## The Vapnik-Chervonenkis Dimension

## and the

## Learning Capability of Neural Nets

J.P. Marques de Sá – jmsa@fe.up.pt INEB – Instituto de Engenharia Biomédica FEUP - Faculdade de Engenharia da Universidade do Porto © 1999-2001 J.P. Marques de Sá; all rights reserved (\*)

(\*) Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted provided that:

- Copies are not made or distributed for profit or commercial advantage.
- Copies bear this notice and full citation on the first page.

To copy otherwise, to republish, to post on services, or to redistribute to lists, require specific permission and/or fee.

# Programme

| 1. | Suj | pervised Learning                             |
|----|-----|-----------------------------------------------|
|    | 1.1 | Supervised Learning Model                     |
|    | 1.2 | Empirical Risk and ERM Principle              |
| 2. | PA  | C Learning                                    |
|    | 2.1 | Basic Issues of Learning                      |
|    | 2.2 | Definitions                                   |
|    | 2.3 | PAC Concept                                   |
|    | 2.4 | Examples                                      |
| 3. | Sar | nple Complexity in Finite Hypothesis Spaces   |
|    | 3.1 | Version Space                                 |
|    | 3.2 | Generalization of Training Hypotheses         |
| 4. | Va  | pnik-Chervonenkis Dimension of MLPs           |
|    | 4.1 | Linearly Separable Dichotomies                |
|    | 4.2 | Hypothesis Space of MLPs                      |
|    | 4.3 | VC Dimension                                  |
| 5. | Str | uctural Risk and SRM Principle                |
|    | 5.1 | Growth Function and ERM                       |
|    | 5.2 | Validity of Inductive Theories                |
|    | 5.3 | Structural and Guaranteed Risks               |
| 6. | Sar | nple Complexity in Infinite Hypothesis Spaces |
|    | 6.1 | Bounds on PAC Learning                        |
|    | 6.2 | Study Case                                    |

٦

## **Bibliography**

- Anthony M, Bartlett PL (1999) Neural Network Learning: Theoretical Foundations. Cambridge University Press.
- Baum EB, Haussler D (1989) What Size Net Gives Valid Generalization? Neural Computation, 1:151-160.
- Bishop CM (1995) Neural Networks for Pattern Recognition. Clarendon Press, Oxford.
- Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK (1989) Learnability and the Vapnik-Chernovenkis Dimension. J Ass Comp Machinery, 36:929-965.
- Cherkassky V, Mulier F (1998) Learning from Data, John Wiley & Sons, Inc.
- Ehrenfeucht A, Haussler D, Kearns M, Valiant L (1989) A General Lower Bound on the Number of Examples Needed for Learning. Information and Computation, 82:247-261.
- Fukunaga K (1990) Introduction to Statistical Pattern Recognition. Academic Press, New York.
- Haykin S (1999) Neural Networks. A Comprehensive Foundation. Prentice Hall Inc., New Jersey.
- Kearns MJ, Vazirani UV (1997) An Introduction to Computational Learning Theory. The MIT Press.
- Marques de Sá JP (2001) Pattern Recognition. Concepts, Methods and Applications. Springer Verlag<sup>\*</sup>
- Mirchandani G, Cao W (1989) On Hidden Neurons for Neural Nets. IEEE Tr Circ Syst, 36: 661-664.
- Mitchell TM (1997) Machine Learning. McGraw Hill Book Co., New York.
- Simon HU (1997) Bounds on the Number of Examples Needed for Learning Functions. SIAM J. of Computing, 26:751-763.
- Vapnik VN (1998) Statistical Learning Theory. Wiley, New York.

<sup>3</sup> 

<sup>\*</sup> Contains a CD which includes a program for the computation of multi layer perceptron VC dimension and sample complexity bounds.

## Symbols

| x                | object (instance, example, case)                   |
|------------------|----------------------------------------------------|
| d                | number of object features                          |
| п                | number of objects                                  |
| W                | number of weights (MLP)                            |
| X                | vector (d-dimensional)                             |
| t                | target value                                       |
| $\hat{t}$        | estimate of t                                      |
| X                | instance set                                       |
| S                | sample of <i>n</i> objects randomly drawn          |
| Р                | discrete probability                               |
| р                | pdf                                                |
| Pe               | error probability                                  |
| $x \in X \sim D$ | x drawn from $X$ according to the distribution $D$ |

## **1** Supervised Learning

### 1.1 Supervised Learning Model



| X | - | Object (instance) space |
|---|---|-------------------------|
|---|---|-------------------------|

 $X_n$  - Sample with *n* objects

T - Target values domain (e.g.  $\{0, 1\}$ )

Consider the *hypothesis*:

$$\begin{array}{rcl} h: & X \to T \\ & x \to \hat{t} = h(x) \end{array}$$

,

and the *hypothesis space* :  $H = \{h : x \to X\}$ .

Often, *x* is a *d*-dimensional vector, **x**:

$$h: \quad X \equiv \mathfrak{R}^d \quad \to \ T$$
$$\mathbf{x} \quad \to \quad \hat{t} = h(\mathbf{x})$$

## **Learning Objective:**

Given the sample or training set  $S = \{(\mathbf{x}, t(\mathbf{x})); \mathbf{x} \in X_n\}$ , find in H a hypothesis h that verifies:

$$h(\mathbf{x}) = t(\mathbf{x}), \quad \forall \ \mathbf{x} \in X$$



Supervised Learning = Inductive Learning

## Example:

Given:

$$X = \mathfrak{R}^{2}, \qquad T = \{0, 1\},$$
  

$$S = \{(\mathbf{x}, t(\mathbf{x})); \quad \mathbf{x} \in X_{n} \subseteq X, \quad t(\mathbf{x}) \in T \};$$
  

$$H = \{h : X \to T; h(\mathbf{x}, \mathbf{w}) = \mathbf{w'} \mathbf{x} + w_{0}, \quad \mathbf{w} \in \mathfrak{R}^{2} \},$$

(parametric hypothesis space).

Determine  $h \in H$ ,  $h(\mathbf{x}, \mathbf{w}) = t(\mathbf{x})$ ,  $\forall \mathbf{x} \in X$  (i.e., determine  $\mathbf{w}, w_0$ ).

## How to determine $h(\mathbf{x}, \mathbf{w})$ ?

## 1.2 Empirical Risk and ERM Principle

## **Hypothesis Risk**

Let:

- $\mathcal{A} = \{\alpha\}$ : action/decision space (e.g.  $\mathcal{A} = T$ ).
- $\lambda(\alpha, h(\mathbf{x}, \mathbf{w}))$ : cost/risk of action/decision  $\alpha$  when the machine receives  $\mathbf{x}$  and has parameter  $\mathbf{w}$ .

**Risk (individual) of x:** 

$$R(h(\mathbf{x},\mathbf{w}),\mathbf{x}) = \int_{\mathcal{A}} \lambda(\alpha,h(\mathbf{x},\mathbf{w})) p(\mathbf{x},\alpha) d\alpha$$

**Risk of hypothesis** *h*:

$$R(h) \equiv R(h(\mathbf{x}, \mathbf{w})) = \int_{X \times A} \lambda(\alpha, h(\mathbf{x}, \mathbf{w})) p(\mathbf{x}, \alpha) d\mathbf{x} d\alpha$$

Objective: find w that minimizes R(h)

### 1 - Classification Case

 $\lambda(\alpha, h(\mathbf{x}, \mathbf{w})) = \lambda(\omega, h(\mathbf{x}, \mathbf{w})), \text{ with:}$ 

- ω ∈ Ω={ ω<sub>i</sub>; i=1,..., c}, set of c classes.
  T = { t<sub>i</sub> = t (ω<sub>i</sub>); i=1,..., c}

$$R(h) = \sum_{i=1}^{c} \int_{X} \lambda(\omega_i, h(\mathbf{x}, \mathbf{w})) p(\mathbf{x}, \omega_i) d\mathbf{x}$$

**Special case:** 

$$\lambda(\omega, h(\mathbf{x}, \mathbf{w})) = \begin{cases} 0 & \text{if } t(\omega) = h(\mathbf{x}, \mathbf{w}) \\ 1 & \text{if } t(\omega) \neq h(\mathbf{x}, \mathbf{w}) \end{cases}$$

Thus:

$$R(h) = \sum_{\substack{i=1 \ \bigcup X_j \\ i \neq i}}^{c} P(\omega_j \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \sum_{\substack{i=1 \ i \neq i}}^{c} Pe(\omega_i) = Pe$$

Let *D* be the distribution of **x** in *X*:

$$R(h) = \underset{\mathbf{x} \in X \sim D}{Pe(h)} \quad true \; error \; \text{of} \; h.$$

Bayes' minimum risk rule:

$$R(\omega_i \mid \mathbf{x}) = \sum_{j \neq i} P(\omega_j \mid \mathbf{x}) = 1 - P(\omega_i \mid \mathbf{x})$$
  
Minimize  $R(\omega_i \mid \mathbf{w}) \rightarrow$  Max. Prob. *a Posteriori*

**INEB/FEUP** 

2001

### 2 - Regression Case

$$\lambda(\alpha, h(\mathbf{x}, \mathbf{w})) = \lambda(y, h(\mathbf{x}, \mathbf{w})), \qquad y = g(\mathbf{x}) + \varepsilon.$$

**Special case:** 

 $\lambda(y, h(\mathbf{x}, \mathbf{w})) = (y - h(\mathbf{x}, \mathbf{w}))^2$  $R(h) = \int_{XxT} (y - h(\mathbf{x}, \mathbf{w}))^2 p(\mathbf{x}, y) d\mathbf{x} dy$ Minimize  $R(h) \rightarrow$  LMS

## **Empirical Risk Minimization** (ERM) Principle:

Given a training set S, with n instances, determine the function  $h(\mathbf{x}, \mathbf{w})$  that minimizes:

 $R(h,n) = \int_{S} \lambda(\alpha, h(\mathbf{x}, \mathbf{w})) p(\mathbf{x}, \alpha) d\mathbf{x} d\alpha$ 

(i.e., in the sample/training set *S*)

Minimum (optimal) empirical risk:

 $R_{\text{emp}}(h(\mathbf{w}^*), n) = \min_{\mathbf{w}} R(h(\mathbf{w}), n)$ 

(in the sample/training set *S*)

## **Classic Theory of Statistical Classification**

## **Fundamental assumption:**

The distribution of the instances in any sample S is known and stationary.

#### **Classic situation:**

- The distributions of the instances are Gaussian.
- The *a posteriori* probabilities, computed according the Bayes Law, also determine the model/hypothesis (linear, quadratic, etc.).
- The ERM hypothesis is obtained through the estimation of the distribution parameters.

#### Example:

Classification with:

- $X = \Re^7$ ;  $T = \{0, 1\}$  (two classes)
- Gaussian distributions of  $\mathbf{x}$  with equal covariance, C

$$H = \left\{ h: X \to T; h(\mathbf{x}, \mathbf{w}) = \mathbf{w}' \mathbf{x} + w_0, \quad \mathbf{w} \in \Re^2 \right\} \to linear \ model$$

•  $\mathbf{w}$ ,  $w_0$  determined by *S*.



There are exact formulas to compute:

 $E[Pe_t(h,n)]: \quad \text{Average test error.}$   $Pe_t(h,\infty) = Pe(h)$   $E[Pe_d(h,n)]: \quad \text{Average training error } (average \ empirical \ risk).$   $Pe_d(h,n) = Pe_{emp}(h)$ 

 $\min_{\mathbf{w}} Pe(h(\mathbf{w})): \text{ Optimal Bayes error.}$ 

### **General Situation**

- The distributions of the instances are arbitrary.
- The model is unknown and has to be estimated.



- $R_{emp}(h,n)$ : Optimal empirical risk, obtained by ERM ( $Pe_d(h,n) = Pe_{emp}(h)$  for classification)
- R(h,n): True risk of the ERM hypothesis (Pe(h) for classification)
- $\min_{\mathbf{w}} R(h(\mathbf{w})): \qquad \text{Optimal risk}$

## The ERM principle is said to be *consistent* if:

 $R(h,n) \xrightarrow[n \to \infty]{} \min_{\mathbf{w}} R(\mathbf{w})$ 

and

$$R_{emp}(h,n) \xrightarrow[n \to \infty]{} \min_{\mathbf{w}} R(\mathbf{w})$$

**INEB/FEUP** 

2001

## **Fundamental Theorem of the**

## **Statistical Learning Theory**



For bounded cost functions the ERM principle is consistent iff:

$$\lim_{n \to \infty} P\left[\sup_{\mathbf{w}} \left| R(h(\mathbf{w})) - R_{emp}(h(\mathbf{w})) \right| > \varepsilon \right] = 0, \quad \forall \varepsilon > 0$$

(i.e., consistency must be assesses in a "worst case" situation)



The theorem does not tell us:

- Whether or not there is convergence in probability of a given hypothesis.
- Assuming that such convergence exists, what is the minimum *n* required for the empirical error to be below a given value.

## 2 PAC Learning

### 2.1 Central Issues of Learning

#### Sample complexity:

What is the  $n = card(X_n)$  needed for the learning algorithm to converge (with high probability) to effective learning?

#### **Computational complexity:**

What computational effort is required for the learning algorithm to converge (with high probability) to effective learning?

#### Algorithm performance:

How many objects will be misclassified (error) until the algorithm converges to effective learning?

#### 2.2 Definitions

X - Instance domain.

X = Set of persons

*C* - Concept space,  $C \subseteq 2^X$  (set of dichotomies of *X*)

 $C = \{$ Caucasian, Portuguese, obese, ... $\}$ 

c = obese

#### $t_c$ - Target function, concept indicator

 $t_{\text{obese}} \in T : X \rightarrow \{0, 1\}$  $t_{\text{obese}}(\text{John}) = 1$ 

Frequently, we take  $c \equiv t_c$ : obese(John) = 1

#### **D** - Sample distribution, stationary

D = distribution of persons in a supermarket

Note: When the sample distribution of the objects obeys a known model, one is able, in principle, to determine an exact answer to the preceding questions (parametric statistical classification).

### *L* - Set of learning algorithms

$$L = \{l : S \rightarrow H \}$$

The *learner*  $l \in L$  considers:

- A training set *S*, generated according to *D*.
- A set of possible hypothesis *H* having in view to learn the concept.

#### **Example:**

$$H = \{h : X \to \{0,1\}: \\ h(x) = w_2 x_2 + w_1 x_1 + w_0; \quad x_1 \equiv \text{height}(x), x_2 \equiv \text{width}(x), w_0, w_1, w_2 \in \Re\}$$

 $c_h$  - Set induced by h in X

$$c_h = \left\{ x \in X; \quad h(x) = 1 \right\}$$

Example:

$$c_h = \{x \in X; \quad \mathbf{w'x} + w_0 = 1\}; \ \mathbf{w'} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



**INEB/FEUP** 

2001

#### Pe - Error (true error) of hypothesis h

$$Pe(h) \equiv Pe_D(h) = \Pr_{x \in X \sim D} (c(x) \neq h(x))$$

The error depends on the distribution *D*:



#### **Consistent hypothesis**

*h* is consistent iff  $\forall x \in X_n$ , c(x) = h(x), i.e.,  $Pe_{emp}(h)=0$ 



### 2.3 PAC Concept

Given  $l \in L$ , generating hypothesis *h*, is it realistic to expect Pe(h)=0?

In general  $(X_n \neq X)$ , there may exist several *h*s consistent with the training set and we do not know which one learns the concept.



 $h_1$  e  $h_2$  are both consistent; however,  $h_2$  learns the concept better (smaller true error).

One can only hope that:

**INEB/FEUP** 

 $Pe_D(h) \le \varepsilon$ ,  $\varepsilon$ : error parameter.

The learner is approximately correct...

As the training set is randomly drawn there is always a non-null probability that the drawn sample contains misleading instances.



Thus, we can only expect that:

 $P(Pe_D(h) \le \varepsilon) \ge 1 - \delta$  $\delta$ : confidence parameter.

The learner is probably approximately correct...

### **Definition of PAC learning -** *Probably Approximately Correct:*

Let C represent a set (class) of concepts defined in X and l a learner using  $X_n \subseteq X$  and a hypothesis space H.

*C* is *PAC-learnable* by *l* (*l* is a PAC learning algorithm for *C*), if:

 $\forall c \in C, \forall D (in X), \forall \varepsilon, \delta, 0 < \varepsilon, \delta < 0.5,$ 

 $l \in L$  determines  $h \in H$ ,  $P(Pe(h) \le \varepsilon) \ge 1 - \delta$ ,

in polynomial time in  $1/\varepsilon$ ,  $1/\delta$ , *n* and size(*c*).

size(c) - Number of independent elements used in the representation of the concepts.

| Representation                           | size(c)                |
|------------------------------------------|------------------------|
| Boolean canonical conjunctive expression | Nr of Boolean literals |
| Decision tree                            | Nr of tree nodes       |
| Multi-layer perceptron (MLP)             | Nr of MLP weights      |

## 2.4 Examples

1 - The concept class corresponding to rectangles aligned with the axes in  $\Re^2$ , is PAC-learnable (see e.g. Kearns, Vazirani, 1997).



Thus:  $R' \subset R$  and R'-R is the reunion of 4 rectangular strips (e.g. T')



Given  $\varepsilon$  let T be the strip (for a given D) corresponding to:  $P(\mathbf{x} \in T) = \frac{\varepsilon}{4}$ .

What is the probability that:  $P(\mathbf{x} \in T') > \frac{\varepsilon}{4}$ ?

 $P(\mathbf{x} \in T') > \frac{\varepsilon}{4} \implies T' \supset T \implies T$  does not contain any point of  $X_n$ .

Probability that *T* does not contain any point of  $X_n$ :

$$\left(1-\frac{\varepsilon}{4}\right)^n$$

Hence:

$$P\left(P(x \in T') > \frac{\varepsilon}{4}\right) = \left(1 - \frac{\varepsilon}{4}\right)^n \implies$$
$$P\left((R' - R) > \varepsilon\right) \le \delta \qquad \text{with} \qquad \frac{\delta}{4} = \left(1 - \frac{\varepsilon}{4}\right)^n \implies$$
$$P(Pe(h) \le \varepsilon) \ge 1 - \delta$$

Therefore, given  $\varepsilon$  and  $\delta$  the concept is PAC-learnable for *n* such that:

$$\left(1 - \frac{\varepsilon}{4}\right)^n \le \frac{\delta}{4}$$
$$\left(1 - x\right) \le e^{-x} \quad \Rightarrow \quad 4e^{-n\varepsilon/4} \le \delta \quad \Rightarrow \quad n \ge \left(\frac{4}{\varepsilon}\right) \ln\left(\frac{4}{\delta}\right)$$

*n* is polynomial in  $1/\varepsilon$  and  $1/\delta$ . For instance, for  $\varepsilon = \delta = 0.05$ : n > 351

**INEB/FEUP** 

2001

2 - Let:

$$X = \{(a_1, a_2, \dots, a_d); a_i \in \{0, 1\}\} \equiv \{0, 1\}^d$$

Each  $a_i$  represents the value of a Boolean variable:

$$a_i = 0 \quad \rightarrow \quad \overline{x}_i \\ a_i = 1 \quad \rightarrow \quad x_i$$

Let *C* be the class of Boolean conjunctions, e.g.:

 $x_1.\overline{x}_3.x_4$ 

 $\forall c \in C, \quad \text{size}(c) \leq 2d$ .

The class of Boolean conjunctions is PAC-learnable (see e.g. Kearns e Vazirani, 1997).

Algorithm: Remove from  $x_1 \overline{x}_1 x_2 \overline{x}_2 \dots x_d \overline{x}_d$  any literal not matching a true value of the respective variable in an instance **x** with  $t(\mathbf{x})=1$ .

Example:

$$S = \{ ((0,0,1),1), ((0,1,0),0), ((0,1,1),1) \}$$
$$x_1 \bar{x}_1 x_2 \bar{x}_2 x_3 \bar{x}_3 \rightarrow \bar{x}_1 \bar{x}_2 x_3 \rightarrow \bar{x}_1 x_3$$

It can be shown that: 
$$n \ge \frac{2d}{\varepsilon} (\ln(2d) + \ln(\frac{1}{\delta}))$$

3 - Let  $X = \{0, 1\}^d$  and C be the class of Boolean disjunctive forms with three terms:

u + v + w;

each term is a conjunctive form with at most 2d literals.

 $\forall c \in C, \quad \text{size}(c) \leq 6d$ 

The following can be shown (see discussion e.g. in Kearns and Vazirani, 1997):

- Learning this concept class is equivalent to solving the problem of colouring graph nodes using 3 colours, in such a way that all edges have different node colours. This is supposedly a NP problem, implying a non-PAC learning of the former problem.
- If a conjunctive representation of the problem is accepted then it becomes PAC !

## **3** Sample Complexity in Finite Hypothesis Spaces

Is it possible to obtain a lower bound for the sample complexity, valid in any situation?

### equivalently

How many objects must a training set at least have so that, with high probability, one can determine an effective hypothesis?

## 3.1 Version Space

## **Definitions:**

Version space:

$$VS_{H,S} = \left\{ h \in H; \quad \forall (x, c(x)) \in S, \quad h(x) = c(x) \right\}$$

Set of consistent hypotheses, with *training error*  $Pe_{emp}(h) = 0$ .

#### *ɛ*-Exhausted version space:

Let *c* be a concept. The version space is  $\varepsilon$ -exhausted with respect to *c* and *D* if any hypothesis of  $VS_{H,S}$  has an error below  $\varepsilon$ .

$$\forall h \in VS_{H,S}, \quad Pe(h) < \varepsilon$$

#### Example of a 0.2-exhausted version space:



## 3.2 Generalization of Training Hypotheses

## **Theorem:**

For a finite *H* with |H| distinct hypotheses and a sample *S* with  $n \ge 1$  objects, randomly drawn from a target concept *c*, then, for  $0 \le \varepsilon \le 1$ , the probability of the version space  $VS_{H,S}$  not being  $\varepsilon$ -exhausted (with respect to *c*) is less or equal than:

$$|H|e^{-\varepsilon n}$$

#### **Informal notion:**

The probability of finding a good training hypothesis (consistent with the training set) but, as a matter of fact, a bad hypothesis (with true error greater than  $\varepsilon$ ) is smaller than  $|H| e^{-\varepsilon n}$ , where *n* is the number of training objects.

#### **Demonstration:**

- 1. Let  $h_1, h_2, ..., h_k$  be all the hypotheses with  $Pe \ge \varepsilon$ .
- 2.  $VS_{H,S}$  is not  $\varepsilon$ -exhausted if  $\exists h_i \in VS_{H,S}$  i = 1, ..., k
- 3.  $Pe(h_i) \ge \varepsilon \implies P(h_i(x) = c(x)) = 1 \varepsilon, \quad \forall x \in X_n$
- 4.  $P(h_i \text{ consistent}) = P(h_i(x_1) = c(x_1) \land \ldots \land h_i(x_n) = c(x_n)) = (1 \varepsilon)^n$

 $P(h_1 \text{ consistent} \lor \ldots \lor h_k \text{ consistent}) =$ 

5.  $k(1-\varepsilon)^n \leq |H|(1-\varepsilon)^n \leq |H|e^{-\varepsilon n}$ 

The number of needed training examples in order to attain a probability below a given value,  $\delta$ , is:

$$|H|e^{-\varepsilon n} \le \delta \qquad \Rightarrow \qquad n \ge \frac{1}{\varepsilon}(\ln|H| + \ln(\frac{1}{\delta}))$$

#### Notes:

- 1. Note the similarity between the obtained expression with the previous ones
- 2. Note that the *n* bound can be quite pessimistic. As a matter of fact the Theorem states a probability growing with |H| (it can be bigger than 1!)
- 3. Note that the Theorem does not apply to infinite |H|. For this situation one needs another complexity measure of H.

## 4 Vapnik-Chervonenkis Dimension of MLPs

We measure the complexity of H not by the number of distinct hypotheses but, instead, by the number of distinct instances that can be discriminated by H.

## 4.1 Linearly Separable Dichotomies

#### **Definition:**

A set of points is *regularly distributed* in  $\Re^d$  if no subset of (d+1) points is contained in a hyperplane of  $\Re^d$ .

## Theorem (Cover, 1965):

The number of linearly separable dichotomies (i.e. by a linear discriminant) of *n* points regularly distributed in  $\Re^d$ , is:

$$D(n,d) = \begin{cases} 2\sum_{i=0}^{d} C(n-1,i) &, n > d+1; \\ 2^{n} &, n \le d+1. \end{cases}$$

Case d=2:

For n=3, all  $2^3=8$  dichotomies are linearly separable; For n=4, only 14 out of 16 dichotomies are linearly separable; For n=5, only 22 out of 32 dichotomies are linearly separable.

| Number of points               | 2 | 3 | 4  | 5  | 6  | 7   | 8   |
|--------------------------------|---|---|----|----|----|-----|-----|
| Dichotomies                    | 4 | 8 | 16 | 32 | 64 | 128 | 256 |
| Linearly separable dichotomies | 4 | 8 | 14 | 22 | 32 | 44  | 58  |

## 4.2 Hypotheses Space of MLPs

Let *H* be the hypotheses space of a MLP with:

- Two layers
- A hidden layer with *m* neurons
- One output
- Neuronal activation function: threshold function.



#### **Model complexity:**

Number of neurons (processing units):

$$u = m + 1$$

Number of weights (model parameters):

$$w = (d+1)m + m + 1$$

## Model representation capability:

Each neuron of the first layer implements a linear discriminant, dividing the space into half-spaces:

$$y_j = f(\mathbf{w'x} + w_0), \quad f, \text{ threshold function (e.g. in } \{-1, 1\})$$

The output layer implements logical combinations of the half-spaces.





| $x_1$ | $x_2$ | $y_1$ | $y_2$ | $z = y_1 OR y_2$ |
|-------|-------|-------|-------|------------------|
| 1     | 1     | -1    | -1    | -1               |
| 1     | -1    | -1    | 1     | 1                |
| -1    | 1     | 1     | -1    | 1                |
| -1    | -1    | -1    | -1    | -1               |

## Theorem (Mirchandani and Cao, 1989):

The maximum number of regions linearly separable in  $\Re^d$ , by a MLP (satisfying the mentioned conditions) with *m* hidden neurons, is:

$$R(m,d) = \sum_{i=0}^{\min(m,d)} C(m,i).$$
(1)

Note that:  $R(m, d) = 2^m$  for  $m \le d$ .

#### **Corolary:**

Lower bound for the number of training set objects:

$$n \ge R(m, d)$$

## <u>Case *d*=2:</u>

Number of linearly separable regions:

| т                        | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8  |
|--------------------------|---|---|---|----|----|----|----|----|
| <i>R</i> ( <i>m</i> , 2) | 2 | 4 | 7 | 11 | 16 | 22 | 29 | 37 |

### <u>Case d=2, m=1:</u>

- R(1, 2) = 2 linearly separable regions, by one linear discriminant.
- Maximum number of points allowing all possible dichotomies with one linear discriminant: n = 3





D(n,2): Number of linearly separable dichotomies by a MLP2:1.

- Up to n=3 all  $2^n$  linearly separable dichotomies are obtainable. It is only beyond this value that the MLP is able to generalize.
- n=3 measures the sample complexity of a MLP with m=1.
- *N*(*n*): Number of linearly separable dichotomies, implementable by a MLP in *n* points (*D*(*n*,2) for *m*=1).
- The MLP growth function is defined as:

$$G(n) = \ln N(n)$$



The G(n) evolution is always as illustrated.

#### Case *m*=2, *d*=2 :

There is a maximum of R(2,2)=4 linearly separable regions (with two discriminants)



### Linearly separable dichotomies that can be obtained:

n = 4 : all.

n = 5: lying in a convex hull: all.

n = 6: lying in a convex hull: some dichotomies are not obtainable.



### **Definition:**

A set with *n* points is *shattered* by the MLP if  $N(n) = 2^n$ .

### 4.3 Dimensão de Vapnik-Chervonenkis

### **Definition:**

The Vapnik-Chervonenkis dimension,  $d_{VC}$ , of an MLP is the cardinality of the largest regularly distributed set of points that can be shattered by the MLP.

### **Informal notion:**

Largest number of training set examples that can be learned without error for all possible  $\{0, 1\}$  labellings.

 $n \le d_{VC}$ : consistent learning without generalization.

# <u>CASE *d*=2, *m*=1:</u>

Is there a 4 points set that can be shattered? No. Hence  $d_{VC} = 3$ .



# **Calculation of** *d<sub>VC</sub>***:**

### Lower bound is easy to find:

 $d_{VC}$  (MLP)  $\geq k$ : Find one set of k points that can be shattered by the MLP.

 $d_{VC}$  (MLP)  $\geq R(m, d)$ 

### Upper bound is difficult to find:

 $d_{VC}$  (MLP)  $\leq k$ : Prove that no set of k+1 points can be shattered by the MLP.

*n*=5 ? Yes.



n=6? Yes, for a convex hull of 5 points.



n=7 ? No. Hence,  $d_{VC} = 6$ .



# Lower bound of *d<sub>VC</sub>*:



 $d_{VC}$  (MLP) = R(m, d)

Upper bound of 
$$d_{VC_2}$$
 For an MLP with *u* neurons and *w* weights (Baum and Haussler, 1989):

$$d_{VC} \le 2w \log_2(eu) \tag{2}$$

Case d=2:

Case *d*=5:



# 5 Structural Risk and VC Dimension

### 5.1 Growth function and ERM

The ERM principle is consistent iff:

$$\lim_{n \to \infty} P\left[\sup_{\mathbf{w}} \left| R(h(\mathbf{w})) - R_{emp}(h(\mathbf{w})) \right| > \varepsilon \right] = 0, \quad \forall \varepsilon > 0$$

The convergence is called *fast* if:

$$\forall \varepsilon > 0 \quad \exists n > n_0, b, c > 0 \quad P\left[\sup_{\mathbf{w}} \left| R(h(\mathbf{w})) - R_{emp}(h(\mathbf{w})) \right| > \varepsilon \right] < be^{-cn\varepsilon^2}$$

#### The following can be proved:

• The ERM principle is consistent and of fast learning iff:

$$\lim_{n \to \infty} \frac{G(n)}{n} = 0$$

• G(n) is either linear in n or, beyond a certain value of n, is bounded by

$$G(n) \le d_{VC}(1 + \ln\frac{n}{d_{VC}})$$

• Thus, if  $d_{VC}$  is finite the ERM principle is consistent and of fast learning.

# <u>Example</u>

MLP with d=2, m=1.

$$N(n) = 2n + (n-1)(n-2) = n^2 - n + 2$$
, for  $n > 3$ 

Therefore,

$$G(n) = \ln(n^2 - n + 2)$$
, for  $n > 3$ 



Let, for *n*>3 :

$$H(n) = d_{VC} \left(1 + \ln \frac{n}{d_{VC}}\right) = 3\left(1 + \ln \frac{n}{3}\right) = 3\ln \frac{ne}{3} = \ln(\frac{ne}{3})^3$$

For x > 1/2:

$$\ln x = \frac{x-1}{x} + \frac{(x-1)^2}{2x^2} + \dots + \frac{(x-1)^k}{kx^k} + \dots$$

But: 
$$\frac{1}{x} \frac{(x-1)^k}{kx^k} \xrightarrow[x \to \infty]{} 0 \implies \frac{H(n)}{n} \xrightarrow[n \to \infty]{} 0$$

Since: 
$$n^2 - n + 2 < (\frac{ne}{3})^3$$
 We have:  $\lim_{n \to \infty} \frac{G(n)}{n} = 0$ 

**INEB/FEUP** 

2001

# Practical importance of the preceding example:

Given:

One (arbitrary) dichotomy (concept).

Consider:

The perceptron implementing one linear discriminant designed with a training set (randomly drawn according to any distribution D)

Then:

Its empirical and true risks are guaranteed to converge to the optimal risk.

(i.e., the perceptron has generalization capability)

Likewise for any MLP since the  $d_{VC}$  is finite.

#### **Regression case:**

Let:

 $f(x, \omega)$  be a family of functions bounded in [a, b]

and  $\beta$  a constant in the [a, b] interval.

## **Definition:**

The  $d_{VC}$  of the  $f(x, \omega)$  family is the  $d_{VC}$  of the following family of *indicator functions* with parameters  $\omega$  and  $\beta$ .

$$I(f(\mathbf{x}, \omega) > \beta) = \begin{cases} 1 & f(\mathbf{x}, \omega) > \beta, \\ 0 & \text{otherwise.} \end{cases}$$



### **Example with infinite** *d<sub>VC</sub>* :

$$f(x, w) = \sin wx$$
$$I(\sin wx > 0)$$

Given any set of n points it is always possible to find a sine that interpolates (shatters) them.



Training set (black dots) with null empirical error.

The empirical error is always zero.

The true error is different from zero.

Family of radial kernels:

$$f(x,c,\sigma) = K(\frac{|x-c|}{\sigma})$$

$$d_{VC} = 2$$



The ERM principle is consistent and of fast learning

### 5.2 Validity of Inductive Theories

How to assess whether an inductive Theory is true or false?

Demarcation principle (Karl Popper, 1968):

For an inductive Theory to be true it is necessary that the Theory can be *falsifiable*, i.e., assertions (facts) can be presented in the domain of the Theory that it cannot explain.

Consider an inductive Theory to which corresponds a hypotheses space with finite  $d_{VC}$ .

Then, the growth function is bounded, i.e. there are facts in the domain of the Theory that it cannot explain.

### **Examples:**

**Heredity (Mendel)** 



<u>Theory</u>: Each generation presents a constant proportionality, a, between dominant and recessive characters.

<u>Hypotheses Space</u>:  $H = \left\{ y = f(x) = ax; a \in \Re^+ \right\}$ 

 $d_{VC}$  finite; ERM consistent

Assertion falsifying the Theory: the proportion between green and yellow peas increases with each generation.

#### Astrology

<u>"Theory</u>": The "influence" of a planet in the individual x depends on the planet position in the Zodiac (angular elevation  $\alpha$  and azimuth  $\theta$ ) and on the month, *m*, in which the individual was born.

Hypotheses Space:

$$H = \{ f(\alpha, \theta, m); \quad a \in [0,90], \theta \in [-180,180], \quad m \in \{1, \dots, 12\} \}$$

 $d_{VC}$  infinite; The "Theory" explains all the facts.

### 5.3 Structural and Guaranteed Risks

We consider only the classification case, where the risk is associated to the probability of misclassification.

Error bound with finite  $d_{VC}$  (Vapnik, 1998):

$$P\left(\sup_{\mathbf{w}} \left| Pe(h(\mathbf{w})) - Pe_{emp}(h(\mathbf{w})) \right| > \varepsilon \right) < \left(\frac{2en}{d_{VC}}\right)^{d_{VC}} e^{-\varepsilon^2 n/4}$$

Thus, for finite  $d_{VC}$ , learning is PAC, with:

$$Pe(h(\mathbf{w})) \le Pe_{emp}(h(\mathbf{w})) + \sqrt{\frac{d_{VC}}{n}\ln\left(\frac{2n}{d_{VC}} + 1\right) - \frac{1}{n}\ln\left(\frac{\alpha}{n}\right)}$$

The second term quantifies the *structural complexity* of the model.



Structural Risk Minimization (SRM) principle:

- Define a sequence of MLPs with growing  $d_{VC}$  (adding hidden neurons).
- For each MLP minimize the empirical risk.
- Progress to a more complex MLP until reaching the minimum of the guaranteed risk.

# **6** Sample Complexity in Infinite Hypothesis Spaces

## 6.1 Bounds on PAC Learning

### **Definition:**

Let *C* be a class of concepts,  $C \subseteq 2^X$ . The Vapnik-Chervonenkis dimension of *C*,  $d_{VC}(C)$ , is the cardinality of the largest finite set of points  $X_n \subseteq X$  that is shattered by *C*.

If arbitrarily large sets of points can be shattered by C,  $d_{VC}(C)$  is infinite.

## Theorem (Blumer et al., 1989):

Let *C* be a class of concepts and *H* a hypothesis space. Then:

- i. *C* is PAC-learnable iff  $d_{VC}(C)$  is finite.
- ii. If  $d_{VC}(C)$  is finite, then:

(a) For  $0 < \varepsilon < 1$  and sample size at least

$$n_u = \max\left[\frac{4}{\varepsilon}\log_2\left(\frac{2}{\delta}\right), \ \frac{8d_{VC}(C)}{\varepsilon}\log_2\left(\frac{13}{\varepsilon}\right)\right], \tag{3}$$

any consistent algorithm is of PAC learning for C.

(b) For  $0 < \varepsilon < 1/2$  and sample size less than

$$n_{l} = \max\left[\frac{1-\varepsilon}{\varepsilon}\ln\left(\frac{1}{\delta}\right), d_{VC}(C)\left(1-2\left(\varepsilon\left(1-\delta\right)+\delta\right)\right)\right], \quad (4)$$

no learning algorithm, for any hypothesis space H, is of PAC learning for C.

**INEB/FEUP** 

2001

## **Application to MLPs:**

| Lower bound, <i>n</i> <sub>l</sub> : | $\varepsilon$ : acceptable <i>Pe</i> |
|--------------------------------------|--------------------------------------|
|                                      | Use formula (4) with formula (1).    |

**Upper bound**,  $n_u$ : Use formula (2) with formula (3). (unrealistically high)

Baum and Haussler (1989) have shown that an MLP with u neurons, w weights and training error  $\varepsilon$  will have a test error of at most  $2\varepsilon$  for:

$$n_u = \frac{32w}{\varepsilon} \ln \left( \frac{32u}{\varepsilon} \right),$$

with confidence parameter

$$\delta = 8(2uen_u / w)^w e^{-\varepsilon n_u / 16}.$$

 $\delta$  is very low ( $\delta < 0.005$ ) even for low values of *d* and *m*.

Practical rule:  $w/\varepsilon$  for complex MLPs.

Bounds of *n* for  $\varepsilon = 0.05$  and  $\delta = 0.01$ .



# 6.2 Study Case

Two classes of points distributed in  $[0, 1]^2$ , linearly separable.



- Ideal hypothesis:  $x_2 = x_1$
- Sampling distribution *D* : uniform distribution

### **Experiments with single perceptron (MLP2:1)**

For each n=10, 20,...,150 value, 25 sets,  $X_n$ , are generated and the MLP2:1 solutions obtained. For each perceptron solution the exact error is computed.





-8-

95% percentile of the errors in 25 experiments

Error,  $\varepsilon$ , corresponding to  $\delta=95\%$  for  $n_l = n$  and  $d_{VC}=3$  (Blumer *et al*.formula)

### **Experiments with linear SVM**

For each n=10, 15, ..., 150 value, 200 sets,  $X_n$ , are generated and the respective SVM determined. For each SVM the exact error is computed.



Average error in 200 experiments

95% percentile of the errors in 200 experiments

Error,  $\varepsilon$ , corresponding to  $\delta$ =95% for  $n_l$ = n and  $d_{VC}$ =3 (Blumer *et al*.formula)



Linear discriminants produced by a Perceptron



Linear discriminants produced by a Support Vector Machine

