
1IF
A

D
IFAD

VDMToolsVDMTools®®

VValidated alidated DDesign through esign through MModellingodelling

Overview of VDM -SL/++Overview of VDM -SL/++

www.ifad.dkwww.ifad.dk

IFAD A/SIFAD A/S
Forskerparken 10Forskerparken 10
DK-5230 Odense MDK-5230 Odense M
DenmarkDenmark

2IF
A

D
IFADVDM-SLVDM-SL

● ISO Standard 1996 for flat language
● Different module proposals
● A de-facto standard module approach

● Imports
● Exports
● Parameterisation
● Instantiation

3IF
A

D
IFADVDM-SL Module OutlineVDM-SL Module Outline

modulemodule <module-name><module-name>

definitionsdefinitions

endend <module-name><module-name>

DefinitionsDefinitions

InterfaceInterface

statestate

typestypes

valuesvalues

functionsfunctions

operationsoperations

......

parametersparameters

importsimports

instantiationsinstantiations

exportsexports

......

4IF
A

D
IFAD

VDM++ Class OutlineVDM++ Class Outline
classclass <class-name><class-name>

endend <class-name><class-name>

instance variablesinstance variables

......

typestypes

valuesvalues

functionsfunctions

operationsoperations

......

threadthread

......

syncsync

......

Internal object stateInternal object state

DefinitionsDefinitions

Dynamic behaviourDynamic behaviour

Synchronization controlSynchronization control

5IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

6IF
A

D
IFAD

Access ModifiersAccess Modifiers

● VDM++ Class Members may have their
access specified as public, private or
protected.

● The default for all members is private
● Access modifiers may not be narrowed e.g. a

subclass can not override a public operation in
the superclass with a private operation in the
subclass.

● static modifiers can be used for definitions
which are independent of the object state.

7IF
A

D
IFAD

ConstructorsConstructors

● Each class can have a number of
constructors

● Syntax identical to operations with a
reference to the class name in return
type

● The return does not need to be made
explicitly

● Can be invoked when a new instance
of a class gets created

8IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

9IF
A

D
IFAD

Instance Variables (1)Instance Variables (1)

● Used to model attributes
● Consistency properties modelled as

invariants
class Personclass Person
typestypes
string = seq of charstring = seq of char

instance variablesinstance variables
name: string := [];name: string := [];
age: int := 0;age: int := 0;
inv 0 <= age and age <= 99;inv 0 <= age and age <= 99;

end Personend Person

10IF
A

D
IFAD

Instance Variables (2)Instance Variables (2)

● Used to model associations
● Object reference type simply written as the

class name, e.g. Person
● Multiplicity using VDM-SL data types

class Personclass Person
......

instance variablesinstance variables
name: string := [];name: string := [];
age: int := 0;age: int := 0;
employer: set of Companyemployer: set of Company
......

end Personend Person

class Companyclass Company
......

end Companyend Company

11IF
A

D
IFAD

Instance Variable AccessInstance Variable Access
● Instance variables can only be accessed directly

from within the object they belong to.
● To read/write instance variables “from outside”

access operations must be defined

class Personclass Person
......

instance variablesinstance variables
name: string := [];name: string := [];
......

operationsoperations
publicpublic GetNameGetName: () ==> string: () ==> string
GetName () ==GetName () ==
return namereturn name

end Personend Person

12IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

13IF
A

D
IFAD

Type DefinitionsType Definitions

● Basic types
● Boolean
● Numeric
● Tokens
● Characters
● Quotations

● Compound types
● Set types
● Sequence types
● Map types
● Product types
● Composite types
● Union types
● Optional types
● Function types

Invariants can be addedInvariants can be added

14IF
A

D
IFAD

BooleanBoolean
not bnot b NegationNegation bool -> boolbool -> bool

a and ba and b ConjunctionConjunction bool * bool -> boolbool * bool -> bool

a or ba or b DisjunctionDisjunction bool * bool -> boolbool * bool -> bool

a => ba => b ImplicationImplication bool * bool -> boolbool * bool -> bool

a <=> ba <=> b BiimplicationBiimplication bool * bool -> boolbool * bool -> bool

a = ba = b EqualityEquality bool * bool -> boolbool * bool -> bool

a <> ba <> b InequalityInequality bool * bool -> boolbool * bool -> bool

Quantified expressions can also be considered to beQuantified expressions can also be considered to be
basic operators but we will present them together withbasic operators but we will present them together with
the other general expressionsthe other general expressions

15IF
A

D
IFAD

Numeric (1)Numeric (1)
-x-x Unary minusUnary minus real -> realreal -> real

abs xabs x Absolute valueAbsolute value real -> realreal -> real

floor xfloor x FloorFloor real -> intreal -> int

x + yx + y SumSum real * real -> realreal * real -> real

x - yx - y DifferenceDifference real * real -> realreal * real -> real

x * yx * y ProductProduct real * real -> realreal * real -> real

x / yx / y DivisionDivision real * real -> realreal * real -> real

x div yx div y Integer divisionInteger division int * int -> intint * int -> int

x rem yx rem y RemainderRemainder int * int -> intint * int -> int

x mod yx mod y ModulusModulus int * int -> intint * int -> int

x ** yx ** y PowerPower real * real -> realreal * real -> real

16IF
A

D
IFAD

Numeric (2)Numeric (2)
x < yx < y Less thanLess than real * real -> boolreal * real -> bool

x > yx > y Greater thanGreater than real * real -> boolreal * real -> bool

x <= yx <= y Less or equalLess or equal real * real -> boolreal * real -> bool

x >= yx >= y Greater or equalGreater or equal real * real -> boolreal * real -> bool

x = yx = y EqualEqual real * real -> boolreal * real -> bool

x <> yx <> y Not equalNot equal real * real -> boolreal * real -> bool

17IF
A

D
IFAD

Product and Record TypesProduct and Record Types
● Product type definition:

A1 * A2 * … * An

Construction of a tuple:
mk_(a1,a2,…,an)

● Record type definition:
A :: selfirst : A1

selsec : A2
…

seln : An

Construction of a record:
mk_A(a1,a2,...,an)

18IF
A

D
IFAD

Set OperatorsSet Operators
e in set s1e in set s1 MembershipMembership A * set of A -> boolA * set of A -> bool

e not in set s1e not in set s1 Not membershipNot membership A * set of A -> boolA * set of A -> bool

s1 union s2s1 union s2 UnionUnion set of A * set of A -> set of Aset of A * set of A -> set of A

s1 inter s2s1 inter s2 IntersectionIntersection set of A * set of A -> set of Aset of A * set of A -> set of A

s1 \ s2s1 \ s2 DifferenceDifference set of A * set of A -> set of Aset of A * set of A -> set of A

s1 subset s2s1 subset s2 SubsetSubset set of A * set of A -> boolset of A * set of A -> bool

s1 psubset s2s1 psubset s2 Proper subsetProper subset set of A * set of A -> boolset of A * set of A -> bool

s1 = s2s1 = s2 EqualityEquality set of A * set of A -> boolset of A * set of A -> bool

s1 <> s2s1 <> s2 InequalityInequality set of A * set of A -> boolset of A * set of A -> bool

card s1card s1 CardinalityCardinality set of A -> natset of A -> nat

dunion s1dunion s1 Distr. unionDistr. union set of set of A -> set of Aset of set of A -> set of A

dinter s1dinter s1 Distr. intersectionDistr. intersection set of set of A -> set of Aset of set of A -> set of A

power s1power s1 Finite power setFinite power set set of A -> set of set of Aset of A -> set of set of A

19IF
A

D
IFAD

Map OperatorsMap Operators
dom mdom m DomainDomain (map A to B) -> set of A(map A to B) -> set of A

rng mrng m RangeRange (map A to B) -> set of B(map A to B) -> set of B

m1 munion m2m1 munion m2 MergeMerge (map A to B) * (map A to B) ->(map A to B) * (map A to B) ->
map A to Bmap A to B

m1 ++ m2m1 ++ m2 OverrideOverride (map A to B) * (map A to B) ->(map A to B) * (map A to B) ->
map A to Bmap A to B

merge msmerge ms Distr. mergeDistr. merge set of (map A to B) -> map A to Bset of (map A to B) -> map A to B

s <: ms <: m Dom. restr. toDom. restr. to set of A * (map A to B) -> map A to Bset of A * (map A to B) -> map A to B

s <-: ms <-: m Dom. restr. byDom. restr. by set of A * (map A to B) -> map A to Bset of A * (map A to B) -> map A to B

m :> sm :> s Rng. restr. toRng. restr. to (map A to B) * set of A -> map A to B(map A to B) * set of A -> map A to B

m :-> sm :-> s Rng. restr. byRng. restr. by (map A to B) * set of A -> map A to B(map A to B) * set of A -> map A to B

m(d)m(d) Map applyMap apply (map A to B) * A -> B(map A to B) * A -> B

inverse minverse m Map inverseMap inverse inmap A to B -> inmap B to Ainmap A to B -> inmap B to A

m1 = m2m1 = m2 EqualityEquality (map A to B) * (map A to B) -> bool(map A to B) * (map A to B) -> bool

m1 <> m2m1 <> m2 InequalityInequality (map A to B) * (map A to B) -> bool(map A to B) * (map A to B) -> bool

20IF
A

D
IFAD

Sequence OperatorsSequence Operators

hd lhd l HeadHead seq1 of A -> Aseq1 of A -> A

tl ltl l TailTail seq1 of A -> seq of Aseq1 of A -> seq of A

len llen l LengthLength seq of A -> natseq of A -> nat

elems lelems l ElementsElements seq of A -> set of Aseq of A -> set of A

inds linds l IndexesIndexes seq of A -> set of nat1seq of A -> set of nat1

l1 ^ l2l1 ^ l2 ConcatenationConcatenation seq of A * seq of A -> seq of Aseq of A * seq of A -> seq of A

conc llconc ll Distr. conc.Distr. conc. seq of seq of A -> seq of Aseq of seq of A -> seq of A

l(i)l(i) Seq. applicationSeq. application seq1 of A * nat1 -> Aseq1 of A * nat1 -> A

l ++ ml ++ m Seq. modificationSeq. modification seq1 of A * map nat1 to A ->seq1 of A * map nat1 to A ->
seq1 of Aseq1 of A

l1 = l2l1 = l2 EqualityEquality seq of A * seq of A -> boolseq of A * seq of A -> bool

l1 <> l2l1 <> l2 InequalityInequality seq of A * seq of A -> boolseq of A * seq of A -> bool

21IF
A

D
IFAD

Comprehension NotationComprehension Notation

● Set comprehension:
{ elem | bind-list & pred } e.g.
{ x * 2 | x in set {1,…,10} & x mod 2 = 0}

● Map comprehension:
{ maplet | bind-list & pred } e.g.
{ x |-> f(x) | x in set s & p(x)}

● Sequence comprehension:
[elem | setbind & pred] e.g.
[l(i) ** 2 | I in set inds l & l(i) < 10]

● The set binding is restricted to sets of numeric values, which
are used to find the order of the resulting sequence

Convenient comprehensions exist for sets, maps and sequences:Convenient comprehensions exist for sets, maps and sequences:

22IF
A

D
IFAD

InvariantsInvariants

DTDT
inv_DTinv_DT

Even = natEven = nat
inv n == n mod 2 = 0inv n == n mod 2 = 0

SpecialPair = nat * realSpecialPair = nat * real
inv mk_(n,r) == n < rinv mk_(n,r) == n < r

DisjointSets = set of set of ADisjointSets = set of set of A
inv ss == forall s1, s2 in set ss &inv ss == forall s1, s2 in set ss &

s1 <> s2 => s1 inter s2 = {}s1 <> s2 => s1 inter s2 = {}

23IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

24IF
A

D
IFAD

Function Definitions (1)Function Definitions (1)
● Explicit functions:

f: A * B * … * Z -> R1 * R2 * … * Rn
f(a,b,…,z) ==
expr

pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,RESULT)

● Implicit functions:
f(a:A, b:B, …, z:Z) r1:R1, …, rn:Rn
pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,r1,…,rn)

Implicit functions cannot be executed by the VDM interpreter.

25IF
A

D
IFAD

Function Definitions (2)Function Definitions (2)

● Extended explicit functions:
f(a:A, b:B, …, z:Z) r1:R1, …, rn:Rn ==
expr

pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,r1,…,rn)

Extended explicit functions are a non-standard combination of
the implicit colon style with an explicit body.

● Preliminary explicit functions:
f: A * B * … * Z -> R1 * R2 * … * Rn
f(a,b,…,z) ==
is not yet specified

pre preexpr(a,b,…,z)
post postexpr(a,b,…,z,RESULT)

26IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

27IF
A

D
IFAD

ExpressionsExpressions

● Let and let-be expressions
● If-then-else expressions
● Cases expressions
● Quantified expressions
● Set expressions
● Sequence expressions
● Map expressions
● Tuple expressions
● Record expressions
● Is expressions

● Define expressions
● Lambda expressions

● New and Self
expressions

● Class membership
expressions

● Object comparison
expressions

● Object reference
expressions

Special VDM++ Expressions

28IF
A

D
IFAD

Patterns and Pattern MatchingPatterns and Pattern Matching
● Patterns are empty shells
● Patterns are matched thereby binding the pattern identifiers
● There are special patterns for

● Basic values
● Pattern identifiers
● Don’t care patterns
● Sets
● Sequences
● Tuples
● Records

but not for maps

29IF
A

D
IFAD

BindingsBindings

● A binding matches a pattern to a value.
● A set binding:

pat in set expr

where expr must denote a set expression.
pat is bound to the elements of the set expr

● A type binding:
pat : type

Here pat is bound to the elements of type.
Type bindings cannot be executed by the Toolbox,
because such types can be infinitely large.

30IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

31IF
A

D
IFAD

Operation Definitions (1)Operation Definitions (1)

● Explicit operation definitions:
o: A * B * ... ==> R
o(a,b,...) ==

stmt
pre expr
post expr

● Implicit operations definitions:
o(a:A, b:B,...) r:R
ext rd ...

wr ...
pre expr
post expr

32IF
A

D
IFAD

Operation Definitions (2)Operation Definitions (2)

● Preliminary operation definitions:
o: A * B * ... ==> R
o(a,b,...) ==
is not yet specified

pre expr

post expr

● Delegated operation definitions:
o: A * B * ... ==> R
o(a,b,...) ==
is subclass responsibility

pre expr

post expr

33IF
A

D
IFADOperation Definitions (3)Operation Definitions (3)

● Operations in VDM++ can be
overloaded

● Different definitions of operations with
same name

● Argument types must not be
overlapping statically (structural
equivalence omitting invariants)

34IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

35IF
A

D
IFADStatementsStatements

� Let and Let-be
statements

� Define Statements
� Block statements
� Assign statements
� Conditional statements
� For loop statements
� While loop statements
� Call Statements

� Non deterministic
statements

� Return statements
� Exception handling

statements
� Error statements
� Identity statements

� start and startlist
statements

Special VDM++ Statement

36IF
A

D
IFADVDM++ OverviewVDM++ Overview

� Access Modifiers and Constructors
� Instance Variables
� Types
� Functions
� Expressions,Patterns,Bindings
� Operations
� Statements
� Concurrency

37IF
A

D
IFAD

Concurrency in VDM++Concurrency in VDM++

● Passive: Change state on request only, i.e. as a
consequence of an operation invocation.

● Active: Can change their internal state spontaneously
without any influence from other objects. Active objects
have their own thread of control.

Objects can beObjects can be

Why use concurrency in specifications?Why use concurrency in specifications?

● The real world is highly concurrent.
Consequently models of the world are likely to be
concurrent too.

● For efficiency reasons in a multi processor environment.

38IF
A

D
IFAD

Passive ObjectsPassive Objects

● Respond to requests (operation
invocations) from active objects (clients).

● Supply an interface (a set of operations) for
their clients.

● No thread.
● Can serve several clients.

39IF
A

D
IFAD

Permission GuardsPermission Guards
Synchronization for objects is specified using VDM++’sSynchronization for objects is specified using VDM++’s
syncsync clause: clause:

Permission guards reflecting the bounding of the buffer :Permission guards reflecting the bounding of the buffer :

syncsync
perper <operation-name><operation-name> =>=> <condition><condition>

The The perper clause is known as a clause is known as a permission guard. permission guard. conditioncondition
is a boolean expression, which involves the attributes of theis a boolean expression, which involves the attributes of the
class, that must hold in order for class, that must hold in order for operation-nameoperation-name to be to be
invoked.invoked.

syncsync
per GetItem => len buf > 0per GetItem => len buf > 0
per PutItem => len buf < sizeper PutItem => len buf < size

40IF
A

D
IFADFurther InformationFurther Information

John Fitzgerald, Peter Gorm Larsen
Modelling Systems, Practical Tools and Techniques in Software
Development

John Dawes
The VDM-SL Reference Guide

Derek Andrews, Darrel Ince
Practical Formal Methods with VDM

Cliff Jones
Systematic Software Development with VDM (2nd edition)

John Lathan, Vicky Bush, Ian Cottam
The Programming Process

John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat
Round-trip engineering with VDM++ and UML (forthcomming)

