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Abstract - This paper addresses attitudes and forms of process modelling in biochemical engineering. Baker's 
yeast production in a fed-batch fermenter, at laboratory scale, is employed as case-study. Three modelling 
approaches are described and compared, viz. - the conventional mechanistic approach, formulations based on 
different artificial neural network (ANN) topologies and a hybrid mechanistic-ANN structure. A standard 2-step 
procedure of model development, estimation (training) and validation with two independent sets of experiments, 
has been carried out. The mechanistic model, using reaction kinetic schemes from the literature, fine tuned by 
classical non-linear regression, gave smooth predictions for the validation data runs, but showed limited ability in 
predicting the test data.. The ANN were able to describe experiments at the training stage, but failed the 
validation (i.e. extrapolation) procedure, giving oscillatory predictions of the process state. Additionally, this 
approach suffers from a strong influence of the net parameters, which must be chosen by trial and error. The 
hybrid model predictions are good with the training and very satisfactory with the experimental test data. The 
indication is that the latter is a powerful tool for process modelling in biochemical engineering, particularly when 
limited theoretical knowledge of the process is available. 

INTRODUCTION 

The building and use of mathematical models based on 
observed data has been long accepted as a basic 
scientific methodology. Models may be of a more or 
less formal character, but they have the basic feature 
that they attempt to link observations together into 
some pattern (Ljung, 1989). With the progress in 
digital technology, and thinking of bringing the theory 
into practice, computational modelling and model- 
based applications have emerged and are today 
recognised as areas of great priority for the future 
(Edgar, 1996). The questions are - which models and 
which applications? 
The classical feeling of Chemical (and Biochemical) 
Engineering is with the use of models based on the so- 
called f irst  principles, which, as pointed out by 
Villermaux (1996), are the same of 100 years ago. 
Today, much for reasons of the difficulties experienced 
in the analysis of biochemical processes, (and because 
there are the technical means for other directions of 
studies) it is openly accepted that the quantitative, 
mechanistic knowledge of the present may be 
insufficient and may have to be compensated or 
complemented with other forms of knowledge 
statistical, qualitative, fuzzy or eminently heuristic. 
The conventional approach for process modelling is 
based on the balance equations for mass, energy, and, 
if necessary, momentum and population. This form of 
modelling requires further knowledge about reaction 
kinetics, thermodynamic, transport and physical 
properties. For fermentation processes the predictive 
ability of conventional models is quite limited. This is 

mainly and simply due to the intrinsic non-linear time- 
varying characteristics of the cell metabolism, with 
kinetic structures which often are only partially known, 
or even completely unknown. 
In recent years a new attitude for modelling was 
introduced to biochemical engineering, based on 
artificial neural networks (Scott and Ray, 1993, Ye et 
al., 1994, Montague and Morris, 1994). ANN are 
able, in many instances, to represent multivariable 
relationships, particularly those that occur in highly 
non-linear dynamic systems, without any knowledge of 
the underlying process. The network parameters are 
estimated by training the net with the a priori 
knowledge of the process. This appealing 
mathematical tool may however lead to predictions 
which may conflict with (violate) fundamental 
constraints represented by the conservation principles, 
particularly when outside the domain of training. 
A natural form of process modelling, trying to 
overcome disadvantages of the two pure approaches 
presented, has then emerged, by combining them in a 
hybrid formulation (L0bbert and Simutis, 1994). 
Hybrid modelling aims at including all available 
knowledge of the process. The foundations of the 
hybrid model are on the conservation principles. The 
poorly known or unknown properties of a process, such 
as the reaction kinetics, are modelled with the aid of 
artificial intelligence methodologies, including the a 
priori knowledge of the process. 
The present paper is about these three approaches for 
process modelling, which will be presented in relation 
to the fed-batch production of baker's yeast at 
laboratory scale. 
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MODELLING APPROACHES 

Baker's yeast fermentation and the conventional 
approach 

Yeast growth may be characterised by three metabolic 
pathways - 

Respiratory growth on glucose (oxidative pathway): 

S+O ~ >X+C (1) 

Fermentative growth on glucose (reductive pathway): 
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CTR= KC a ( C - C  ") (11) 

where KiL a are overall mass  t ransfer  coefficients 

for oxygen and carbon dioxide and O* and C* are the 
corresponding equilibrium concentrations. 
The kinetic scheme employed is based on the model 
proposed by Sonnleitner and K~ippeli (1996). Details 
on the reaction scheme, as well as the relevant kinetics 
data, including the yield coefficients, are presented and 
summarised elsewhere (Feyo de Azevedo et al., 1996). 

S ~, ~ X + C + E  (2) 

Respiratory growth on ethanol (oxidative pathway): 

E+O ~ >X+C (3) 

where S represents glucose; O: oxygen; X: biomass; E: 
ethanol; C: carbon dioxide and It, ° , I.t~, Ix: : specific 
growth rates for the three pathways. 

The mechanistic model for the fed-batch 
fermentation in fed-batch regime is obtained from mass 
balances for all components, considering that the 
reactor is well mixed. Furthermore it is assumed that 
the yield coefficients (10 are constant and the dynamics 
of the gas phase can be neglected. Then the set of 
model equations is - 

dX = ( ~  +~t: +~t: -D)X (4) 
dt 

(5) as= X +(Sr-S)D 
at Y /s ) ' 

.:/x_D E (s) 
dt ~.Y~/~ Y~E 

(7) dO c. ~t ° . X - DO + OTR 
dt ~ Y~/o Y~o ) 

r o 

dc=(  .: + ÷ l x - D c - c r R  (8) 
dt ~Y;Ic Yxlc Y ~ e )  

where D is the dilution rate (= F/V, ratio 
fee&ate/volume) and S s is the substrate concentration 
in the feed. 

The accumulat ion of the working volume 
dur ing the  fed-batch process is represented by - 

dV 
= D V  (9) 

dt 

The gas transfer rates are given by - 

OTR= K°a(O" - 0 )  (10) 

Artificial neural networks 

Feedforward networks and partly recurrent networks 
are the two types of ANN mostly employed in 
chemical and biochemical engineering applications 
(Yet-Pole et al., 1996; Cheng et al., 1995). 
In feedforward networks only connections are allowed 
that point from a subordinate layer to a layer above. 
The disadvantage of this network structure is the static 
behaviour of the net, as it only gives the combination 
between current input data and the related output 
values. Time dependencies related to the dynamics of 
the process can only be included by using time 
dependent input variables. 

I 
...) "EIm~m"~etwor~l~ 

Ng.l.: Neural network structures applied in this work 

Fig. la. shows the feedforward network used in this 
study. Possible input variables are fee&ate, initial 
component concentrations, reactor volume, ethanol 
concentration and time. The optimum net structure, i.e. 
the number of input units, number of hidden layers and 
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number of units in the hidden layer, depends strongly 
on the number of available training data and must be 
found by trial and error. 
To overcome the disadvantage of the static character of 
the feedforward network, partly recurrent networks 
(Cheng et al., 1995, You and Nikolaou, 1993) were 
also considered. In this network structure, recurrent 
connections between units are allowed. Fig. lb. shows 
a network structure, where the output of previous time 
steps is used as input to the net. In this way a time 
window is moved over the training data set. This 
structure gives a correlation between the data inside the 
time window and the output. But it does not consider 
the complete history of the data. 
A more complex partly recurrent network is the 
Elman-net (Hagan et al., 1996) shown in Fig. lc. Here 
the recurrent structure is implemented inside the net. 
The output of the hidden units is used as input to the so 
called context units, whose output serve as additional 
input to the hidden units. In this way it is possible to 
represent the dynamics of the process and the complete 
history of the data within the weights of the net. 
Furthermore the latter network type is known to have 
advantages for training with noisy training data, 
because the recurrent structure does not depend 
directly on the output values of the network (Zell, 
1994). 
All networks were trained with a modified 
backpropagation rule. The calculations for the 
feedforward network and the network with the sliding 
window technique were performed in MATLAB TM. The 
calculations for the Elman-network were carried out 
with the neural network simulator SNNS (Zell et al., 
1995). 

Hybrid model 

For the prediction of biomass in the baker's yeast 
fermentation a hybrid model was developed which 
combines the known fundamental constraints, i.e. the 
mass balance, with the a priori knowledge of the 
process, i.e. the available measurements. The latter are 
included through an artificial neural network. 

~ " Numerical Integrator " ~  

F 
E 

Mass-balance j 

\ J 

X 

Fig. 2.: Structure of the hybrid model 

The fundamental part of the hybrid model is the mass 
balance for the biomass, corresponding to Eq.(4) - 
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dX 
d--~ = rxX  - D X  , (12) 

where i", describes the kinetics. As the reaction kinetic 
is not well known, this relevant information is obtained 
as the output of an artificial neural network The input 
data to the ANN can be chosen from the available 
measurements. Fig.2 shows the structure of the hybrid 
model developed. 
In comparison with the model presented by Schubert et 
al. (1994), who employ a time delayed biomass input, 
here the actual biomass is used as input to the artificial 
neural net. This makes it necessary to solve the ANN 
simultaneously with the numerical integration of the 
balance equation 
The main problem related to the hybrid model is on the 
training of the net. As the values for r, are not known 
from experiments, the usual training methods such as 
backpropagation fail. Instead the net must be trained 
with the output of the balance equation, the biomass X. 
The usual way of estimating the weights between the 
units, is to minimise the sum squared error 

Np 2 

J=O.SZ(x  -  13) 
k=l 

by changing the weights wo. . in the direction of gradient 
aT/dr0.. 

bJ  
wu,.+l = wo, n - rl bwu,--- ~ (14) 

The derivation of J, Eq.(13), with respect to wu, . gives 

~J = ~ ( X k  - ~Xk (15) 
~Wij,n k=l ' ] ~Wi j , .  

Hence it is necessary to determine the derivatives 
8Xet~w,j... 
One possibility suggested by Schubert et al. (1994) is 
the sensitivity approach. In this approach the weights 
are introduced as additional variables to the differential 
equation - 

~ t  = f (X( t ) ,  y(t), w) (16) 

Differentiating eq. (16) and rearranging the LHS, leads 
to; 

d-t = ~ n  "~ O~O,n (l 7) 

This differential equation can be solved, if the function 
f the derivatives o f f  and the boundary conditions are 
known. From Eq. (12) one obtains - 

bf  _ rx + X 3rx - D (18) 

bf  = X ~rx + rx ~-~---X - D bX  
3wo, n ~wo, n ow~j,. ~ (19) 
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The first derivatives of r,(X) in order to X and to w,j., 
are the remaining relationships required to solve the 
system of ordinary differential equations. These 
derivatives can be obtained from the equations for the 
net. Therefore, the transfer-functions of every unit in 
the net must be differentiable for the whole range. 
In the present work the ANN employed was a 
feedforward net with three input units, one hidden 
layer and one output unit. A linear transfer function for 
the units in the input and the output layer were chosen 
and a hyperbolic tangent function was chosen for the 
hidden layer. 

RESULTS 

Experimental data available 
The experimental information employed in this 
analysis was obtained from runs carded out in a 
laboratory rig with a 5-1itre fermenter (Oliveira, 1997), 
adequately equipped with analytical instruments and 
with a computer-based data acquisition and control 
unit. Biomass measurements were obtained off-line. 
All runs were performed in fed-batch regime (starting 
volumes of 2.5 litre) for between 16 and 19 hours. The 
strain employed was Saccharomyces cerevisiae H1022 
(ATCC32167), operating temperature was of 30 °C and 
the carbon feed was pure glucose syrup with 
concentrations ranging from 30-50 g/1. These may be 
considered typical conditions at laboratory scale. 2 sets 
of 4 runs each were employed for the 2-step procedure 
of estimation (training for the nets) and validation. 
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Fig.3.: Mechanistic model 

The mechanistic model 
Simulation results, employing the mechanistic model 
with parameters directly from the literature, are shown 
in Fig. 3 for one of the runs. Predictions are smooth but 
unsatisfactory. A step of parameter estimation was then 
performed with the 'training' data set, fine-tuning by 
non-linear regression the kinetic parameters (maximum 
specific glucose and oxygen up-take rates) to which 
the system output exhibits more pronounced 
sensitivity. Simulation was subsequently performed for 
the test runs. Results (Fig. 3) have somehow improved, 
but not significantly. When the kinetic structure is 

reasonably known it can be expected that classical 
modelling with first principle models, with adequately 
tuned parameters allow for smooth prediction of trends, 
but not for accurate predictions. 

Artificial neural networks 
Fig. 4 shows the predictions of the pure artificial neural 
network structures for two different training data sets. 
The agreement with the experiments is globally good 
for all three different ANN. The following net 
parameters were employed: 
Feedforward net: 4 input units (time, feedrate, ethanol 

concentration, volume), 1 hidden layer with 6 units, 
one output unit. 

Partly recurrent net (sliding window): 7 input units 
(feedrate at time t and t-l,  ethanol concentration at 
time t and t-l ,  volume at time t and t-l ,  biomass 
concentration at time t-1 (previous net-output)), I 
hidden layer with 6 units, 1 output unit. 

Partly recurrent net (Elman-net): 3 input units 
(feedrate, ethanol concentration, volume), 1 hidden 
layer with 6 units, 1 output unit. 
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Fig. 4.: Results of ANN and hybrid modelling for 
training data 

Fig. 5 show the results of the ANN for a typically bad 
test run. The ANN are not able to describe the 
experiment satisfactorily. It is noticed that the 
predictions exhibit a type of oscillatory behaviour, 
induced, it seems, by conditions which differ from 
those of the training domain, even if only for a 
relatively short period of time. This problem may 
possibly be overcome by increasing the number of 
training data presented to the net. It is also worth 
mentioning (not seen in the figure) that the results are 
strongly influenced by the number of parameters, i.e. 
the number of weights, which must be adjusted during 
training. It does not seem possible to give a rule for the 
right choice of the optimum number of units in the net, 
which must be found by trial and error. As a rule of 
thumb the number of adjustable parameters should be 
equal or smaller than the number of available training 
data. For the feedforward net and the partly recurrent 
net with the sliding window technique the number of 
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units strongly influence the extrapolation capacity of 
the trained net. With respect to this number of units, 
the Elman-net exhibited less sensitivity. Furthermore 
the initial weights of the net before training were seen 
to strongly influence the results both for the 
feedforward net and for the sliding window structure. 
This is an indication of a large number of local optima 
on the response surface of these two types of 
structures. 
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Fig. 5.: Testing biomass prediction with ANN 

Hybrid modelling 
The hybrid structure experiences no difficulty in 
reproducing the experimental information employed 
for training (Fig. 4). Also, in comparison with the 
predictions of the pure ANN the hybrid approach 
shows always superior performances, as illustrated in 
Fig. 6. 
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Fig. 6.: ANN and Hybrid model predictions of process 
behaviour 

In the absence of any information about the kinetics, 
the hybrid approach seems to be able to predict 
smoothly the process behaviour, with significant good 
levels of accuracy (Fig. 7). 
The number of units in the ANN-part of the hybrid 
model, as well as the initial values of the weights in the 
net have less influence on the accuracy of the 
predictions, comparatively to that observed for the pure 
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ANN approaches. These parameters are only 
responsible for reaching the predefined error goal. A 
too small number of units may limit the error goal 
level which can be attained. A disadvantage of the 
hybrid model is on the comparatively longer time 
required for training, as for every training step the set 
of differential equations must be solved. As such, it is 
most relevant, for practical applications, to look for an 
optimum (sensible) combination of number of units 
and acceptable error goal. 
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Fig. 7 : Hybrid model predictions of process behaviour 

CONCLUSION AND OUTLOOK 

The main purpose of this work is insight, not numbers. 
With relation to the case study presented, the hybrid 
modelling approach reveals clear advantages when 
compared both to the conventional and to the pure 
ANN approaches. It gives good results for the training 
data and very satisfactory predictions for the test data, 
considering that only a few training data sets were 
used. The ANN structures employed do not lead to 
satisfactory results for the test data. Furthermore the 
hybrid model is far less sensitive to internal 
parameters. The main disadvantage of the hybrid 
model is on the relatively longer computation time for 
training the net. 
The mechanistic model, employing kinetic values from 
the literature is not able to describe the real process. 
With some parameter fine tuning, by classical non- 
linear regression, there is an improvement in the 
quality of the predictions. The message is that all 
theoretical information should be included in any 
modelling exercise. 
Both for the ANN and for the hybrid approaches, 
results are seen to improve with the number of data 
runs employed for training. In particular, it is clear that 
results obtained from any modelling approach 
employing at some stage ANN, will need careful 
consideration particularly when outside the domain of 
training. This only confirms the need for developing 
hybrid algoritms which include forms of measuring the 
quality of the predictions given by ANN structures. 
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NOTATION 

arabic symbols 

C 
CTR 
D 
E 
J 
KC a 

X°a 
N, 
0 
OTR 
r 

S 
t 
V 
W 

X 
Y 
Y 

carbon dioxide concentration (g/l) 
carbon dioxide transfer rate (g/(1 min)) 
dilution rate (I/min) 
ethanol concentration (g/l) 
sum squared error 

carbon dioxide transfer coefficient(1/min) 

oxygen transfer coefficient 

number of patterns 
oxygen concentration 
oxygen transfer rate 
reaction rate 
substrate concentration 
time 
volume 
weight 
biomass concentration 
yield coefficient 
system input vector 
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User. Prentice-Hall, New Jersey. 
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245-250 
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production, Chem. Engng. Journal, 61, 35-40 

You, Y., Nikolaou, M., 1993, Dynamic process 
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Journal, 39, 1654-1667 

Zell, A., 1994, Simulation Neuronaler Netze, Addison- 
Wesley (Deutschland) Gmbh 
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greek symbols 

1/ 
/z 

learning rate 
specific biomass growth rate 

superscripts 

o oxidative reaction 
oe oxidative reaction for ethanol 
r reductive reaction 
* saturation 

subscrip~ 

C carbon dioxide 
E ethanol 
e on ethanol 
f in feed 
i indice for unit in preceding layer 
j indite for unit in following layer 
n update step 
0 oxygen 
S substrate 
s on substrate 
X biomass  
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