, given ε and δ the concept is PAC-learnable for n such that: 
 

44
1 δε

≤





 −

n

  

 

( ) 













≥⇒≤⇒≤− −−

δε
δε 4ln441 4/ neex nx

 

 
n is polynomial in 1/ε  and 1/δ. For instance, for ε = δ = 0.05:    n > 351 
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2 - Let: 
 

{ }{ } { }d
id aaaaX 1,01,0);,,,( 21 ≡∈= K  

 
Each ai represents the value of a Boolean variable: 
 

ii xa →= 0  
ii xa →= 1  

 
Let C be the class of Boolean conjunctions, e.g.: 
 

431 .. xxx  
 

dcCc 2)(size, ≤∈∀ . 
 

The class of Boolean conjunctions is PAC-learnable (see e.g.                          
Kearns e Vazirani, 1997). 
 
 
Algorithm:  Remove from dd xxxxxx K2211  any literal not matching a 

true value of the respective variable in an instance x with 
t(x)=1. 

 
 
Example: 
 

{ })1),1,1,0((),0),0,1,0((),1),1,0,0((=S  
 

31321332211 xxxxxxxxxxx →→  
 
 
 

It can be shown that:  ))1ln()2(ln(2
δε

+≥ ddn  
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3 - Let X = {0, 1}d and C be the class of Boolean disjunctive forms with 
three terms: 
 

u + v + w; 
 
each term is a conjunctive form with at most 2d literals. 
 

dcCc 6)(size, ≤∈∀  
 
 

The following can be shown (see discussion e.g. in Kearns and  Vazirani, 
1997): 

 
 

• Learning this concept class is equivalent to solving the 
problem of colouring graph nodes using 3 colours, in such a 
way that all edges have different node colours. This is 
supposedly a NP problem, implying a non-PAC learning of 
the former problem. 

 
• If a conjunctive representation of the problem is accepted 

then it becomes PAC ! 
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3 Sample Complexity in Finite Hypothesis Spaces 
 
 
Is it possible to obtain a lower bound for the sample complexity, valid in 
any situation? 
 

equivalently 
 
 
How many objects must a training set at least have so that, with high 
probability, one can determine an effective hypothesis? 
 
 
 

3.1 Version Space 
 
 
Definitions: 
 
 
 
Version space: 
 
 
 

( ){ })()(,)(,;, xcxhSxcxHhVS SH =∈∀∈=  
 
 
 

Set of consistent hypotheses,  
with training error Peemp (h) = 0. 
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ε-Exhausted version space: 
 
 

Let c be a concept. The version space is ε-exhausted with respect 
to c and D if any hypothesis of VSH,S has an error below ε. 
 

ε<∈∀ )(,, hPeVSh SH  
 
 
 
Example of a 0.2-exhausted version space: 
 
 
 

Pe=0.3

Hipotheses Space, H

Pe=0.1

Pe=0.25

Pe=0.1

Pe=0.15

Peemp = 0,  Pe < 0.2

Peemp = 0.1

Peemp = 0.2

Peemp = 0

VSH,S
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3.2 Generalization of Training Hypotheses 
 
 
Theorem: 
 
 
For a finite H with |H| distinct hypotheses and a sample S with 1≥n  
objects, randomly drawn from a target concept c, then, for 10 ≤≤ ε , the 
probability of the version space VSH,S not being ε-exhausted (with respect 
to c) is less or equal than: 
 

neH ε−
 

 
 
 
Informal notion: 
The probability of finding a good training hypothesis (consistent with the 
training set) but, as a matter of fact, a bad hypothesis (with true error 
greater than ε) is smaller than neH ε− , where n is the number of training 
objects. 
 
Demonstration: 
 
 
1. Let h1, h2, ..., hk  be all the hypotheses with ε≥Pe . 

2. VSH,S  is not ε-exhausted if kiVSh SHi ,,1, K=∈∃  

3. nii XxxcxhPhPe ∈∀−==⇒≥ ,1))()(()( εε  

4. ( ) n
nniii xcxhxcxhPhP )1())()()()((consistent 11 ε−==∧∧== K  

5. nnn
k

eHHk

hhP
εεε −≤−≤−

=∨∨

||)1(||)1(

)consistentconsistent( 1 K
 



JP Marques de Sá  VCD and NN Learnability                            30 
 

INEB/FEUP  2001
    

 
 
The number of needed training examples in order to attain a probability 
below a given value, δ, is: 
 
 

))1ln(ln(1
δε

δε +≥⇒≤− HneH n
 

 
 
 
 
Notes: 
 
1. Note the similarity between the obtained expression with the previous 

ones 
 
2. Note that the n bound can be quite pessimistic. As a matter of fact the 

Theorem states a probability growing with |H| (it can be bigger than 
1!) 

 
3. Note that the Theorem does not apply to infinite |H|. For this situation 

one needs another complexity measure of H. 
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4  Vapnik-Chervonenkis Dimension of MLPs 
 
We measure the complexity of H not by the number of distinct 
hypotheses but, instead, by the number of distinct instances that can be 
discriminated by H. 
 

4.1 Linearly Separable Dichotomies 
 
Definition: 

A set of points is regularly distributed in dℜ  if no subset of 
(d+1) points is contained in a hyperplane of dℜ . 

 
 
Theorem (Cover, 1965):  
 
The number of linearly separable dichotomies (i.e. by a linear 
discriminant) of n points regularly distributed in dℜ , is: 
 
 







+≤

∑ +>−
= =

.1,2

;1,),1(2
),( 0

dn

dninC
dnD

n

d

i  

 
 
Case d=2: 
 
For n=3, all 23=8 dichotomies are linearly separable; 
For n=4, only 14 out of 16 dichotomies are linearly separable; 
For n=5, only 22 out of 32 dichotomies are linearly separable. 
 
Number of points 2 3 4 5 6 7 8

Dichotomies 4 8 16 32 64 128 256
Linearly separable 
dichotomies 4 8 14 22 32 44 58
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4.2 Hypotheses Space of  MLPs 
 
Let H be the hypotheses space of a MLP with: 
 

• Two layers 
• A hidden layer with m neurons 
• One output 
• Neuronal activation function: threshold function. 

 
 

...

x1

x2

x3

x0=1 (bias)

...

y1

y2

y0=1 (bias)

yh
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Model complexity: 
 
 
Number of neurons (processing units):  
 
 

u = m + 1 
 
 
Number of weights (model parameters):  
 
 

w = (d+1)m + m + 1 
 
 
 
Model representation capability: 
 
 
Each neuron of the first layer implements a linear discriminant, dividing 
the space into half-spaces: 
 
 

)( 0wfy j += xw' ,    f, threshold function (e.g. in {-1, 1}) 
 
 
The output layer implements logical combinations of the half-spaces. 
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XOR example: 
 

x1

x2

1

1

= -1
= 1

 
 
 
 

x1

x2

x0=1 (bias)

y1

y2

y0=1 (bias)

z
-0.73

1.53

-0.99

1.27

-1.33

-1.09

1

1

0.5

 
 
 
 
 

x1 x2 y1 y2 z = y1 OR  y2 
1 1 -1 -1 -1 
1 -1 -1 1 1 

-1 1 1 -1 1 
-1 -1 -1 -1 -1 
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Theorem (Mirchandani and Cao, 1989): 
 
The maximum number of regions linearly separable in dℜ , by a MLP 
(satisfying the mentioned conditions) with m hidden neurons, is: 
 
 

( ) ( )∑
=

=
),min(

0
,,

dm

i
imCdmR .  (1) 

 
 
Note that:  R(m, d) = 2m for m ≤ d . 
 
 
Corolary: 
 
Lower bound for the number of training set objects:    
 

n ≥ R(m, d) 
 
 
 
Case d=2: 
 
 
Number of linearly separable regions: 
 
m 1 2 3 4 5 6 7 8
R(m, 2) 2 4 7 11 16 22 29 37
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Case d=2, m=1: 
 

• R(1, 2) = 2 linearly separable regions, by one linear discriminant.   
 

• Maximum number of points allowing all possible dichotomies with 
one linear discriminant:     n = 3 

 
 

    

    
 

 
 
 

1

10

100

1000

1 2 3 4 5 6 7 8

D

n

 
 

D(n,2): Number of linearly separable dichotomies by a MLP2:1. 
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• Up to n=3 all 2n linearly separable dichotomies are obtainable. It is 

only beyond this value that the MLP is able to generalize. 
 

• n=3 measures the sample complexity of a MLP with m=1. 
 
• N(n): Number of linearly separable dichotomies, implementable by 

a MLP in n points (D(n,2) for m=1). 
 

• The MLP growth function is defined as: 
 

G(n) = ln N(n) 
 
 
 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6 7 8 9 10 11 12

n

G (n )

 
 
 

The G(n) evolution is always as illustrated. 
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Case m=2, d=2 : 
 
There is a maximum of R(2,2)=4 linearly separable regions (with two 
discriminants) 
 
 

x
x

x
x
x

x x
 

x
x

x
x
x

x x x
x

x
x
x

x x x
x

x
x
x

x x

 
 
Linearly separable dichotomies that can be obtained: 
 
 
n = 4 : all. 
 
n = 5 : lying in a convex hull: all. 
 
n = 6 : lying in a convex hull: some dichotomies are not obtainable. 
 
 

a  b c
 
 
Definition: 
 
 
A set with n points is shattered by the MLP if  N(n) = 2n.  
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4.3 Dimensão de Vapnik-Chervonenkis 
 
 
 
Definition: 
 
 
 
The Vapnik-Chervonenkis dimension, dVC, of an MLP is the cardinality 
of the largest regularly distributed set of points that can be shattered by 
the MLP. 
 
 
 
 
 
 
Informal notion: 
 
 
Largest number of training set examples that can be learned without error 
for all possible {0, 1} labellings. 
  
 
 

n ≤ dVC :  consistent learning without generalization. 
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CASE d=2, m=1: 
 
Is there a 4 points set that can be shattered? No. Hence dVC = 3. 
 
 
Convex hull of 4 points   Convex hull of 3 points 

  
 
 
 
 
Calculation of d  VC: 
 
 
 
 
Lower bound is easy to find: 
 
dVC (MLP) ≥ k :  Find one set of  k points that can be shattered by the 

MLP. 
 
  dVC (MLP) ≥ R(m, d) 
 
 
Upper bound is difficult to find: 
 
dVC (MLP) ≤ k:  Prove that no set of k+1 points can be shattered by the 

MLP. 
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CASO d=2, m=2: 
 
n=5 ? Yes. 
 

 
 
n=6 ? Yes, for a convex hull of 5 points. 
 

 
 
 
n=7 ? No. Hence, dVC = 6. 
 

7:0 6:1 5:2 

   
4:3 3:4 3:3:1 
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Lower bound of dVC: 
 
 

dVC (MLP) = R(m, d) 
 
 

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

m

dVC

d=2
d=3

d=4 d=5

lower bound

 
 
 
 
 

Upper bound of dVC,,  For an MLP with u neurons and w weights (Baum 
and Haussler, 1989): 
 
 

( )euwdVC 2log2≤      (2). 
 

 
Case d=2:               Case d=5: 
 

m 1 2 ... 10

lower bound = R(m,d) 2 4  638

dVC 3 6  ?

upper bound 9 54  696
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5 Structural Risk and VC Dimension 
 

5.1 Growth function and ERM 
 
The ERM principle is consistent iff: 
 

0,0))(())((suplim >∀=




 >−
∞→

εεww
w

hRhRP empn  

 
 
The convergence is called fast if: 
 

2
))(())((sup0,,0 0

εεε cn
emp behRhRPcbnn −<




 >−>>∃>∀ ww
w

 

 
 
 
The following can be proved: 
 
 

• The ERM principle is consistent and of fast learning iff: 
 

0)(lim =
∞→ n

nG
n  

 
• G(n) is either linear in n or, beyond a certain value of n, is 

bounded by 
 

)ln1()(
VC

VC d
ndnG +≤  

 
• Thus, if dVC is finite the ERM principle is consistent 

and of fast learning. 
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Example  
 
MLP with d=2, m=1. 
 

N(n) = 2n + (n-1)(n-2) = n2 - n +2,  for n>3 
 
Therefore, 

G(n) = ln(n2 - n +2) ,  for n>3 
 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

n

G (n )

d VC

 
 
Let, for n>3 : 
 

3)
3

ln(
3

ln3)
3

ln1(3)ln1()( nenen
d

ndnH
VC

VC ==+=+=  

 
For x > 1/2: 

KK +
−

++
−

+
−

= k

k

kx
x

x
x

x
xx )1(

2
)1(1ln 2

2

 

 

But:   0)(0)1(1
∞→∞→

→⇒→
−

nxk

k

n
nH

kx
x

x  

 
 

Since:  
32 )

3
(2 nenn <+−  We have:  0)(lim =

∞→ n
nG

n  
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Practical importance of the preceding example: 
 
 
Given:  
 

One (arbitrary) dichotomy (concept). 
 
Consider:  
 

The perceptron implementing one linear discriminant designed 
with a training set (randomly drawn according to any distribution 
D)  

 
Then:  
 

Its empirical and true risks are guaranteed to converge to the 
optimal risk. 

 
 

(i.e., the perceptron has generalization capability) 
 
 
 

Likewise for any MLP since the dVC is finite. 
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Regression case: 
 
Let: 
 

f(x, ω) be a family of functions bounded in [a, b] 
 

and β  a constant in the [a, b] interval. 
 
 
Definition: 
 
The dVC of the f(x, ω) family is the dVC of the following family of 
indicator functions with parameters ω  and β.  
 
 



 >

=>
otherwise.0

,),(1
)),((

βω
βω

x
x

f
fI  

 
 

x

y

a

b
β

1

f

I(f)
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Example with infinite dVC : 
 
 

f(x, w) = sin wx 
 

I (sin wx > 0) 
 
 
 
Given any set of n points it is always possible to find a sine that 
interpolates (shatters) them. 
 
 
 
 
 

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

x

y

 
Training set (black dots) with null empirical error. 

 
 
 

The empirical error is always zero. 
 

The true error is different from zero. 
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Example with finite dVC : 
 
 
 
Family of radial  kernels: 
 
 
 

)||(),,(
σ

σ
cxKcxf −

=  

 
dVC = 2 

 
 

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

y

x

 
The ERM principle is consistent and of fast learning 

 



JP Marques de Sá  VCD and NN Learnability                            49 
 

INEB/FEUP  2001
    

5.2 Validity of Inductive Theories 
 
 

How to assess whether an inductive Theory is true or false? 
 
 

 
 
Demarcation principle (Karl Popper, 1968): 
 
For an inductive Theory to be true it is necessary that the Theory can be 
falsifiable, i.e., assertions (facts) can be presented in the domain of the 
Theory that it cannot explain. 
 
 
 
 
Consider an inductive Theory to which corresponds a hypotheses space 
with finite dVC. 
 
 
Then, the growth function is bounded, i.e. there are facts in the domain of 
the Theory that it cannot explain. 
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Examples: 
 
Heredity (Mendel) 
 

gr
ee

n 
pe

as
yellow peas

x

y

y = x/3

 
 
 
Theory: Each generation presents a constant proportionality, a, between 
dominant and recessive characters. 
 
Hypotheses Space:   { }+ℜ∈=== aaxxfyH ;)(  
 

dVC finite; ERM consistent 
 

 
Assertion falsifying the Theory: the proportion between green and yellow 
peas increases with each generation. 
 
 
Astrology 
 
“Theory”: The “influence” of a planet in the individual x depends on the 
planet position in the Zodiac (angular elevation α and azimuth θ) and on 
the month, m, in which the individual was born. 
 
 
Hypotheses Space:   
 
 [ ] [ ] { }{ }12,,1,180,180,90,0);,,( L∈−∈∈= mamfH θθα  
 
 

dVC infinite;  The “Theory” explains all the facts. 
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5.3 Structural and Guaranteed Risks 
 
We consider only the classification case, where the risk is associated to 
the probability of misclassification. 
 
Error bound with finite dVC  (Vapnik, 1998): 
 
 

( ) ( ) 4/22)()(sup n
d

VC
emp e

d
enhPehPeP

VC
εε −









<







 >− ww
w

 

 
 
Thus, for finite dVC , learning is PAC, with: 
 

( ) ( ) 





−








++≤

nnd
n

n
d

hPehPe
VC

VC
emp

αln112ln)()( ww  

 
The second term quantifies the structural complexity of the model. 
 
 

dVC

Pe

Structural risk

Empirical risk

Guaranteed risk

 
 
 
Structural Risk Minimization (SRM) principle: 
 

• Define a sequence of MLPs with growing dVC  (adding hidden 
neurons). 

• For each MLP minimize the empirical risk. 
• Progress to a more complex MLP until reaching the minimum of 

the guaranteed risk. 
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6 Sample Complexity in Infinite Hypothesis Spaces 
 

6.1 Bounds on PAC Learning 
 
Definition: 
 
Let C be a class of concepts, XC 2⊆ . The Vapnik-Chervonenkis 
dimension of C, dVC(C), is the cardinality of the largest finite set of points 

XX n ⊆  that is shattered by C.  
If arbitrarily large sets of points can be shattered by C, dVC(C) is infinite. 
 
 
Theorem (Blumer et al., 1989): 
 
Let C be a class of concepts and H a hypothesis space. Then: 
 

i. C is PAC-learnable iff dVC(C) is finite. 
 
 
ii. If dVC(C) is finite, then: 

 
(a) For 0 < ε < 1 and sample size at least 
 























=

εεδε
13log

)(8
,2log4max 22

Cd
n VC

u ,  (3) 

 
any consistent algorithm is of PAC learning for C. 

 
(b) For 0 < ε < 1/2 and sample size less than 
 

( )( )( )







+−−






−

= δδε
δε

ε 121)(,1ln1max Cdn VCl ,  (4) 

 
no learning algorithm, for any hypothesis space H, is of PAC 
learning for C. 
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Application to MLPs: 
 
 
Lower bound, nl:  ε :  acceptable Pe  

Use formula (4) with formula (1). 
 
Upper bound, nu:  Use formula (2) with formula (3). 
(unrealistically high) 
 

Baum and Haussler (1989) have shown that an MLP with u 
neurons, w weights and training error ε  will have a test error of 
at most 2ε  for: 
 







=

εε
uwnu

32ln32
, 

 

with confidence parameter 
 

( ) 16//28 unw
u ewuen εδ −= . 

 
δ is very low (δ <0.005) even for low values of d and m.  
 
Practical rule: w/ε for complex MLPs. 

 
 
Bounds of n for ε = 0.05 and δ = 0.01. 
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6.2 Study Case 
 
 
Two classes of points distributed in [0, 1]2, linearly separable. 
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• Ideal hypothesis:  x2 = x1 

 
• Sampling distribution D : uniform distribution 
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Experiments with single perceptron (MLP2:1) 
 
 
 
For each n=10, 20,...,150 value, 25 sets, Xn, are generated and the 
MLP2:1 solutions obtained. For each perceptron solution the exact error 
is computed. 
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  Average error in 25 experiments 
 

  95% percentile of the errors in 25 experiments 
 

  Error, ε,  corresponding to δ=95% for nl = n and dVC=3  
       (Blumer et al.formula) 
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Experiments with linear SVM 
 
 
 
For each n=10, 15, ...,150 value, 200 sets, Xn, are generated and the 
respective SVM determined. For each SVM the exact error is computed. 
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  Average error in 200 experiments 
 

  95% percentile of the errors in 200 experiments 
 

  Error, ε,  corresponding to δ=95% for nl = n and dVC=3  
       (Blumer et al.formula) 
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Linear discriminants produced by a Perceptron 
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Linear discriminants produced by a Support Vector Machine 
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Error histograms (SVM): 
 
 

 
n=10 

 

 
n=50 

 

 
n=100 


