IFAD

VDMTools®
Validated Design through Modelling

Overview of VDM -SL/++

IFAD A/S

Forskerparken 10
www.ifad.dk DK-5230 Odense M

Denmark 1

D
VDM-SL A

o |ISO Standard 1996 for flat language
o Different module proposals

o A de-facto standard module approach
e Imports
o EXports
o Parameterisation
e Instantiation

VDM-SL Module Outline IFAD

nodul e <nodul e- nane>
—sarareterse)
| nports
rastantrattons > |nterface
exports

definitions
state ™

types
val ues

f uncti ons >> Definitions

operati ons

end <nodul e- nane> 3

VDM++ Class Qutline

IFAD

cl ass <cl ass- nane>

| nst ance vari abl es

types
val ues

functi ons
operati ons

t hr ead

sync

end <cl ass- nane>

Internal object state

Definitions

Dynamic behaviour

Synchronization control

. IFAD
VDM++ Qverview

> Access Modifiers and Constructors

o IFAD
Access Modifiers

e VDM++ Class Members may have their
access specified as publ i c, pri vat e or
pr ot ect ed.

o The default for all membersis pri vat e

o Access modifiers may not be narrowed e.g. a
subclass can not override a public operation in
the superclass with a private operation in the
subclass.

e St at 1 ¢ modifiers can be used for definitions
which are independent of the object state.

IFAD
Constructors

e Each class can have a number of
constructors

e Syntax identical to operations with a
reference to the class name in return
type

e The return does not need to be made
explicitly

e Can be invoked when a new Instance
of a class gets created

. IFAD
VDM++ Qverview

v
» Instance Variables
o
o

. IFAD
Instance Variables (1)

e Used to model attributes

o Consistency properties modelled as
Invariants

cl ass Person
t ypes
string = seq of char
| nst ance vari abl es
nane: string :=1[];
age: int := 0;
lnv 0 <= age and age <= 99;
end Person

. IFAD
Instance Variables (2)

e Used to model associations

o ODbject reference type simply written as the
class name, e.g. Person

o Multiplicity using VDM-SL data types

cl ass Person cl ass Conpany
| nst ance vari abl es end Conpany
name: string :=[];
age: int := 0;

enpl oyer: set of Conpany

end Per son
10

. IFAD
Instance Variable Access

o Instance variables can only be accessed directly
from within the object they belong to.

o To read/write instance variables “from outside”
access operations must be defined

cl ass Per son

| nst ance vari abl es
nane: string :=1[];

oper ati ons
public GetNanme: () ==> string
Get Nane () ==
return nane
end Person
11

. IFAD
VDM++ Qverview

12

C IFAD
Type Definitions

o Basic types o Compound types
« Boolean o Settypes
« Numeric e Seqguence types
« Tokens » Map types

o Product types

o Composite types
o Union types

o Optional types

o Function types
13

e Characters
o Quotations

Invariants can be added

IFAD

Boolean

not b Negation bool -> bool

a and b Conjunction bool * bool -> bool
a or b Disjunction bool * bool -> bool
a => b Implication bool * bool -> bool
a <=> b Biimplication bool * bool -> bool
a=m~=n Equality bool * bool -> bool
a <>0b Inequality bool * bool -> bool

Quantified expressions can also be considered to be
basic operators but we will present them together with

the other general expressions

14

IFAD

Numeric (1)

- X Unary minus real -> real

abs X Absolute value real -> real

fill oor Xx Floor real -> Int

X + Yy Sum real * real -> real
X -y Difference real * real -> real
X *y Product real * real -> real
X [y Division real * real -> real
X div y Integer division Iint * int -> int

X remy Remainder Iint * int -> [nt

X mod y Modulus Iint * Int -> Int

X ** y Power real * real -> real

15

IFAD

Numeric (2)

X <Yy Less than real real -> bool
X >y Greater than real real -> bool
X <=y Less or equal real real -> bool
X >= Yy Greater or eqgual real real -> bool
X =Yy Equal real real -> bool
X <>y Not equal real real -> bool

16

Product and Record Types

IFAD

o Product type definition:

Al * A2 * ...* An
Construction of a tuple:
nk _(al, a2, .., an)

o Record type definition:
A:: selfirst : Al

sel sec . A2

sel n . An
Construction of a record:

nk_A(al, az, ..., an)

17

IFAD
Set Operators

e in set sl Membership A * set of A -> bool
e not In set sl Not membership A * set of A -> bool

sl union s2 Union set of A* set of A -> set of A
sl inter s2 Intersection set of A* set of A-> set of A
sl \ s2 Difference set of A* set of A-> set of A
sl subset s2 Subset set of A* set of A -> bool

sl psubset s2 Proper subset set of A* set of A -> bool

sl = s2 Equality set of A* set of A -> bool

sl <> s2 Inequality set of A* set of A -> bool
card si Cardinality set of A -> nat

duni on s1 Distr. union set of set of A -> set of A
dinter sl Distr. intersection set of set of A -> set of A
power sl Finite power set set of A -> set of set of A

18

Map Operators

IFAD

dom m
rng m

Ml ++ nR

nMerge ns
S <. m
S <-. m
m:> s
m:-> s
n(d)

| nVver se m
mL = nP
mL <> nP

il nmuni on nR

Domain
Range
Merge

Override

Distr. merge

Rng. restr. to
Rng. restr. by
Map apply
Map inverse
Equality
Inequality

(map A to B)
(map A to B)

-> set of A
-> set of B

(map Ato B) * (nap Ato B) ->

nap Ato B

(map Ato B) * (nap Ato B) ->

nap Ato B

set of (map A to B)
Dom. restr. to set of A * (map A to B) ->
Dom. restr. by set of A * (map A to B) ->
(map A to B)
(map Ato B) * set of A ->

- > map
rep
rep
rep
rep

* set of A ->

(map Ato B) * A->B

inmap Ato B -> innap Bto A
(map Ato B) * (nap Ato B) ->
(map Ato B) * (nap Ato B) ->

Ato B

Ato
Ato
Ato
Ato

bool
bool

W W W W

19

IFAD
Sequence Operators

hd | Head segl of A -> A

tl | Tail segl of A -> seqg of A

len | Length seqg of A -> nat

el ens | Elements seq of A -> set of A

| nds | Indexes seqg of A -> set of natl

11 A |2 Concatenation seqg of A * seqg of A -> seq of A

conc || Distr. conc. seq of seq of A -> seqg of A

| (1) Seg. application segl of A * natl -> A

| ++ m Seg. modification segl of A * nap natl to A ->
segl of A

1 =12 Equality seq of A * seq of A -> bool

1 <> |2 Inequality. seqg of A * seq of A -> bool

20

. . IFAD
Comprehension Notation

Convenient comprehensions exist for sets, maps and sequences:

Set comprehension:
{ elem| bind-list & pred } e.qg.
{ x * 2] xinset {1,.,10} & x nod 2 = 0}

o« Map comprehension:
{ maplet | bind-list & pred } e.g.

{ x |->f(x) | xinset s & p(x)}
e Sequence comprehension:
| elem| setbind & pred] e.g.
[1(1) ** 2] I inset inds | &I(i) < 10]
o The set binding is restricted to sets of numeric values, which
are used to find the order of the resulting sequence

21

. IFAD
Invariants

Even = nat
inv n==nnod 2 =0

Special Pair = nat * real
inv nk_ (n,r) == n <

DisjointSets = set of set of A
Inv ss == forall sl1, s2 in set ss &
Sl <> s2 => sl inter s2 = {} 29

. IFAD
VDM++ Qverview

v
v
v
» Functions
o
o

23

. CL IFAD
Function Definitions (1)

o Explicit functions:
f: A*B* ...*Z->RL* R * ...* Rn
f(a,b,.,z) ==

expr

pre preexpr(a,b, .., 2z)
post postexpr(a,b, ...z, RESULT)

e Implicit functions:
f(a:A b:B, .., z:2) rl:Rl, ., rn:Rn
pre preexpr(a,b, .., 2)
post postexpr(a,b,.,z,rl,..,rn)

Implicit functions cannot be executed by the VDM interpreter.

24

. CL IFAD
Function Definitions (2)

o Extended explicit functions:
f(a:A b:B, .., z:2Z) r1l:Rl, .., rn:Rn ==
expr
pre preexpr(a,b, .., 2)
post postexpr(a,b,.,z,rl,..,rn)
Extended explicit functions are a non-standard combination of
the implicit colon style with an explicit body.

e Preliminary explicit functions:
f: A*B* ...* Z->RL* R * ..* Rn
f(a,b,.,z) ==
IS not yet specified
pre preexpr(a,b, .., 2)
post postexpr(a,b, ...z, RESULT)

25

. IFAD
VDM++ Qverview

v X X X X

Expressions,Patterns,Bindings

26

. IFAD
Expressions

Let and let-be expressions © Define expressions

If-then-else expressions Lambda expressions
Cases expressions Special VDM++ Expressions
Quantified expressions o New and Self

expressions

o Class membership
expressions

o Object comparison

Set expressions
Sequence expressions
Map expressions

Tuple expressm_ns expressions
Record ex!oressmns . Object reference
IS expressions expressions

27

. IFAD
Patterns and Pattern Matching

o Patterns are empty shells
o Patterns are matched thereby binding the pattern identifiers
o There are special patterns for
o Basic values
o Pattern identifiers
e Don’t care patterns
o Sets
e Sequences
o Tuples
e Records
but not for maps

28

C IFAD
Bindings

o A binding matches a pattern to a value.
o A set binding:
pat 1 n set expr
where expr must denote a set expression.
pat is bound to the elements of the set expr
o A type binding:
pat : type
Here pat is bound to the elements of type.

Type bindings cannot be executed by the Toolbox,
because such types can be infinitely large.

29

. IFAD
VDM++ Qverview

v s X X X X

Operations

30

. . IFAD
Operation Definitions (1)

o EXxplicit operation definitions:
oo A*B* ... ==>R
o(a,b,...) ==

st
pre expr
post expr

o Implicit operations definitions:
o(a:A b:B,...) r:R
ext rd ...

W
pre expr
post expr

31

. . IFAD
Operation Definitions (2)

o Preliminary operation definitions:

oo A*B* ... ==>R
o(a,b,...) ==

IS not yet specified
pre expr
post expr

o Delegated operation definitions:

oo A*B* ... ==>R
o(a,b,...) ==

| S subcl ass responsibility
pre expr
post expr

32

. CL IFAD
Operation Definitions (3)

e Operations in VDM++ can be
overloaded

o Different definitions of operations with
same name

o Argument types must not be
overlapping statically (structural
equivalence omitting invariants)

33

. IFAD
VDM++ Qverview

v s X X X < X

Statements

34

Statements

IFAD

e Let and Let-be
statements

Define Statements
Block statements
Assign statements
Conditional statements
For loop statements

Call Statements

Non deterministic
statements

Return statements

Exception handling
statements

Error statements
ldentity statements

While loop statements Special VDM++ Statement

start and startlist
statements

35

. IFAD
VDM++ Qverview

Concurrency 36

. IFAD
Concurrency in VDM++

Objects can be

o Passive: Change state on request only, i.e. as a
consequence of an operation invocation.

e Active: Can change their internal state spontaneously
without any influence from other objects. Active objects
have their own thread of control.

Why use concurrency in specifications?

o The real world is highly concurrent.
Consequently models of the world are likely to be
concurrent too.

o For efficiency reasons in a multi processor environment.

37

. . IFAD
Passive Objects

o Respond to requests (operation
Invocations) from active objects (clients).

o Supply an interface (a set of operations) for
their clients.

e NoO thread.
e Can serve several clients.

38

.. IFAD
Permission Guards

Synchronization for objects is specified using VDM++'s
sync clause:
sync
per <operation-nane> => <condition>
The per clause is known as a permission guard. condition
IS a boolean expression, which involves the attributes of the

class, that must hold in order for operation-name to be
Invoked.

Permission guards reflecting the bounding of the buffer :

sync
per Getltem=> len buf >0
per Putltem => | en buf < size

39

. IFAD
Further Information

John Fitzgerald, Peter Gorm Larsen
Modelling Systems, Practical Tools and Techniques in Software
Development

John Dawes
The VDM-SL Reference Guide

Derek Andrews, Darrel Ince
Practical Formal Methods with VDM

Cliff Jones
Systematic Software Development with VDM (2nd edition)

John Lathan, Vicky Bush, lan Cottam
The Programming Process

John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat
Round-trip engineering with VDM++ and UML (forthcomming)

40

