
Generalized Learning to Create an Energy

Efficient ZMP-Based Walking

Nima Shafii1,2,4(&), Nuno Lau3,4, and Luis Paulo Reis1,5

1 LIACC - Artificial Intelligence and Computer Science Laboratory,

Porto, Portugal

nima.shafii@fe.up.pt, lpreis@dsi.uminho.pt
2 Department of Informatics Engineering, Faculty of Engineering,

University of Porto, Porto, Portugal
3 Department of Electronics, Telecommunications and Informatics,

University of Aveiro, Aveiro, Portugal

nunolau@ua.pt
4 IEETA - Institute of Electronics and Telematics Engineering of Aveiro,

Aveiro, Portugal
5 Department of Information Systems, School of Engineering,

University of Minho, Guimaraes, Portugal

Abstract. In biped locomotion, the energy minimization problem is a chal-

lenging topic. This problem cannot be solved analytically since modeling the

whole robot dynamics is intractable. Using the inverted pendulum model,

researchers have defined the Zero Moment Point (ZMP) target trajectory and

derived the corresponding Center of Mass (CoM) motion trajectory, which

enables a robot to walk stably. A changing vertical CoM position has proved to

be crucial factor in reducing mechanical energy costs and generating an energy

efficient walk [1]. The use of Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) on a Fourier basis representation, which models the vertical CoM

trajectory, is investigated in this paper to achieve energy efficient walk with

specific step length and period. The results show that different step lengths and

step periods lead to different learned energy efficient vertical CoM trajectories.

For the first time, a generalization approach is used to generalize the learned

results, by using a programmable Central Pattern Generator (CPG) on the

learned results. Online modulation of the trajectory is performed while the robot

changes its walking speed using the CPG dynamics. This approach is imple-

mented and evaluated on the simulated and real NAO robot.

Keywords: Humanoid walking � Energy efficiency � Zero Moment Point �
Central pattern generators

1 Introduction

In competitive, non-deterministic environments like RoboCup soccer humanoid robot

leagues, stable omnidirectional biped walking is one of the keys to win a match. Such

movements must accomplish different requirements. For example, in case the target is
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far away, the humanoid robot must be capable walking with minimum energy usage,

since the energy resources of a humanoid robots is limited.

Biped walking can be defined as the modeling of the predefined Zero Moment

Point (ZMP) references to the possible body swing or horizontal CoM trajectory. For

approximating the ZMP dynamics, simple physical models have been used, such as

Cart-on-a-table [2] and classical Inverted Pendulum Model [3]. Kajita has utilized an

Cart-on-a-table model as an approach to generate stable CoM trajectory [4]. The major

drawback of the Cart-on-a-table model is its simplification, It models the walking by

considering the CoM height is a fixed position, but biomechanical studies show that the

CoM height is variant during walking [5]. The vertical CoM movement is also

important for energy consumption [1].

A ZMP based walking with variable height can be generated by using inverted

pendulum model [3]. Recently, Kormushev et al. have presented an approach for

generating an energy efficient ZMP based walking [6]. They have used a vertical CoM

trajectory generator, modeled by a Spline representation, and a policy search rein-

forcement learning. This approach was applied to minimize the energy consumption of

a walk with only a specific and predefined step length and step period; however, the

shape of an energy efficient vertical CoM trajectory is different for each walking

characteristics, including step length and step period.

In this paper, a novel learning scenario is presented to achieve energy efficient

ZMP-based walking with variable step lengths and step periods. Fourier basis func-

tions are used as a policy representation for modeling the vertical CoM trajectory. In

order to generate the horizontal CoM trajectory, first the position of the foot during a

walking is planned. Then, the ZMP trajectory is generated based on the support foot

polygon. In the next step, the position of the horizontal CoM trajectory is calculated

by using the approach presented in [11], which is able to solve the differential

equations of the inverted pendulum model numerically with respect to the input

predefined ZMP and vertical CoM trajectories. The Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [7] is used as a black-box optimizer to find an opti-

mized and energy efficient vertical CoM trajectory policy. For different input walk

speeds, including step lengths and step periods, different hip height trajectories are

learned. The generated trajectories based on Fourier series are the input to the pro-

grammable Central Pattern Generators (CPGs) based on Hopf oscillator [8]. CPGs

prepare online modulation of trajectories, in the face of changing the walk speed. The

system overview of the proposed approach is provided in Fig. 1, which illustrates the

role of each component.

The paper structure is as follows. First, A ZMP-based humanoid walking

approach to control the walking stability is introduced. Then a CoM vertical trajectory

generator based on Fourier basis functions is presented which can produce the peri-

odic vertical hip motion. This trajectory is the input signals of a CPGs approach,

which is also introduced in Sect. 3. The learning scenarios with using the CMA-ES

are explained in Sect. 4. At the end of the article, the results of learning scenarios are

presented and the efficiency of the method to generate energy efficient walking is

shown by experiments.
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2 Biped Locomotion Control Approach

A humanoid robot contains many degrees of freedom. It is difficult to maintain the

balance of humanoid robot walking. The Zero Moment Point (ZMP) criterion [9] is

widely used as a stability measurement in the literature. For a given set of walking

trajectories, if the ZMP trajectory keeps firmly inside the area covered by the support

foot or the polygon containing the support legs, the given biped locomotion will be

physically balanced.

ZMP based biped walking is assumed as a problem of balancing an inverted

pendulum model, since in the single supported phase human walking can be repre-

sented as an inverted pendulum a predefined vertical CoM trajectory is the input of this

model. Kagami et al. proposed an approach to generate the horizontal CoM trajectory

by solving numerically inverted pendulum equations [10]. Figure 2-a shows the NAO

humanoid robot and the inverted pendulum model. Figure 2-b shows a schematic view

of the inverted pendulum model in XZ plane or in the sagittal plane. Two sets of

inverted pendulum are used to model a 3D walking. One is for movements in the

frontal plane; another is for movements in the sagittal plane.

Fig. 1. The interaction between each component of the proposed approach

Fig. 2. (a) Frontal view of the NAO robot and the inverted pendulum model (b) A schematic

view of the inverted pendulum model
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In the sagittal plane, the horizontal and vertical positions of CoM are denoted by

x and z, respectively. Gravity g, horizontal CoM acceleration x
::

, and vertical CoM

acceleration z
::

, create a moment Tp around the center of pressure (CoP) point Px. The

Eq. (1) provides the moment around P.

Tp ¼ M g þ z
::

� �
ðx� PxÞ � Mx

::

z ð1Þ

We know from [9] that when the robot is dynamically balanced, ZMP and CoP are

identical, therefore, the amount of moment in the CoP point must be zero, Tp ¼ 0. By

assuming the left hand side of Eq. (1) to be zero, Eq. (2) provides the position of the

ZMP based on the position and acceleration of CoM. In order to generate a 3D

walking, the CoM must also move in the frontal plane; hence, another inverted pen-

dulum must be used in y direction. Using the same assumptions, Eq. (2) is given for

movements in the frontal plane denoted by y.

Px ¼ x�
z

g þ z
::

x
::

P
y

¼ y �
z

gþ z
::

y
::

ð2Þ

In order to apply the inverted model in a biped walking problem, first the positions

of the support foot during a walk must be determined. In a forward walk, the support

foot positions are calculated based on the desired input step length. Then, the ZMP

trajectory is designed based on support foot positions and the input step period. The

vertical CoM position and acceleration trajectory must also be determined as the input

of the inverted pendulum model, our approach to generate vertical CoM trajectories is

explained in Sect. 3. In the final step, the horizontal position of the CoM is calculated

by solving the differential equations (2). The main issue of using the inverted pendulum

is how to solve these differential equations. The solution is explained in Sect. 2.1.

Finally, an inverse kinematics method is used to find the angular trajectories of each

joint based on the planned position of the feet and generated CoM position. We used

and developed an inverse kinematic approach, which was applied on the NAO

humanoid soccer robot, see details in [11].

2.1 Horizontal CoM Trajectory Generation

Kagami et al. proposed an approach to generate walking patterns by solving the ZMP

equations numerically [10]. Kajita et al. used this numerical approach and the inverted

pendulum model in order to generate the horizontal CoM trajectory of a ZMP based

biped running [3].

In this numerical approach, in order to generate horizontal CoM, first the position

and acceleration of CoM are discretized with a small time step Dt.

xðiDtÞ ! xðiÞ ð3Þ

x
::

iDtð Þ !
x i� 1ð Þ � 2x ið Þ þ xðiþ 1Þ

Dt2
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Then, a tridiagonal system for the Eq. (2) is written as:

Px ¼ aix i� 1ð Þ þ bix ið Þ þ aix iþ 1ð Þ ð4Þ

Where,

ai ¼ �
1

D t2
ð

z iDtð Þ

gþ z
::

iDtð Þ
Þ bi ¼ 1þ

2

D t2
ð

z iDtð Þ

gþ z
::

iDtð Þ
Þ ð5Þ

For generating CoM trajectory, the linear system is obtained, which is presented in

Eq. (6). In order to solve this tridiagonal system Thomas algorithm can be applied. The

solution can be obtained in O(n) operations. Here, n = Ts/Dt, in this study Dt is assumed

to be 0.005 s, and Ts is the total time in which CoM is calculated.
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Since n must be a finite value, therefore, boundary conditions must be used.

Kagami et al. [10] assumed Ts to be a given time period of the walking step, and he

presented boundary conditions for the beginning and the end of the walking step. The

walk was assumed to be statically stable in the beginning and end of each walking step,

and a1 = an = 0. In this algorithm, the initial and final positions of CoM during a walk

step need to be defined before the robot actually starts to walk. These are drawbacks of

this approach, since the beginning of each walking step is not always statically bal-

anced, i.e. the initial acceleration and velocity of the CoM have not been considered. In

addition, before the robot starts to walk, it is not possible to define the exact position of

CoM in the beginning and final of the walking step.

In order to remedy the aforementioned problems, we use the presented method by

assuming xð1Þ equal to the middle of the feet at the beginning of the previous two walk

steps, and x nð Þ is also equal to the middle of the feet in the predicted position of the

following five steps. Consequently, the ZMP trajectory is given to the algorithm for a

walk, which has been starting in the previous two steps and lasting in the future five steps.

The CoM trajectory of the current walking step is extracted from the calculated CoM

trajectory. At the beginning of each walking step, the presented procedure is repeated.

3 Vertical CoM Trajectory Model

We consider the height trajectory as the periodic movement. In this study, vertical CoM

trajectory is represented by the first five terms of the Fourier basis functions. Therefore,

the equation of our vertical CoM trajectory generator is given in (7).

Generalized Learning to Create an Energy Efficient ZMP 587



F tð Þ ¼ {þ
Xi¼2

i¼1

bicos
ipt

L

� �

þ ai sin
ði� 1Þpt

L

� �� �

ð7Þ

The parameter L is equal to the step period, therefore the generator has five

parameters such as {, b1, b2, a1 and a2. A black-box optimization approach can be

applied in order to find the optimized hip height trajectory generator with respect to

energy efficient walking, in the Sect. 4 we describe our optimization scenario. The

generated trajectory by Fourier basis functions is the input to the programmable CPGs.

In the CPGs implementation studies, nonlinear oscillators i.e. Hopf are interesting

because of their synchronization properties when they are coupled with other oscilla-

tors or with an external drive signal. Most CPGs use phase-locking behavior for their

coupling method [12]. If intrinsic frequency of the oscillator is close to frequency

component of the periodic input, phase-lock behavior will appear, and synchronization

will be done perfectly. In 2006, Righeti et al. designed an adaptive oscillator based on

Hopf oscillator which was able to learn CPGs frequency from the frequency of periodic

input signals [8]. They called their adaptive mechanism dynamic Hebbian learning

because it shared similarities with correlation-based learning found in neural networks

[13]. The structure of the network of adaptive Hopf oscillators is shown in Fig. 3.

In this study the external drive signal, or teaching trajectory, is the output trajectory

of the presented Fourier based generator. Each oscillator is responsible for learning one

frequency component of the signal. The network can be designed by four oscillators

and each oscillator is denoted by i. The output of the system is the weighted sum of the

output of the oscillators QlearnedðtÞ ¼
P

i

aixi, here ai is assumed the amplitude of each

learned frequency. By using negative feedback loop, the already learned frequencies

will be subtracted from the teaching signal F tð Þ ¼ PteachðtÞ � QlearnedðtÞ. It leads the

system to adapt to remaining frequencies component which have not yet converged.

According to the fact that each oscillator has its own phase shift, a variable encoding

phase difference between the oscillator and the first oscillator of the network is

Fig. 3. A Schematic view of network of adaptive Hopf oscillators as a CPG block
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associated with each of them. In order to reproduce any phase relationship between the

oscillators, the Kuramoto coupling scheme [14] is used. The Equations describing the

Total CPG’s learning and dynamics are given as follow.

_xi ¼ c l� r2i
� �

xi � xiyiþ 2 F tð Þ þ s sinðhi � ;iÞ ð8Þ

_yi ¼ c l� r2i
� �

yi � xixi ð9Þ

_xi ¼ 2 F tð Þ
yi

ri
ð10Þ

_ai ¼ bxiFðtÞ ð11Þ

_;i ¼ sinð
xi

x0

h0 � hi � ;iÞ ð12Þ

hi ¼ sgnðxiÞcos
�1ð�

yi

ri
Þ ð13Þ

Equations 8, 9 and 10 are representing Hopf oscillator and its frequency learning,

where c controls the speed of recovery after perturbation. In Eq. 8, the Kuramoto

coupling method is represented by s sinðhi � ;iÞ in order to achieve phase synchro-

nization between oscillators. Each adaptive oscillator is coupled with oscillator 0, with

strength s to keep correct phase relationships between oscillators. ;i is the phase

difference between oscillator i and 0.

Equations 12 and 13 shows how ;i can converge to the phase difference between

the instantaneous phase of oscillator 0, h0 scaled at frequency xi and the instantaneous

phase of oscillator i, hi Learning rule for updating ai is presented by Eq. 11, where b is

learning rate. Learning rule shows how correlation between xi and F(t) will be maxi-

mized. The correlation will be positive on average and will stop increasing when

frequency component xi disappears from F(t) because of the negative feedback

loop. The negative feedback is working like amount of the error, and learning rule is

working like the perceptron rule and since the input signal is linearly separable, the

above online algorithm will converge.

As conclusion, applying learning rules given as differential equations, parameters

such as intrinsic frequencies, amplitudes, and weights of phase coupling can be

automatically adapted to a teaching signal. One of its interesting aspects is that the

learning is completely embedded into the dynamical system, and does not require

external optimization algorithms.

Using Fourier basis functions together with presented CPG concept the proposed

trajectory generator model, or policy representation, has the following advantages:

Smoothness: Using the CPGs increase basin of stability of walking. CPGs generate

smooth and continuous trajectories without sudden accelerations, which enable the

robot not fall and also reduce its energy consumption. By changing the step length and

period during the walk, the robot may change its energy efficient vertical CoM tra-

jectory; CPGs make able this change to be smoothly. CPGs also have the ability of

frequency adaptation when walking step period and CoM trajectory period changed.
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Periodicity: The Fourier basis function is easily able to represent periodic or cyclic

movement. A biped walk often consists of periodic movements.

Convergence: the frequency of a walk is equal to the frequency of its vertical CoM

trajectory. Using Fourier basis function the frequency parameters is eliminated,

therefore the robot converges to the energy efficient walk faster compared to the

approaches uses Spline basis function [6].

4 Learning Scenario

In this study, the vertical CoM trajectory is represented by the first five terms of the

Fourier basis functions. The optimized energy efficient vertical CoM motion must be

achieved for different step periods and step lengths. Since the step length and step

period are continuous variables, they are discretized with a proper resolution. The

boundaries of the step lengths and step period resolutions used in this work are the

following:

Step Length = [0.06…..0.18] m; Resolution = 0.04.

Step Period = [0.4…. 0.8] s; Resolution = 0.2.

There are 12 possible combinations of the step periods and step lengths, and for

each of them the energy optimization is performed. The optimized values of the Fourier

basis functions terms must be found, with respect to minimization of actuator electrical

power consumption. Bipedal walking is known as a complicated motion since many

factors affect walking style and stability, such as robot’s kinematics and dynamics,

collision between feet and the ground. In such a complex motion, relation between gait

trajectory and walking characteristic, e.g. energy consumption, is nonlinear. Stochastic

optimization algorithms can be applied to find the optimized parameter values of the

CoM vertical trajectory generator with respect to generate an energy efficient walk.

In this paper, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is used

as a stochastic optimization algorithm for our gait optimization scenario. CMA-ES is a

population-based stochastic, derivative-free method, which can be used in black-box

optimization problems or direct policy search reinforcement learning. It has been

successfully applied previously on gait optimization scenarios [15, 16]. It is also

reported that CMA-ES could achieve better results and faster convergence compared to

other famous stochastic optimization techniques such as particle swarm optimization

(PSO) and Genetic Algorithm (GA) [16].

CMA-ES generates a set of candidates, as the population, sampled from a multi-

variate Gaussian distribution. After generating the population, CMA-ES evaluates each

candidate with respect to a fitness measure. After evaluating all the candidates in the

population, the mean of the multivariate Gaussian distribution is recalculated as a

weighted average of the candidates with the highest fitness. The covariance matrix of

the distribution is also updated to bias the generation of the next set of candidates

toward directions of previously successful search steps. In this study the population

size is assumed to be 8.

For minimization of electrical power and energy consumption, the electrical power

must be measured. The electrical power for a motor can be given in a simple form by
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Pm = I2R, where I is the current, R the resistance. The motor stall torque is calculated by

τ = KtI, where Kt is the motor torque constant. By combining these expressions, the

electrical power can be rewritten as Pe ¼
r
K2
t

s2. Therefore, in this study, the cost metric

is measured by the sum of the joint-torques squared.

5 Results and Discussions

In this study, a simulated NAO robot is used in order to test and verify the approach.

The NAO model is a kid size humanoid robot that is 58 cm high and 21 degrees of

freedom (DoF). The simulation is carried out using the RoboCup soccer simulator,

rcsssever 3d, which is the official 3D simulator released by the RoboCup community,

in order to simulate humanoids soccer match. The simulator is based on Open Dynamic

Engine (ODE). The ODE can report the produced torque of each joint in each simu-

lation step time, therefore the sum of the joint-torques squared can be calculated as the

cost function.

Using the CMA-ES, after 30 iterations and 240 trails, the robot could reduce

its energy usage by 25 percent, on average in all learning scenarios. The optimiza-

tion is performed for 10 s walking with all the step lengths and step periods, which

were presented in Sect. 4. Figure 4, shows the convergence of the cost function of the

learning scenario for the walk with step length 0.1 m and step period 0.4 s. The

optimized vertical CoM trajectory for this walk is also shown in the Fig. 5.

The walking achieved by the above learning scenario presented in Fig. 4 is com-

pared to the fixed height walking with the height assumed to be the offset of learned

Fig. 4. CMA_ES convergence for walk with step length 0.10 m and step period 0.4 s

Fig. 5. CoM vertical trajectory for a walk during 1.6 s
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trajectory. The results show the sum of squared torques of the walk with variable height

is reduced by 25 percent compared to the walk with fixed height. The same walking

parameters with minor tuning are tested on a real NAO robot and the robot achieved to

a more energy efficient walking. Please refer to https://www.dropbox.com/s/ft1en4

blotnwcrx/Real_Robot_Experiment.wmv to watch the video of the fixed height

walking versus the variable height walking. Figures 6 and 7, show the convergence of

the cost function and the energy efficient vertical CoM vertical trajectory for the walk

with step length 0.1 m and step period 0.8 s.

Figures 8 and 9, also show the convergence of the cost function and the optimized

vertical CoM trajectory of the walk with step length 0.14 m and step period 0.4 s.

As shown in Figs. 5, 7 and 9, the optimized CoM vertical trajectory for different

walking characteristics are different. By using programmable CPGs, the robot can

change its walking speed, and modulation of the CoM trajectories can be done

Fig. 6. Learning convergence for walking with step length 0.10 m and period 0.8 s

Fig. 7. Energy efficient CoM vertical trajectory during two step periods

Fig. 8. CMA_ES convergence for walk with step length 0.14 m and step period 0.4 s
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autonomously. Figure 10 shows the modulation of CoM trajectory of a walk when the

robot, changes its walking characteristics from walk with step length 0.10 m and step

period 0.8 s to the walk with step length 0.14 m and step period 0.4. This change is

happening after the four seconds from the starting of the walk.

For the same walking scenario shown in the Fig. 10, we test the change of the

vertical CoM trajectories, this time with only use the Fourier basis function generator.

Figure 11, shows this experiment. This figure also illustrates that, at the time when the

change is happening, the CoM vertical trajectory has the sudden acceleration. In our

experiment the robot in this scenario fell four times in 10 tests, this happens because of

the explained sudden acceleration in vertical CoM trajectory. Nevertheless, by using

CPGs for the same walking scenario the robot did not fall in 10 times tests, because of

the smooth change in vertical CoM trajectory, as it is shown in Fig. 10.

6 Conclusions

This paper presented an approach to create an energy efficient walk. The walking

controller approach is a ZMP based approach, which the ZMP dynamics is modeled by

an inverted Pendulum model. A numerical approach is used to generate the horizontal

Fig. 9. Optimized vertical CoM vertical trajectory for the above walking scenario

Fig. 10. Modulation of the vertical CoM trajectory by using the CPGs

Fig. 11. Changing the vertical CoM trajectory by the Fourier based generator
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CoM trajectory. The main contribution of this paper is the using of the CPG approach

with Fourier based function in order to formulate the vertical CoM trajectory generator.

By using the CMA-ES, an energy efficient walk is achieved for walking types with

different characteristics, including the step lengths and periods.

The results show that by optimizing the vertical CoM trajectory, the energy con-

sumption of the walk is reduced by as much as 25 percent compared to the walking

with fixed height. For different step lengths and periods, the optimized CoM vertical

trajectory is different in shape and characteristics. By using CPGs the online modu-

lation and change of the vertical CoM trajectories is done smoothly and without jerk.

Since a ZMP-based approach is used and CPGs can generate smooth trajectories,

the generated walking is stable, and the risk of hardware damage during the gait

learning procedure is low. Therefore, Future work will be concerned with performing

the gait learning directly on a real NAO robot. For improving the learning general-

ization, the linear regression may also be used to obtain the predicted values of the

Fourier basis function terms based on new walk parameter values.
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