Licenciatura em Engenharia Electrotécnica e de Computadores

EEC5275
 Complementos de Comunicações Digitais
 (2005-2006)

1st Mini-test
Duration: 1.30h (no books allowed)
November 9 ${ }^{\text {th }}, 2005$

1. Consider a noise reducing scheme of white noise $r(n)$ with power 10 and without DC component. Correlation between input signal $a(n)$ and the desired response $\mathrm{d}(\mathrm{n})=\mathrm{r}(\mathrm{n})$ is such that $a(n)=r(n)+0.3 r(n-1)+0.1 r(n-2)$. Samples of $a(n)$ are applied at the input of an N -tap transversal filter.
a) (2 pts.) Find the input autocorrelation matrix \mathbf{R} and the crosscorrelation vector \mathbf{p} when $\mathrm{N}=5$.
b) (2 pts.) Find the filter taps which minimize the mean square error (MSE) $\varepsilon=\mathrm{E}\left[\mathrm{e}^{2}(\mathrm{n})\right]$, when $\mathrm{N}=2$.
c) (2 pts.) Show that, when $N=2$, the isometric curves of the performance surface ε drawn on the coordinated axes system (v_{0}, v_{1}) obey to a equation of the form $\frac{v_{0}^{2}}{a^{2}}+\frac{v_{1}^{2}}{b^{2}}=1$, that is, they are ellipses centered at $(0,0)$ with semi-axes a and b. Write down the expressions (not the values!) of a and b.
2. A signal is applied at the input of an adaptive filter. The eigenvalue and eigenvector matrices of its autocorrelation matrix \mathbf{R} are, respectively,

$$
\Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right] \quad \mathbf{Q}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]
$$

Assume that $\mathbf{p}=\left[\begin{array}{ll}5 & 3\end{array}\right]^{T}$ and that the minimum mean square error is $\varepsilon_{\text {min }}=0.6$. The steepest descent (or gradient) algorithm is to be used.
a) (2 pts.) Compute the desired response power.
b) $\left(2 \mathrm{pts}\right.$.) Find ε when $\mathbf{c}_{e}=\left[\begin{array}{ll}0.1 & 0.1\end{array}\right]^{T}$.
c) (1 pt.) Present a range for μ in order to maintain the algorithm's convergence.
d) (2 pts.) Determine the optimal step size, μ_{opt} (in the convergence speed sense).
e) (1 pt.) Which natural mode, v_{0} or v_{1}, does converge faster towards zero? Why?
f) (2 pts.) Now suppose $\mathbf{c}_{e}(0)=\left[\begin{array}{ll}-1.8 & 0.2\end{array}\right]^{T}$ and $\mu=0.15$. Write down an expression for ε, in terms of the n-th iteration, that shows ε approaching the minimum value $\varepsilon_{\min }$. You may confirm that $\varepsilon(4) \approx 0.74$.
3. In some situations an adaptive algorithm is used to minimize the cost function $J(n)=E\left[e^{2}(n)\right]+\gamma \mathbf{c}^{T}(n) \mathbf{c}(n)$, where $0<\gamma \ll 1$.
a) (2 pts.) Simplifying this algorithm the way it was done with the LMS algorithm, show that the update equation of the filter coefficient vector is given by $\mathbf{c}(n+1)=(1-2 \mu \gamma) \mathbf{c}(n)+2 \mu e(n) \mathbf{a}(n)$
b) (2 pts.) Prove that, contrary to the LMS algorithm, now $E[\mathbf{c}(\infty)] \neq \mathbf{c}_{\text {opt }}$, i. e., this algorithm produces biased estimates.
c) (2 pts.) This algorithm is equivalent to adding white noise of variance γ to the input signal in the steepest descent and LMS algorithms. Using that reasoning find the widest range of values for the step size μ that assures convergence.
4. Consider the adaptive system of the figure. The filter has two taps initialized on zero and updated with an RLS algorithm using an unit forgetting factor $(\alpha=1)$. Assume $\mathbf{P}(0)=50 \mathbf{I}$.

Please calculate:
a) (1 pt.) $\hat{\mathbf{R}}(1)$
b) $(1 \mathrm{pt}.) \hat{\mathbf{p}}(2)$
C) $(2$ pts.) $\mathbf{P}(1)$
d) $(1 \mathrm{pt}.) \mathbf{k}(1)$
e) (1 pt.) $e^{\prime}(1)$
f) $(1 \mathrm{pt}.) \mathbf{C}(1)$

The End

