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Abstract. Controlling a biped robot with a high degree of freedom to achieve 
stable and straight movement patterns is a complex problem. With growing 
computational power of computer hardware, high resolution real time 
simulation of such robot models has become more and more applicable. This 
paper presents a novel approach to generate bipedal gait for humanoid 
locomotion. This approach is based on modified Truncated Fourier Series 
(TFS) for generating angular trajectories. It is also the first time that Particle 
Swarm Optimization (PSO) is used to find the best angular trajectory and 
optimize TFS. This method has been implemented on Simulated NAO robot in 
Robocup 3D soccer simulation environment (rcssserver3d). To overcome 
inherent noise of the simulator we applied a Resampling algorithm which could 
lead the robustness in nondeterministic environments. Experimental results 
show that PSO optimizes TFS faster and better than GA to generate straighter 
and faster humanoid locomotion. 
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1   Introduction 

In recent years, bipedal locomotion, especially "bipedal walking" has been one of the 
interesting research topics in multi disciplinary topic. Bipedal walking as a very 
complex motion, involves most of humanoid joints including its sensors and 
actuators. Many researchers have focused on this topic and a lot of approaches have 
been presented. But so far no method exists that can walk a robot as stable as human's 
do. There are two major approaches in bipedal walking researches; model-based and 
model free approaches. In model-based approach the designer first derives model of 
the robot and then builds a controller for the model. Two well known methods in this 
approach are "Zero Moment Point"[1] (ZMP) and "Inverted Pendulum"[2]. 

In model-free approach, which is also called "Dynamics Based", it is common to 
make use of the sensory information and associate it with motions. No physical model 
is used in this method that eases the implementation of the skills. There are three 
important studies done in this field; Passive Dynamic Walking (PDW) [3], Central 



Pattern Generator (CPG) [4] and Ballistic Walking [5]. In PDW approach, the robot 
does not have any actuators model and walks just by utilizing the gravity force. The 
Ballistic walking is originated from the simple human walking model based on the 
observation of human walking in which the muscles of the swing leg are activated 
only at the beginning and the end of the swing phase. In CPG approach, special neural 
circuits take the role of rhythmic walking controller using the non-linear equations to 
model the neural activities. Researchers usually focus on complex mathematical 
models like Hopf [6] or Matsuoka [7] to model these neural activities and generate 
rhythmic walk patterns (Gaits).  

In 2006, Truncated Fourier Series (TFS) formulation is used for gait generation in 
bipedal locomotion [8]. TFS together with a ZMP stability indicator are used to prove 
that TFS can generate suitable angular trajectories for controlling bipedal locomotion. 
It does not require inverse kinematics and stable gaits with different step lengths and 
stride frequencies can be readily generated by changing the value of only one 
parameter in the TFS. 

Taking the advantages of TFS as a model-free approach, we implemented a TFS in 
a simulated humanoid robot to generate gait trajectories in three dimensions. In this 
novel approach, the Particle Swarm Optimization (PSO) technique with constraint 
handling on angles and time is used to find optimum parameters of TFS and train the 
robot to achieve fast bipedal walking for the first time.  

To overcome inherent noise of the simulator, Resampling algorithm is implied 
which could lead to robustness in nondeterministic environments. The Genetic 
Algorithm (GA) is also implemented in the same manner. Learning results of GA and 
PSO are compared with each other which indicate PSO as a better learning method 
for this complex problem in non-deterministic environment. 

2   Simulator and Biped Model 

In this paper, a new approach for walking behavior in a simulated humanoid robot is 
discussed. However simulation is not always efficient, due to difficulty of the 
modeling collision between feet and the ground, we still believe that numerical 
simulation is sufficient to explore and test bipedal locomotion methods. 

The simulation is performed by Rcssserver3d simulator which is a generic three-
dimensional simulator based on Spark and Open Dynamics Engine (ODE). Spark is 
capable of carrying out scientific distributed multi agent calculations as well as 
various physical simulations ranging from articulated bodies to complex robot 
environments [9]. The robot in this study is a simulated model of NAO that is a real 
humanoid Robot with two arms, two legs and a head. This robot weighs 4.5kg, stands 
57cm high and has 22 degrees of freedom (DOF). There are six DOFs in each leg; 
two in the hip, two in the ankle and one at the knee. An additional DOF that exists at 
each leg's hip for yaw causes the legs to rotate outward and inward.   

As an appropriate test-bed, in our soccer simulation team MRL we have 
implemented and tested our new bipedal locomotion approach on simulated NAO 
robot how the generated software based on this simulator is developed by MRL team 
from scratch. According to our studies, we found 6 DOFs (three for each leg) more 



effective than other DOFs to make the robot capable of fast walking. The DOFs of 
hip, knee and ankle which move on the same plane of forward-backward are the 
major ones. Although other DOFs are effective in walking behavior, but in fact, their 
role smoothes the robots walking motion. So here, it’s preferred to ignore them to 
decrease learning search space. Like in [10], Foot was kept parallel to the ground by 
using ankle joint in order to avoid collision. Therefore ankle trajectory can be 
calculated by hip and, knee trajectories and its DOF parameters are eliminated.  

3   TFS gait Generator 

Bipedal walking as a complex motion, involves most of humanoid robot’s joints.  
Researchers attempt to imitate the human walking style as well as its speed.  
Therefore analyzing human walk pattern has been used for acquiring beneficial 
information about this motion.  Human walk has been investigated from many angles; 
walking trajectory is one of them. The walking trajectory is divided into several types. 
Positional trajectory and angular trajectory are two of them. In angular trajectory, the 
angle of each joint is plotted at a certain time slice. Therefore the angular trajectory is 
obtained by angular variation of each joint. Biped angular trajectory of two joints; hip 
and knee captured from human walking are shown in Fig 1.a [11].  

 

 
Fig. 1.a   Human walking angular trajectory [11] 

 
The angle of each joint in one period of walking signal from 0t  to 6t  is 

represented in fig 1.b [11] by capturing the main features of fig 1.a and gives a 
general form to make it applicable to robots. In time range[ ]0 2,t t and [ ]5 6,t t the left 

leg is support leg and the right one is swing leg but in range of time [ ]2 5,t t the left 
and right legs play the role of support and swing legs respectively. In another word, in 



two times of 2t and 5t the roles of two legs are switched with each other. At time 3t
where two hip trajectories intersect, two thighs cross each other. 

 
Fig. 1.b gaits elaborated from human gaits features [11] 

3.1 Angular trajectory generation 

Regarding the fact that all joint trajectories of human walking are periodic and similar 
to sine or cosine signals [12], the generation of these angular signals can be done by 
Fourier series.  

3.2 Basic Fourier series 

The original definition of Fourier series is described by following formula:  
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Where ߱ is frequency of periodic signal, any complicated signal can be produced 
by this formula when ݅ is considered infinite. But when the value of ݅ is limited to a 
definite number, precision of generating signal is reduced and this type of Fourier 
series is called partial sum of the Fourier series. According to fig. 1.a, Human 
Walking angular trajectories are too complicated to be produced by a definite Fourier 
series band limited to the second harmonic. Therefore a modified definite Fourier 
series as a Truncated Fourier series (TFS) is used in this study. 

3.3   Trajectory generation by using TFS 

According to Fig. 1.b., the signals are divided in two parts; upper portion and lower 
portion. Whereby each portion can be assumed as an odd function, the cosine part of 
TFS is eliminated. So the TFS is reduced to equation 3 to generate each portion of 
trajectory. 

 
Where ߱ is fundamental frequency of signal and ܽ is signal offset. Separate 

production for each portion, caused to generate complex signals with different upper 
and lower portions. The number of parameters for generating these complex signals is 
also less than the parameters used in Fourier series. As shown in Fig. 1.b., each signal 
has an offset. Ch and Ck are hip trajectory and knee trajectory offsets respectively. 
From t0 to t2 the left leg is considered as supporting leg and the variation of its knee 
angle is so minute that can be assumed fixed. This duration of walking is named lock 
phase. In addition, the amount of shift phase of the two leg trajectories signal is half 
of the period of each signal. The trajectories for both legs are identical in shape but 
are shifted half of the walking period in time. Therefore by figuring out walking 
angular trajectory of one leg the other leg trajectory is obtained. Using (3) and 
considering curves of Fig. 1.b., the TFS for generating each portion of hip and knee 
trajectories are formulated as follow (4): 

In these equations, the plus (+) sign represents the upper portion of walking 
trajectory and the minus (-) shows the lower portion. Ai, Bi and Ci are constant 
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coefficients for generating signals. The h and k index stands for hip and knee 
respectively. Ch and Ck are signal offsets and Tk is assumed as period of knee 
trajectory. Considering the fact that all joints in walking motion have equal movement 
frequency [12], the equation ߱௞ ൌ ߱௛ ൌ

ଶగ
்ೖ

 can be concluded. Parameter 3t shows the 

end time of hip trajectory in upper portion and starts its down portion, 6t  shows the 
end time in down portion. These parameters are not significant since they can be 
obtained when the hip trajectory intersects the Ch line. But parameter 2t  represents 
the end time of knee lock phase and must be considered to produce knee trajectory. 
Therefore Truncated Fourier series parameters to produce trajectories are; Ch, Ck, Ai, 
Bi, Ci, t2, and Wk. In this essay there are some constraints to be dealt with as shown in 
the following equation: 

 
Finally an optimization algorithm is needed to optimize a 7_dimension Problem for 

finding the best gait generator. 

4   PSO algorithm 

The PSO algorithm consists of three steps; generating primitive particle’s positions 
and velocities, velocity update and position update [13]. These parts will be described 
in sections 4.1, 4.2 and 4.3 respectively. 

4.1   Initializing particles' positions and velocities  

Equations (6) and (7) are used to initialize particles which tΔ are the constant time 
increment. Using upper and lower bounds on the design variables values, Xmin and 
Xmax, the positions, i

kX  and velocities, i
kV  of the initial swarm of particles can be first 

generated randomly. The swarm size will be denoted by N. The positions and 
velocities are given in a vector format where the superscript and subscript denote the  
ith particle at time k.  
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4.3   Updating Velocities  

The fitness function value of a particle is used to determine the particle which has the 
best global value in the current swarm ( ௞ܲ

௚), and to determine the best position of each 
particle over time (ܲ௜).  

The three values that affect the new search direction, namely, current motion, 
particle own memory, and swarm influence, are incorporated via a summation 
approach as shown in Equation below with three weight factors, namely, inertia 
factor, w , self confidence factor,C1 , and swarm confidence factor,C2 ,respectively. 

The inertia weight w controls how much of the previous velocity should be 
retained from the previous step. A larger inertia weight facilitates a global search, 
while a smaller inertia weight facilitates a local search [14]. A balance can be 
achieved between global and local exploration to speed up search results using a 
dynamically adjustable inertia weight formulation. There have been different 
strategies for determining the value dynamic inertia weight. Introducing a nonlinear 
decreasing inertia weight as a dynamic inertia weight into the original PSO 
significantly improves its performance through the parameter study of inertia weight 
[14]. This nonlinear distribution of inertia weight is expressed as follow: 

 
Where winit is the initial inertia weight value selected in the range [0, 1] and U is a 

constant value in the range [1.0001, 1.005], and k is the iteration number. 

4.4   Updating the Position  

Position update is the final step of each iteration and it is done by using the current 
particle position and its own updated velocity vector shown in the Equation below. 

 
In summary, the PSO technique will be: 

Let initialization iterative number k = 0, initialization population size.(6),(7) 
Calculate each particle’s fitness value of initialization population, and let first 
generation Pi be initialization particles, and choose the particle with the best fitness 
value of all particles as the P1

g.  
Repeat 
For each particle  
           Calculate inertia Weight according to equation (9). 
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           Update the velocities according to equation (8). 
           Update the positions according to equation (10). 
           Evaluate its fitness value according to the objective function.  
           Update g

kP  and iP  if necessary. 
End for 
Until a sufficient good criterion is met, either good fitness or a maximum number 

of iterations (As in genetic algorithm). 

5   Implementation 

Bipedal walking is known as a complicated motion since many factors affect Walking 
style and stability such as robot's Kinematics and dynamics, and collision between 
feet and the ground. In such a complex motion, relation between Gait trajectory and 
walking characteristic is nonlinear. In this approach the best parameters to generate 
angular trajectories for bipedal locomotion must be found. This kind of optimization 
problem is usually difficult; therefore particle swarm optimization (PSO) seems to be 
appropriate solution.  

In PSO, the parameters of the problems are coded into a finite length of string as a 
particle. According to section 2, TFS has 7 parameters to generate all joints angular 
trajectories; there is a 7-dimension search space for the PSO to find the optimum 
solution. 

Fitness function has a critical rule in PSO that is used to judge whether a solution 
represented by a particle is good or bad. Angular trajectory produced by each particle 
is used for walking by simulated robot. To use angular trajectory for walking, all 
individual robot's joints attempt to drive towards their target angles using proportional 
derivative (PD) controllers. To equip the robot with a fast walking skill a fitness 
function based on robot's straight movement with limited action time is considered. 
First the robot is initialized in x=y=0 (0, 0) to walk for 15 seconds then fitness 
function is calculated whenever robot falls or time duration for walking is over. 
Fitness function formulation is expressed as follow; The Current Time in the formula 
determines time passed since robot has started walking:  
If ((Current Time >= time duration for walking) or 
(robot is fallen)) 

Fitness := 10*x ;                                                            

End if 

Due to the fact that there is noise in simulated robot's actuators and sensors, 
training walking task in this approach can be viewed as an optimization problem in a 
noisy and nondeterministic environment. Resampling is one of the techniques to 
improve the performance of evolutionary algorithms (EAs) in noisy environment [15]. 
In Resampling, the individual set of parameters (particle)ݕ௜, the fitness ܨሺݕ௜ሻ is 
measured m times and averaged yielding fitness. According to (11) the strength of 
noise ܨ is reduced by the factor√݉. 



In this study, for comparing GA and PSO performance as an optimizer, we 
implemented them by the same mentioned model, fitness function and Resampling 
factor of m as 3. 

5.1   PSO and GA implementation  

Since particles may not be satisfied in constraints during updating position procedure 
constraint handling is a vital step in PSO algorithm. There are many constraints on 
parameters in this study (i.e time parameters in TFS must be positive). Therefore 
Pareto [16] with multi-objective modeling is used for handling constraints.  

In Pareto, a solution, x(2), is dominated by solution, x(1), if x(1) is not worse than 
x(2) in all objectives, and for at least one of the objectives, x(1) is strictly better than 
x(2). Without loss of generality, these conditions can be expressed as follows for the 
case where all of the objective functions are going to be minimized: 

 
( )( ) ( )( )1 2 1, 2, ...,fm x fm x for m M≤ ∀ =   and 

    ( )( ) ( )( )1 2fm x f m x≺    for some m. 
 
  Each constraint is assumed as an object in which parameters must be satisfied .So 
according to Pareto method, a particle can be considered to find Pi , Pk

g when it 
satisfies objects and constraints. So calculating fitness for particles that cannot satisfy 
constraint is not necessary.   

 Salman et.al [17] used the values of 0.9, 2 and 2 for w, C1 and C2 respectively. But 
it is possible that much combination of values lead to much slower convergence or 
even non-convergence. The tuning of the PSO algorithm values is an issue that 
warrants proper investigation but is outside the scope of this work. We considered 
various values for each parameter of the algorithm and tried all possible 
combinations. Finally we chose the best combination of the parameters regarding the 
dynamic inertia weight and test results that C1 and C2 are assumed as 1, 1.5, winit as 
0.8, U as 1.0002 and as 1, respectively. We have also implied a swarm consisted 
of 100 particles (N = 100) and maximum iteration of 10. 

In GA implementation, the crossover rate and mutation rate are set to 0.8 and 0.06 
respectively and roulette wheel is assumed as selection method. Population for each 
generation is 100, termination condition is to have a generation counter greater than 
10 and Resampling m factor is 3. In another world 3000 trials are needed to find 
appropriate TFS parameters. 
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6   Results 

4 hours after starting GA on a Pentium IV 3 GHz Core 2 Duo machine with 2 GB of 
physical memory, 3000 trials were performed. The robot could walk 6.7m in 15s with 
average body speed of 0.45m/s and the period of 0.41s for each step.  Fig. 3 shows the 
average and best fitness values during these 10 generations.  

 
Fig 3. GA Convergence 

Running the PSO on the same system with the same parameters of iteration and 
population, more satisfactory results are achieved. Implying constraint handling, some 
of the particles that did not satisfy constraint were not tested. So through PSO after 
1782 training tests instead of 3000 by GA, the robot could walk 8.7 m in 15 s with 
average body speed of 5.8 m/s, that’s significantly better than GA result. This 
outcome also proves that PSO has bypassed a local minimum that GA was caught in 
and it can optimize faster. Fig. 4 illustrates PSO algorithm convergence results. 

 
Fig 4. PSO Convergence 



7   Conclusion 

In this study for the first time TFS with PSO is implemented in a simulated robot 
that can walk fast and stable. The technique has some advantages.  First, it can be 
implemented on many humanoid robots as simulated NAO robot to walk based on 
its walking performance without considering any mathematical modeling. Second, 
the modified PSO converges sooner than GA to find the best TFS parameters. 
Since each individual or particle needs a long time to be tested, the higher speed of 
PSO convergence becomes more significant. On the other hand by using PSO the 
robot has achieved a faster walk that means PSO performs better than GA in such 
problems. Resampling technique is also used to overcome uncertainty and noise of 
the environment. 
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