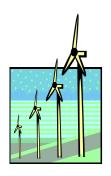
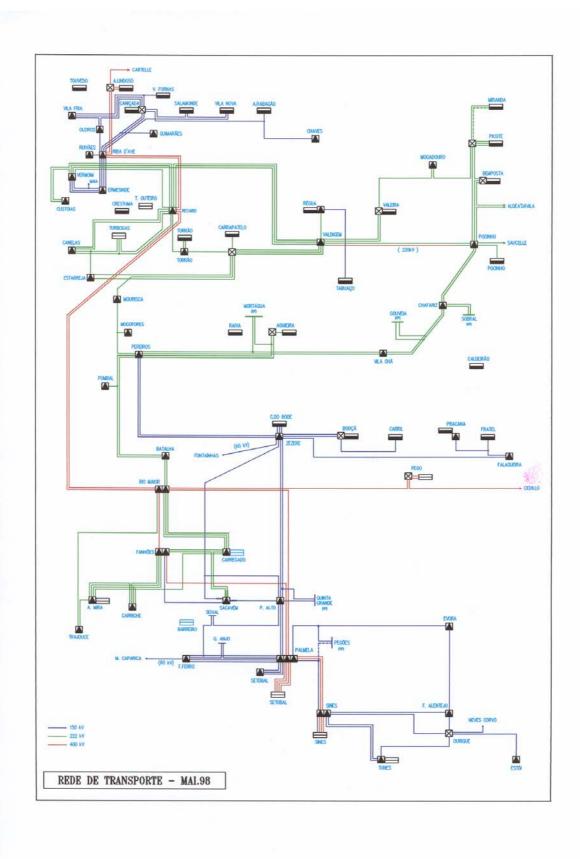
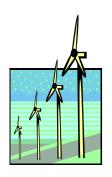


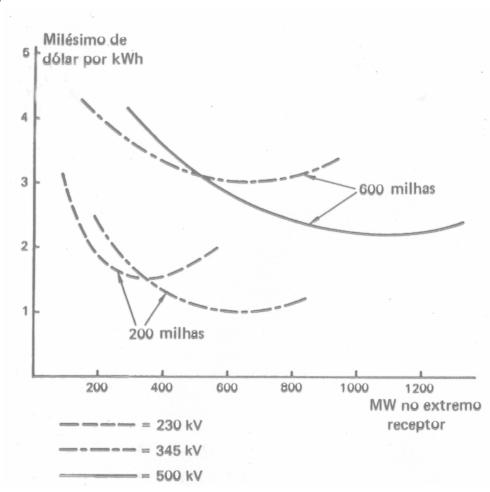
Linhas de Transmissão

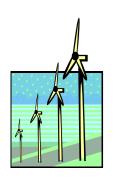




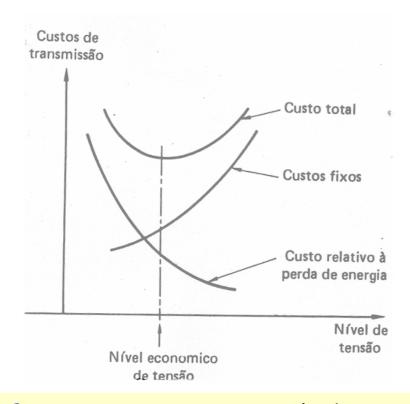

TÓPICOS:

- Linhas de transmissão de energia? Porquê?
- Qual a tensão de serviço que se deve escolher para uma linha?
- Qual o tipo de corrente?
- Devo optar por uma linha aérea ou por um cabo subterrâneo?

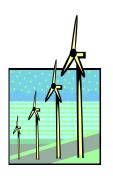




Tensão de serviço


Custo do transporte de energia em função da potência na recepção, do nível de tensão e do comprimento da linha

O óptimo económico (tensão) cresce com o comprimento da linha e com a potência a transmitir



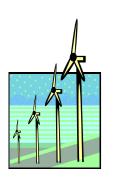
Custos fixos → postes, isoladores, condutores, equipamento terminal, direitos de passagem.

Custos relativos a perda de energia

Potência=150MW Distância=300km Secção 400mm²

Tensão (kV)	Intensidade (A)	Perdas Joule (kW)	Rendimento (%)
U ₂	$I = P_2/(\sqrt{3} U_2)$	$3RI^2 = R (P_2/U_2)^2$	$\eta = (P_2/(P_2+R(P_2/U_2)^2)*100$
15	5774	2647641	5,4
30	2887	661910	18,5
60	1443	165478	47,5
150	577	26476	85,0
220	394	12308	92,4
400	217	3723	97,6

Outros factores a considerar

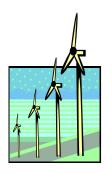

- normalização
- > limites técnicos
- segurança

Corrente

- Corrente contínua
- Corrente alternada

Tipo de Linha

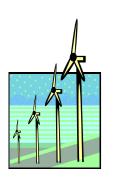
- ✓ Linha aérea
- ✓ Cabo subterrâneo


Linhas aéreas

Que material utilizar para os condutores?

Platina Ouro Cobre Alumínio Aço

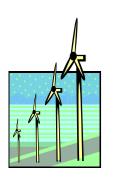
Almelec Outras ligas



Considerar:

- Intensidade admissível em regime permanente
- Queda de tensão
- Características mecânicas dos condutores
- Intensidade de curto-circuito admissível
 - esforços térmicos
 - esforços electrodinâmicos
- Efeito coroa
- Aparelhagem de protecção
- Normalização
- Condições de segurança
- Condições regulamentares
- Perdas de energia
- Pre€o

Factores a considerar

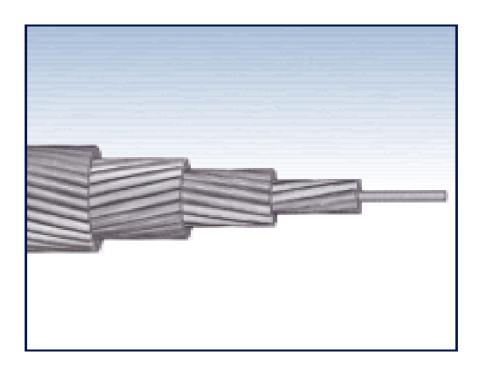

Pre€o → Indústria transformadora
Custo energético

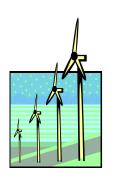
Resistividade Quedas de tensão Perdas Joule

Características Tensão de ruptura mecânicas Reutilização

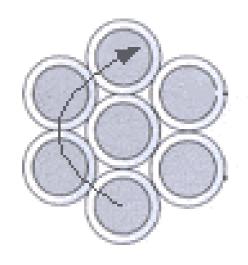
Corrosão Tempo médio de vida da instalação Local de implantação

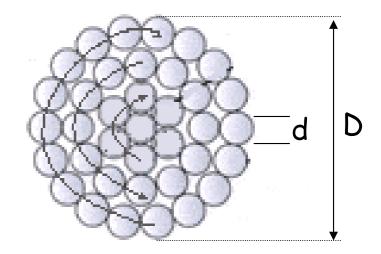
Temperatura de Potência veiculável funcionamento Exploração

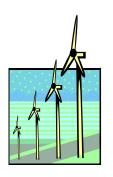




Comparações ...


	COBRE	COBRE	ALUMÍNIO	ALMELEC	UNID
	RECOZIDO	DURO			
RESISTIVIDADE A 20°C	0,01724	0,0176	0,02828	0,0326	Ω mm 2 m $^{-1}$
COEF. TEMP.	0,0039	0,0039	0,004	0,0036	°C ⁻¹
TENSÃO DE RUPTURA	24	40	18	35	kg _f cm ⁻²
PESO ESPECÍFICO	8,9	8,9	2,7	2,7	gcm ⁻³

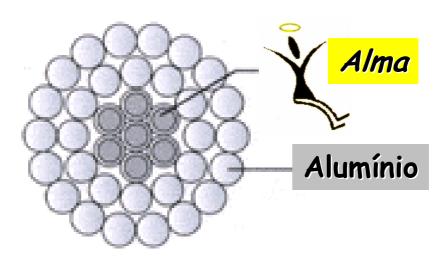

Condutores em Cabos

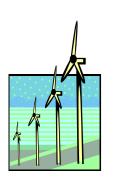

Os fios estão enrolados em sentidos contrários. Porquê?

Qual a vantagem de utilização de condutores multifilares?

Cabos Homogéneos

1+6	1+6+12	1+6+12+18	1+6+12+18+24
7	19	₁ 37	61 fios
D=3d	D=5d		D=9d


Fios do mesmo diâmetro


Cabos Mistos

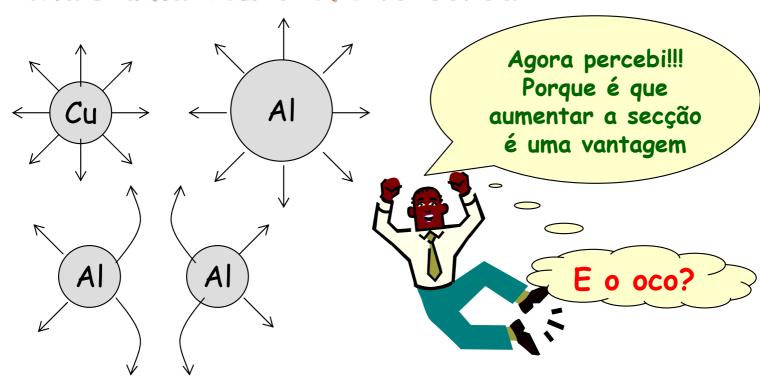
Caso típico → Alumínio-aço

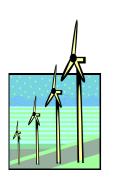
O cabo de alumínio-aço comparado com o cabo homogéneo de cobre com a mesma resistência tem ...

- Maior diâmetro pode ser vantagem ou desvantagem
- > Menor peso vantagem
- > Maior resistência mecânica vantagem

Condutores

Simples?
Ocos?


Múltiplos?


Porquê?

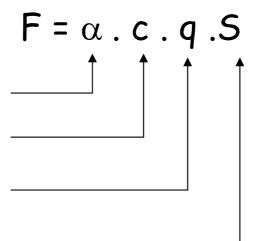
Tensões > 220kV —

uso de condutores múltiplos

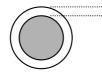
Mais uma vez o efeito coroa

Projecto de uma linha aérea

Cálculo mecânico



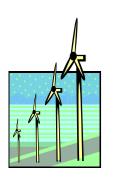
Coef. redução


Coef. Forma

Pressão dinâmica

Área exposta

GELO


10 mm

Outros Cálculos ...

Aquecimento Vibrações

Resistência mecânica - Flechas; tensão de tracção, ...

Protecção contra contactos acidentais distância a: edifícios, solo, árvores,...

Isoladores

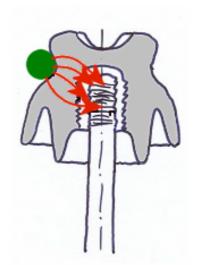


Função?

Evitar a passagem de corrente do condutor ao apoio ou suporte e sustentar mecanicamente os cabos, barramentos, ...

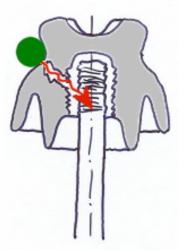
Mas será que o isolador cumpre sempre a função para que foi criado?

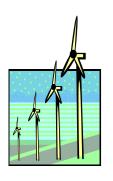
Que fenómenos podem ocorrer? Quais os mais graves?
Como poderemos evitá-los?



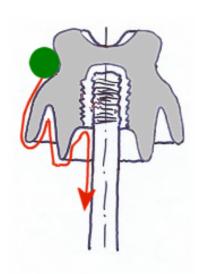
Os fenómenos ...

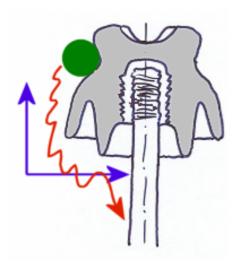
Condutividade da massa do isolador


O seu valor é insignificante


DESPREZAR

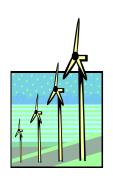
Perfuração da massa do isolador


Incidente grave, com probabilidade crescente de ocorrência à medida que aumenta o nível de tensão



Condutividade superficial

- ✓ Alongar a linha de fuga (forma do isolador)
- ✓ Aumentar o número de saias
- ✓ Proceder à limpeza (manutenção)
- ✓ Agradecer à chuva



Descarga disruptiva e contornamento

Arco entre o condutor e as partes metálicas dos suportes. Causas:

- Rigidez dieléctrica do ar
- > Sobretensões nas linhas

Tipos de Isoladores

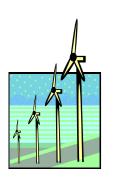
Isoladores de suspensão de Porcelana

Rígidos

isoladores bastão

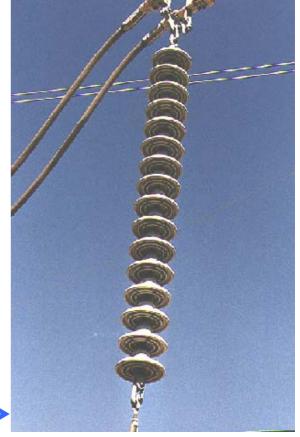
isoladores pino

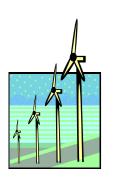
isoladores pilar


isoladores roldana

Suspensos

Isoladores de campânula simples

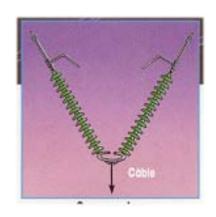


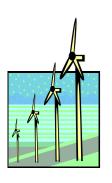


Isoladores de campânula simples anti-poluição

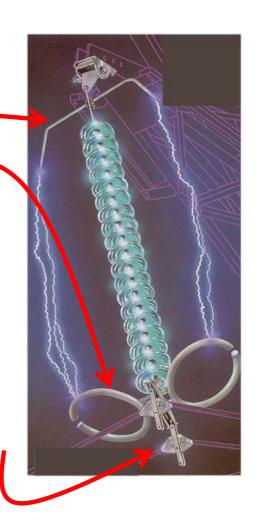
Cadeia de isoladores

Alguns exemplos ...

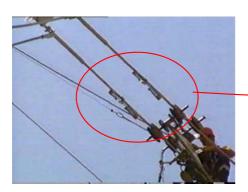

Suspensão simples


Amarração simples

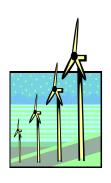
Amarração Dupla

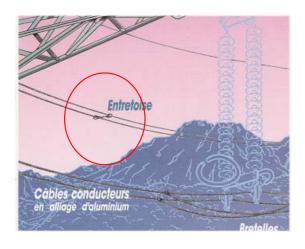


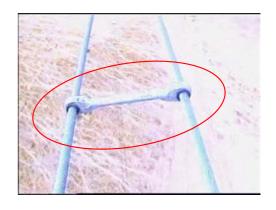
Acessórios

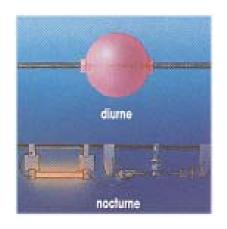

Anéis

hastes de descarga

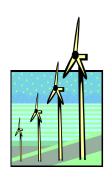

Pinça de amarração



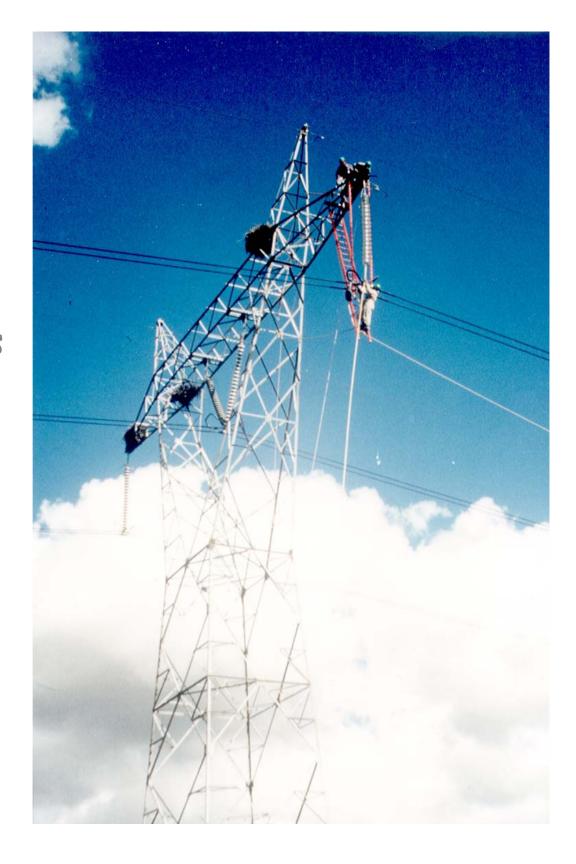

Amortecedores "Stock bridge"

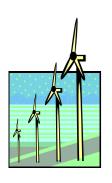


Separadores de feixe


Avisos à navegação

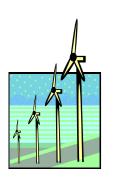
Protecção de aves




Trabalhos em tensão

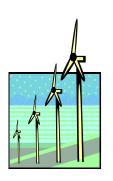
Trabalhos em tensão

Lavagem das linhas



Lavagem das linhas

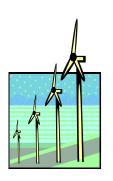
Suportes especiais para ninhos



Suportes especiais para ninhos

Ninho e o Silva

Ensaios de isoladores


Quanto à natureza

Eléctricos Enequência industrial Choque

Mecânicos

Térmicos

Ensaios de isoladores

Quanto às condições

Tipo { Contornamento ao choque | Frequência industrial { Seco Chuva

Aspecto exterior

Rotina Mecânico (elem. cadeia) Térmico

Isolamento à frequência industrial

Porosidade


Dimensões

Acessórios metálicos

Recepção

Térmico

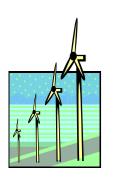
Mecânico
Perfuração destrutivos

Apoios

Um apoio para linha aérea é constituído pelo poste e respectiva fundação e ainda pelos elementos que suportam os condutores (travessas)

Madeira
Material
Metálicos
Betão armado

Fundações


Madeira

Solo
Bases (betão, ferro,...)
Maciços

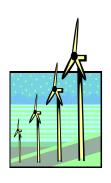
Betão — Solo

Metálicos

Solo
Maciços

Apoios

Ligação à terra Apoios (metálicos e betão)

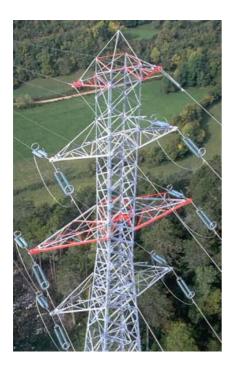

Caixas de fim de cabo e

bainhas dos cabos

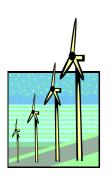
Interruptores e seccionadores

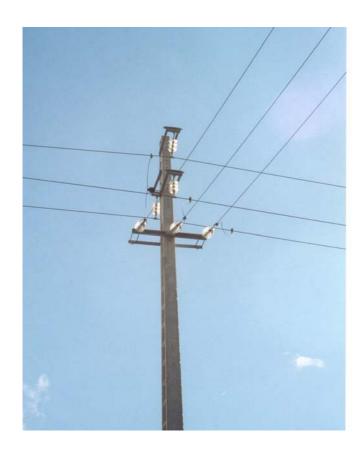
aéreos

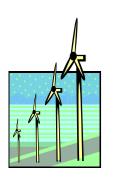
Tipos de { Verticais Transversais esforços { Longitudinais }


Apoios

Classificação dos apoios

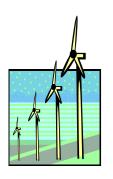

Apoio de alinhamento


Apoio de ângulo


Apoios

Classificação dos apoios

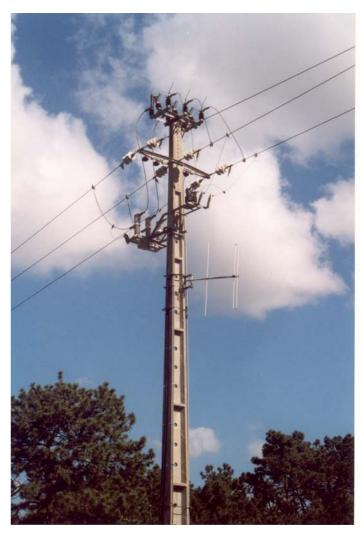
Apoios de derivação

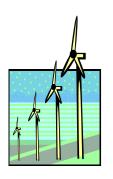

Apoios

Classificação dos apoios

Apoios de travessia
Apoios de cruzamento
Apoios fim de linha

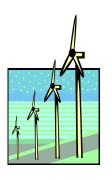
Apoios de reforço (alinhamento, ângulo, derivação)




Apoios

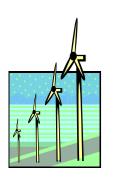
... telecomandados

Apoio com aparelhos de corte e seccionamento



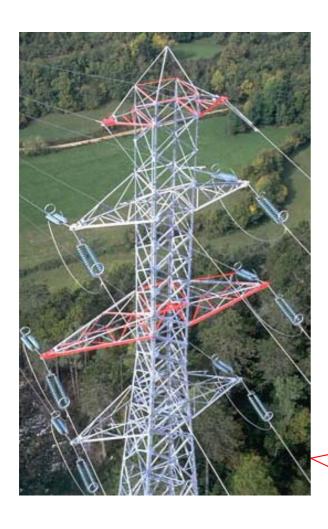
Integração das linhas aéreas na paisagem

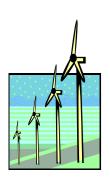
De uma maneira geral os apoios metálicos, usados em linhas AT e MAT, são galvanizados, tendo um aspecto brilhante. Em certos casos, é possível reduzir o impacto ambiental pintando os postes com um escolha de cores que se harmonize com o local.



Integração das linhas aéreas na paisagem

No meio rural pode-se escolher um pintura que integre o apoio no meio ambiente




Integração das linhas aéreas na paisagem

Ou então ...

De aviso à navegação aérea



Integração das linhas aéreas na paisagem

Quanto? Não! Daqui não saio..

