
Classification of Defect Types in Requirements

Specifications: Literature Review, Proposal and

Assessment

Isabel Lopes Margarido*, João Pascoal Faria, Raul

Moreira Vidal

Department of Informatics Engineering, Faculty of

Engineering of the University of Porto

Porto, Portugal

{isabel.margarido, jpfaria, rmvidal@fe.up.pt

Marco Vieira

Department of Informatics Engineering, Faculty of

Sciences, University of Coimbra

Coimbra, Portugal

mvieira@dei.uc.p

Abstract— Requirements defects have a major impact throughout

the whole software lifecycle. Having a specific defects

classification for requirements is important to analyse the root

causes of problems, build checklists that support requirements

reviews and to reduce risks associated with requirements

problems. In our research we analyse several defects classifiers;

select the ones applicable to requirements specifications,

following rules to build defects taxonomies; and assess the

classification validity in an experiment of requirements defects

classification performed by graduate and undergraduate

students. Not all subjects used the same type of defect to classify

the same defect, which suggests that defects classification is not

consensual. Considering our results we give recommendations to

industry and other researchers on the design of classification

schemes and treatment of classification results.

Keywords- software; requirements; defects; classification;

taxonomy

I. INTRODUCTION

In this paper we consider that a defect is a fault, as defined
in [1], extended to include all the software development
artefacts (code, documentation, requirements, etc.). A defect is
a problem that occurs in an artefact and may lead to a failure.
We consider the requirements review as an inspection method.

In 2009, Chen and Huang analysed the impact of software
development defects on software maintainability, and
concluded that several documentation and requirements
problems are amongst the top 10 higher-severity problems (see
table I) [2]. The authors demonstrated the impact of the
software requirements defects in the maintenance phase of a
software project, when the defects affect the client, in case of
failure. In the same year Hamill and Goseva-Popstojanova
showed that requirements defects are among the most common
types of defects in software development and that the major
sources of failures are defects in requirements (32.65%) and
code (32.58%) [3]. Therefore it is crucial to impede the
propagation of requirements defects to posterior phases.

Card stated in 1998 that “Classifying or grouping problems
helps to identify clusters in which systematic errors are likely
to be found. [4]” Hence, it is important to have an adequate
taxonomy to classify requirements defects, that support the
following goals: (1) identify types of defects that are more

frequent or have a higher cost impact; (2) analyse the root
cause of requirements defects; (3) prepare requirements
reviews checklists; (4) reduce risks associated with common
problems in the requirements management process, such as bad
communication, incomplete requirements, and final acceptance
difficulties.

The Orthogonal Defect Classification (ODC) is frequently
used by practitioners, but it is more adequate to classify code
defects than defects in the requirements specifications [5-6].

There are several classifications identified in the literature,
but none of them is indicated as being the most adequate for
the classification of requirements defects, and, to the best of
our knowledge, their quality properties were not validated. In
our research we do a literature review and propose values for
the attribute type of defect in the case of requirements using
the recommendations of Fermut et al [6]. We conducted an
experiment to validate the quality properties of the proposal
and test the following hypotheses, when reviewing
requirements specifications: null hypothesis (H0) all subjects
use the same value to classify the type of a defect; the
alternative hypothesis (H1) not all subjects use the same
value to classify the type of a defect. Our results demonstrate
that there is no guarantee that all subjects use the same value to
indicate the type of a defect. Considering such results we give
recommendations to industry and other researchers on the
design of classification schemes and treatment of classification
results.

The following sections contain: Section II – a literature
review about defects classification, particularly the ones
applicable to requirements; Section III – the assembly of the
requirements defects classification list; Section IV – the
validation of the classification list and results analysis; and
finally, conclusions and future research are given in section V.

II. LITERATURE REVIEW

In 2009, Chen and Huang performed an e-mail survey with
several software projects, and presented the top 10 higher-
severity problem factors affecting software maintainability, as
summarised in table I [2].

The authors indicated the following causes of software
defects [2]: (1) a significant percentage of defects is caused by

Work partially funded by Fundação para a Ciência e a Tecnologia (FCT):
Programa Operacional Potencial Humano (POPH) of QREN, and Fundo

Social Europeu (FSE)

incorrect specifications and translation of requirements, or
incomplete ones [7-8]; (2) half of the problems rooted in
requirements are due to ambiguous, poorly written, unclear and
incorrect requirements, the other half result of omitted
requirements [9]. In 2003, Lutz and Mikulski analysed the
impact and causes of requirements defects discovered in the
testing phase, resulting from non documented changes or
defects in the requirements, and proposed guidelines to
distinguish and respond to each situation [10]. Their work
emphasises the importance of requirements management.

TABLE I. TOP 10 HIGHER-SEVERITY PROBLEM FACTORS [2]

Software Development Factors Problem Dimension
1 Inadequacy of source code comments Programming Quality

2 Documentation obscure/untrustworthy Documentation Quality

3 Changes not adequately documented Documentation Quality

4 Lack of traceability Documentation Quality

5 Lack of adherence to standards Programming Quality

6 Lack of integrity/consistency Documentation Quality

7 Continually changing requirements System Requirements

8 Frequent turnover within the project

team

Personnel Resources

9 Improper usage of techniques Programming Quality

10 Lack of consideration for software

quality requirements

System Requirements

Considering the problems that occur in the requirements
specifications we present in the following subsections work
that is related with or includes a requirements defects
classification.

A. Code Defects Classifications, 1992

ODC is applicable in all the development phases except the
requirements phase. The defect types used are: function,
interface, checking, assignment, timing/serialisation,
build/package/merge, documentation and algorithm. For
each defect it is necessary to indicate if the feature is incorrect
or missing [11]. Such classifiers do not seem completely
adequate to classify requirements defects, and Documentation
is too generic to give further information on the defect. The
Hewlett-Packard (HP) [12] categorises the defects by mode,
type and origin, (see figure 1) [6]. From the types of defects
with origin in the requirements/specifications phase, the
requirements/ specifications seems to be vague and the
interfaces ones are too detailed and more adequate to design
specification defects.

B. Quality Based Classifiers, 1976 – 2010

In this section we present the work of several authors that
applied quality based classifiers to requirements defects.

In 1976, Bell and Thayer did a research to verify the impact
of software requirements defects. Not surprisingly, they
concluded that software systems meeting defective
requirements will not effectively solve basic needs [13]. They
aggregated the defects in categories, as presented in table III
(Annex A). In 1981, Basili and Weiss categorised defects
found in requirements documents and gathered a set of
questions to be asked while reviewing them (as a review
checklist) [14]. Table III shows the distribution of the 79 errors
by different categories. Later, in 1989, Ackerman et al
analysed the effectiveness of software inspections as a

verification process [15]. They presented a sample
requirements checklist to use in inspections of requirements
documents, containing questions organised by defect
categories: completeness, consistency and ambiguity. And in
1991, Sakthivel performed a survey about requirement
verification techniques and presented a requirements defects
taxonomy based on a literature review. The classes that the
author proposed are: incomplete, inconsistent, infeasible,
untestable, redundant and incorrect. For each class,
Sakthivel presented different defects and an example [16].

Figure 1. HP defects classification scheme [6].

In 2003, Hayes developed a requirements fault taxonomy
for NASA’s critical/catastrophic high-risk systems. Hayes
stated that ODC refers to design and code while their approach
emphasised requirements, so they adapted the Nuclear
Regulatory Commission (NRC) requirement fault taxonomy
from NUREG/CR-6316 (1995). [17] Afterwards, in 2006,
Hayes et al analysed a software product related with the
previous to build a common cause tree [18]. In both works
unachievable was reserved for future. In 2006, the same was
also done with infeasible and non verifiable (Table III shows
their results).

Defects classification is important to support the analysis of
the root causes of defects. In 2010, Kalinowski et al were
aware that Defect Causal Analysis (DCA) could reduce defect
rates by over 50%, reducing rework, and improving quality and
performance [19]. To enhance DCA, they improved their
framework named Defect Prevention Based Process
Improvement (DPPI) used to conduct, measure and control
DCA. The authors mentioned the necessity of collecting
metrics for DCA and the importance of considering: (1)
context when collecting metrics; (2) stability of the inspection;
(3) technology/similarity of projects in inspections. When
demonstrating their approach they reported the requirements
defects distribution, classified by nature (see table III).

C. Functional and Quality Based Classifiers, 1992 – 2009

In this section we present defect classification taxonomies
that are functional and quality based. In our research we
consider that the functional classifiers represent the function of
the requirement in the product (e.g. interface, performance,
environment, functional).

In 1992, Schneider et al identified two classes of
requirements defects to use when reviewing user requirements
documents: Missing Information and Wrong Information

(table III) [20]. In 1995, Porter et al compared requirements
inspection methods. They performed an experiment where two
Software Requirements Specification (SRS) documents were
inspected with a combination of ad hoc, checklist and scenario
inspection methods. The checklist was organised in categories,
resembling a defect classification: omission (missing
functionality, performance, environment or interface) and
commission (ambiguous or inconsistent information,
incorrect or extra functionality, wrong section). The
scenarios also included categories: data type consistency,
incorrect functionality, ambiguity, and missing
functionality. The authors concluded from their results that the
scenario inspection method was the most effective for
requirements [21]. Later, in 2007, Walia et al repeated an
experiment to show the importance of requirements defects
taxonomy. They involved software engineering students in a
SRS document review using a defect checklist. The students
repeated the review, after being trained in the error abstraction
process. The results of the experiment showed that error
abstraction leads to more defects found without losses of
efficiency and the abstraction is harder when people are not
involved in the elaboration of the SRS and have no contact
with developers. Requirements defects were classified as:
general, missing functionality, missing performance,
missing interface, missing environment, ambiguous
information, inconsistent information, incorrect or extra
functionality, wrong section, other faults [22]. This
experiment was applied to error abstraction; we consider that a
similar experiment is useful to validate defects classification.

Along the years researchers introduced classifiers to fulfil
the specificities of requirements defects. Some reused existent
classifications and conducted experiments to analyse the
impact of different methodologies in SRS inspections. Table III
summarises the relation between authors and classifiers.

III. PROPOSAL OF A CLASSIFICATION OF DEFECT TYPES IN

REQUIREMENTS SPECIFICATIONS

In 2005, Freimut et al [6] indicate the quality properties of
a good classification scheme: 1. clearly and meaningfully
define the attributes of the classification scheme; 2. clearly
define the values of the attributes; 3. ensure it is complete
(every defect is classifiable by using the scheme); 4. guarantee
that it contains a small number of attribute values - the
authors recommend 5 to 9 attributes, since this is the number of
items that human short-memory can retain [11]; 5. aggregate
attribute values, to reduce ambiguity [13], whenever they are
less significant, i.e. when they rarely occur, and detailed
categories may be aggregated into a single one. For the
attribute “type of defect” we consider that it is important that
the values are unambiguous, i.e. only one value is applicable
to one defect. Considering these recommendations we
assembled a list of values for the attribute type of defect.

From the literature review, presented in section 2, we
collected several different taxonomies and the frequency of the
defects classifiers of the researchers’ experiences (see table
III). We analysed the frequency with which each classifier was
used and its adequacy to classify a requirement defect.

The following classifiers were excluded for the indicated
reasons:

• Considered important only for change management: Not in

current baseline, New and Changed Requirement and

Not Traceable;

• Too vague (given the intention of having a complete and

clearly defined list of values): General, Other and

Inadequate;

• Subsumed by another (Inconsistent): Incompatible;

• Too generic (given the existence of separate, more specific,

classifiers): Incorrect or Extra Functionality;

• Over-detailed (given the existence of the more generic

classifiers Missing/Omission, Incorrect and Inconsistent,

and the intention of keeping a small number of attribute

values): classifiers 19 to 33 and 35 in Table III detailing

what is missing, incorrect or inconsistent (the details can be

given in the defect description).

The following classifiers with overlapping meanings (and
small frequencies in some cases) were aggregated into a single
one, to avoid ambiguity:

• Missing/Omission and Incomplete → Missing or

Incomplete;

• Over-specification, Out of scope, Intentional Deviation

and Extraneous Information → Not Relevant or

Extraneous;

• Unclear and Ambiguity → Ambiguous or Unclear;

• Infeasible, Unachievable, Non Verifiable and

Unstestable/Non Verifiable → Infeasible or Non-

verifiable.

Finally, some classifiers were slightly renamed.

The resulting 9 values for the type of defect attribute, with
definitions and examples, are listed in Table II. We tried to
give a clear and meaningful definition for each value.

IV. PRACTICAL APPLICATION AND RESULTS

In this section we present two experiments to verify the
properties of our classifier against the recommendations of
Fermut et al [6]. Formalising the hypothesis H, when
reviewing requirements specifications: H0 - all subjects use
the same value to classify the type of a defect; H1 - not all
subjects use the same value to classify the type of a defect.

We conducted two experiments with different groups of
people and similar classifiers. The final list (table II) used in
the 2

nd
 group had more detail in the values, definitions and

examples. The 1
st
 group was composed of master graduate

students that had learnt how to develop a SRS document, and
were familiar with inspections and defect classifications. The
2

nd
 group was composed of third year undergraduate students

that were familiar with SRS documents, inspections and defect
classifications. We provided to each group the same SRS and
the list of its defects. The subjects should register the type of
defect in a form that included: the defects to classify, and
distinct fields for the classifier, doubts between classifiers or to
a new classifier and corresponding definition. The
classification of the defects would indicate if the classifiers
were ambiguous (one defect with different classifiers),

meaningless (incorrectly classified) or incomplete (new classifier suggested).

TABLE II. REQUIREMENTS DEFECT CLASSIFICATION (FINAL VERSION)

Classifier Definition Example

Missing or

Incomplete
The requirement is not present in the requirements document

.Information relevant to the requirement is missing, therefore the

requirement is incomplete. If a word is missing without affecting

the meaning of the requirement the defect shall be classified as a

typo.

"The system will allow authentication of authorised users." The way

to access the system is not detailed. Is it by using a login and

corresponding password? Using a card? And what happens when a

non-authorised user tries to access it? If the requirement includes the

expression To be Defined (TBD) it is incomplete.

Incorrect

Information
The information contained in the requirement is incorrect or

false, excluding typographical/grammatical errors or missing

words. The requirement is in conflict with preceding documents.

Stating that "The Value Added Tax is 23%" when the correct value

is 12%.

Inconsistent The requirement or the information contained in the requirement

is inconsistent with the overall document or in conflict with

another requirement that is correctly specified.

One requirement may state that "all lights shall be green" while

another may state that all "lights shall be blue"[23]. One requirement

states "The house shall have 2 windows, 1 door and a chimney." and

the second one states "The house shall have 2 windows and 1 door."

one of the requirements is inconsistent with the other.

Ambiguous or

Unclear
The requirement contains information or vocabulary that can

have more than one interpretation. The information in the

requirement is subjective. The requirement specification is

difficult to read and understand. The meaning of a statement is

not clear.

The requirement "An operator shall not have to wait for the

transaction to complete." is ambiguous, depends on each person's

interpretation. To be correctly specified it should be, e.g., "95% of

the transactions shall be processed in less than 1 s." [23].

Misplaced The requirement is misplaced either in the section of the

requirements specification document or in the functionalities,

packages or system it is referring to.

Include a requirement about the server application in the section that

refers to the web-client application.

Infeasible or

Non-
verifiable

The requirement is not implementable, due to technology
limitations, for instance. The requirement implementation can not

be verified in a code inspection, by a test or by any other

verification method. If the requirement is non-verifiable due to

ambiguity, incorrectness or missing information, use the

corresponding classifier instead.

“The service users will be admitted in the room by a teleportation
system.” The teleportation technology has not sufficiently evolved

to allow the implementation of such requirement.

“The message sent to the space for potential extraterrestrial beings

should be readable for at least 1000 years.”

Redundant or
Duplicate

The requirement is a duplicate of another requirement or part of

the information it contains is already present in the document

becoming redundant.

The same requirement appears more than once in the requirements

specification document, or the same information is repeated.

Typo or

Formatting
Orthographic, semantic, grammatical error or missing word.

Misspelled words due to hurry.

Formatting problems can be classified in this category.

“The system reacts to the user sensibility, i.e. if the user is

screaming the system stops.” The word sensibility is different from

sensitivity.

When a picture is out of the print area.

Not relevant

or
Extraneous

The requirement or part of its specification is out of the scope of
the project, does not concern the project or refers to information

of the detailed design. The requirement has unnecessary

information.

If the customer is expecting a truck then the requirement stating
“The vehicle is cabriolet.” is out of the scope of the project.

A requirement that should have been removed is still in the

document.

The results of the experiments are summarised in the
pictograms on figure 2, that show the proximity of the subjects’
answers (dark circles) to the classifier that we expected them to
use (bright circles) in each defect. The size of the circle gives
the number of the students that used a certain classifier. There
were 29 defects to classify (x axis). The classifiers, doubt
between classifiers or new classifier are represented in the y
axis. We noticed that in the 1

st
 experiment no defect was

unanimously classified and in the 2
nd

 several ones were. In both
experiments certain defects were classified differently but with
similar percentages. These observations induce us to conclude
that certain defects will be differently classified, for their own
characteristics. The full report of our work includes all
experiments’ results and analysis [24].

The two experiments we did are not totally comparable: the
experience of the individuals on defects classification and the
size of the group and the treatment (values of the type of defect
attribute) were different. Despite that, the degree of agreement
of the subjects, given by the Fleiss' kappa measure, was
moderate in both experiments (0.46 in the 1

st
 experiment and

0.44 in the 2
nd

) [25]. We also did a Cochran test to verify our
hypotheses. Since the test is binomial, we considered that when

the subjects chose the most used classifier they answered as the
majority (1) and when they used any other classifier, they
chose other (0). The significance value indicates that the
subjects answered the same way (0.60 in the 1

st
 group and 0.63

in the 2nd, i.e. p-value > 0.05 which indicates that we cannot
reject H0). Using the same transformation of data we did the
McNemar test to verify if the results of the experiments were
similar. The percentages of subjects classifying as the majority
or using other classifier were similar on both experiments (see
figure 3).

In our opinion, the following facts may have contributed to
the subjects moderate degree of agreement: (1) the subjects
were not the ones identifying the defects which may increase
the error of misinterpretation (and consequent
misclassification) of the defects; (2) the subjects were not
involved in the development and did not have access to the
developers of the SRS document. This is similar to the problem
reported in an experiment of Walia and Craver [22]; (3) certain
words in the description of defects induced the selection of the
classifier named with a similar word; (4) the defects are
expressed in natural language, which introduces ambiguity in
the classification process.

Figure 2. Results of the 1st experiment are represented the upper pictogram

and of the 2nd are in the bottom.The collumn chart presents the McNemar test.

Figure 3. McNemar test.

Based on the experiments conducted, we suggest some
recommendations for organizations that want to use
requirements defects’ classifications in an effective and
consensual way: (1) people should be trained in the usage of
the defects classification focusing in the distinction of the
classifiers, the clarification of their definitions, practical
examples and exercises; (2) to avoid that people apply a
classifier based on its name only (often insufficient), without
considering its definition, have the definition easily available,
e.g., as a tool tip in a tool.

V. CONCLUSIONS AND FUTURE WORK

We agree with Card when he states that a defect taxonomy
should be created in such a way that it supports the specific
analysis interests of the organisation that is going to use it,
namely in the implementation of defect causal analysis [26]. In
our work based on a literature review we assembled a
classification for defect types in requirements specifications,
following the recommendations in [6]. Such classification is
important to support the analysis of root causes of defects and
their resolution, to create checklists that improve requirements
reviews and to prevent risks resulting from requirements
defects. We evaluated our classification scheme through two

experiments where students had to classify defects identified in
a SRS document. We concluded that, even after refining the
classification list, different people may classify the same defect
in a different way. Hence, when choosing a classification for
requirements’ defects, organisations need to be aware of the
problems of using them. People may interpret the classifiers
differently and doing retrospective analysis of defects simply
based on the type of defects might be misleading. Experiments
similar to the ones presented in this paper may be conducted to
determine the degree of consensus among their personnel.

As future research work we intend to improve the classifier
and perform modified experiments “on the job”, i.e.: (1) using
individuals from industry; (2) using a SRS document from a
project they are involved in; (3) having each individual conduct
a complete SRS review to detect and subsequently classify
defects. We expect that the classification difficulties will be
attenuated in this setting, leading to more accurate and
unanimous classifications. We will also use the defects
classification to create a checklist to be used in the
requirements inspections, and will conduct experiments (with a
control group not using the checklist) to assess their impact on
the review efficacy (percentage of defects detected), efficiency
(time spent per defect) and convergence (of defect
classification). We will verify if the classification of defects
and application of the checklist reduce the number of defects in
subsequent software development phases.

VI. REFERENCES

[1] IEEE, "IEEE Standard Glossary of Software Engineering Terminology,"
ed: IEEE Press, 1990.

[2] J.-C. Chen and S.-J. Huang, "An empirical analysis of the impact of
software development problem factors on software maintainability,"
Journal of Systems and Software, vol. 82, pp. 981-992 June 2009.

[3] M. Hamill and G.-P. Katerina, "Common Trends in Software Fault and
Failure Data," IEEE Trans. Softw. Eng., vol. 35, pp. 484-496, 2009.

[4] D. N. Card, "Learning from Our Mistakes with Defect Causal Analysis,"
IEEE Softw., vol. 15, pp. 56-63, 1998.

[5] K. Henningsson and C. Wohlin, "Assuring Fault Classification
Agreement - An Empirical Evaluation," presented at the International
Symposium on Empirical Software Engineering, Redondo Beach,
California, 2004.

[6] B. Freimut, et al., "An Industrial Case Study of Implementing and
Validating Defect Classification for Process Improvement and Quality
Management," presented at the Proceedings of the 11th IEEE
International Software Metrics Symposium, 2005.

[7] L. Apfelbaum and J. Doyle, "Model based testing," presented at the 10th
International Software Quality Week Conference, San Francisco, 1997.

[8] O. Monkevich, "SDL-based specification and testing strategy for
communication network protocols," presented at the Proceedings of the
9th SDL Forum, Montreal, Canada, 1999.

[9] G. Mogyorodi, "Requirements-based testing: an overview," presented at
the 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39), 2001.

[10] R. R. Lutz and C. Mikulski, "Requirements discovery during the testing
of safety-critical software," presented at the Proceedings of the 25th
International Conference on Software Engineering, Portland, Oregon,
2003.

[11] R. Chillarege, et al., "Orthogonal Defect Classification - A Concept for
In-Process Measurements," IEEE Transactions on Software Engineering,
vol. 18, pp. 943-956, November 1992.

[12] R. B. Grady, Practical software metrics for project management and
process improvement: Prentice-Hall, Inc., 1992.

[13] T. E. Bell and T. A. Thayer, "Software requirements: Are they really a
problem?," presented at the Proceedings of the 2nd international
conference on Software engineering, San Francisco, California, United
States, 1976.

[14] V. R. Basili and D. M. Weiss, "Evaluation of a software requirements
document by analysis of change data," presented at the Proceedings of
the 5th international conference on Software engineering, San Diego,
California, United States, 1981.

[15] A. F. Ackerman, et al., "Software Inspections: An Effective Verification
Process," IEEE Software, vol. 6, pp. 31-36, May 1989.

[16] G. S. Walia and J. C. Carver, "Development of Requirement Error
Taxonomy as a Quality Improvement Approach: A Systematic
Literature Review," Department of Computer Science and Engineering
MSU-070404, 2007.

[17] J. H. Hayes, "Building a Requirement Fault Taxonomy: Experiences
from a NASA Verification and Validation Research Project," presented
at the Proceedings of the International Symposium on Software
Reliability Engineering, Denver, CO, 2003.

[18] J. H. Hayes, et al., "Case History of International Space Station
Requirement Faults," presented at the Proceedings of the 11th IEEE
International Conference on Engineering of Complex Computer
Systems, Standford, California, 2006.

[19] M. Kalinowski, et al., "Applying DPPI: A Defect Causal Analysis
Approach Using Bayesian Networks," in Product-Focused Software

Process Improvement. vol. 6156, M. Ali Babar, et al., Eds., ed: Springer
Berlin / Heidelberg, 2010, pp. 92-106.

[20] G. M. Schneider, et al., "An experimental study of fault detection in user
requirements documents," ACM Trans. Softw. Eng. Methodol., vol. 1,
pp. 188-204, 1992.

[21] A. A. Porter, et al., "Comparing Detection Methods for Software
Requirements Inspections: A Replicated Experiment," IEEE
Transactions on Software Engineering, vol. 21, pp. 563-575, June 1995
1995.

[22] G. S. Walia, et al., "Requirement Error Abstraction and Classification: A
Control Group Replicated Study," presented at the Proceedings of the
The 18th IEEE International Symposium on Software Reliability, 2007.

[23] IEEE, "IEEE Recommended Practice for Software Requirements
Specifications," ed: IEEE, 1998.

[24] I. Lopes Margarido, "Requirements Defects Classification List," Faculty
of Engineering, University of Porto, Technical Report 2010.
http://paginas.fe.up.pt/~pro09003/publications.html.

[25] J. R. Landis and G. G. Koch, "The Measurement of Observer Agreement
for Categorical Data," Biometrics, vol. 33, pp. 159-174, 1977.

[26] M. Kalinowski, et al., "Guidance for Efficiently Implementing Defect
Causal Analysis," presented at the Brazilian Software Quality
Symposium,VII SBSQ Florianópolis, Brazil, 2008.

VII. ANNEX A

TABLE III. DEFECT CLASSIFIERS PER AUTHOR BY CHRONOLOGICAL ORDER FROM LEFT TO RIGHT.

 [13] [14] [15] [16] [11] [12] [20] [21] [17-18] [22] [19] Sum
1 Not in current baseline 1.50% 1
2 Out of scope 7.20% 1
3 Missing/Omission 21.00% 24.00% 10.80% 23.50% 4
4 Incomplete merged Yes Yes 23.30% 4
5 Inadequate merged 1
6 Incorrect 34.80% 37.00% Yes 30.11% 35.30% 5
7 Inconsistent 9.10% 10.00% Yes Yes 23 Yes 13.07% Yes 5.90% 9
8 Incompatible merged 1
9 New 7.20% 1
10 Changed Requirement merged 1
11 Typos/Clerical 9.90% 23.00% 2
12 Unclear 9.30% 1
13 Ambiguity 4.00% Yes 15 Yes 13.07% Yes 11.80% 7
14 Wrong Section/Misplaced 1.00% Yes 1.14% Yes 4
15 Other 1.00% Yes 5.90% 3
16 Infeasible Yes 0.00% 2
17 Untestable/Non-verifiable Yes 0.00% 2
18 Redundant/Duplicate Yes 2.27% 3
19 Missing Functionality/Feature /u/w/c/b 34 Yes Yes 4
20 Missing Interface /incorrect 11 Yes Yes 4
21 Missing Performance 7 Yes Yes 3
22 Missing Environment 9 Yes Yes 3
23 Missing Software Interface /u/w/c/b 1
24 Missing Hardware Interface /u/w/c/b 1
25 Missing User Interface /u/w/c/b 1
26 Missing Function/Description /incorrect /u/w/c/b 2
27 Missing Requirement/Specification Inadequate 0
28 Missing/Incorrect Checking Yes 1
29 Missing/Incorrect Assignment Yes 1
30 Missing/Incorrect Timing/Serialization Inadequate 0
31 Missing/Incorrect Build/Package/Merge Inadequate 0

32 Missing/Incorrect Documentation Inadequate 0
33 Missing/Incorrect Algorithm Formal Spec 0
34 Incorrect or Extra Functionality Yes Yes 2
35 Data Type Consistency Yes 1
36 Over-specification 1.14% 1
37 Not Traceable 2.27% 1
38 Unachievable 0.57% 1
39 Intentional Deviation 2.27% 1
40 General Yes 1
41 Extraneous Information 17.60%

For each defect classifier we indicate the authors who used it. The following information appears: Yes if we have no further information; the percentage of occurrence of a defect using the data of the experiment done

with more data points; the quantity of defects; merged when the author used it merged with the classifier that is above that one; Inadequate when we consider that the classifier is not useful for requirements defects;

/incorrect, indicating that the authors also used the ‘incorrect’ prefix; /u/w/c/b indicating the authors also used the prefixes ‘Unclear’, ‘Wrong’, ‘Changed’ and ‘Better Way; Formal Spec. (Formal Specification) when
we consider that such defect classifier would only be applicable if the requirements were specified with formal language.

