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Abstract: The paper presents an approach for 
matching image objects in dynamic pedobarography 
image sequences, based on finite element modelling of 
the objects and on modal analysis of the of the object 
models. 
The proposed approach allows the determination of 
correspondences between two distinct images, using 
either 2D or 3D modelling. The displacement vectors 
for the nodes of the matched object models are also 
determined, based on which the deformation energy is 
computed. 
The deformation energy can be used as a global 
measure of the similarity of the matched objects. 

Keywords: Computer vision, computer graphics, finite 
element models, modal analysis, deformable models, 
dynamic pedobarography. 

1. INTRODUCTION 
One of the main problems in computer vision consists in 
the determination of object correspondences in different 
images and on the computation of robust canonical 
descriptors used for the recognition of 2D and 3D 
objects, either rigid or non-rigid. 

In this paper a methodology to address the above 
problem is presented, adapting the approach initially 
proposed by Sclaroff [1, 2], and results of its application 
to the analysis of dynamic pedobarography image 
sequences are discussed. 

Figure 1 displays a diagram of the proposed method. 
The locations of the image data points X X Xm� 1�  
in each image are used as the nodes for building a finite 
element model1 of elastic material. Next, the 
eigenmodes �l qi  of the model are computed, providing 
an orthogonal description of the object and its natural 
deformations, ordered by frequency. The eigenvectors, 
also called shape vectors for each mode [4, 5], describe 

                                                           
1 Since the first use in computer vision of the finite element 

method, by Pentland in 1989 [3], it has expanded into many 
areas, such as rigid and non-rigid motion analysis, face 
recognition, image representation, image matching and 
object description. 

how each mode deforms the object by changing the 
original data point locations: { }deformed i

X X a φ= + . 

 

M U K U R��m r l q l q� �  
determination of the mass and 

stiffness matrices for the model

K Mi i i� � �l q l q�
2

 
solution of the genenalised 

eigenvalue/eigenvector problem

M U K U R��m r l q l q� �  
determination of the mass and 

stiffness matrices for the model

K Mi i i� � �l q l q�
2

 
solution of the genenalised 

eigenvalue/eigenvector problem

matching of the low-order non-
rigid modes {φ}i of both models 

Output: 
matched data 

Input: 
data (pixels) considered as the nodes of a finite element model 

Determination of the eigenmodes 

Construction of the physical 
model 

use of the matched modes {φ}i 
as a new co-ordinate system 

 
Figure 1. Diagram of the methodology. 

The first three (in 2-D) or six (in 3-D) modes are the 
rigid body modes of translation and rotation; the 
remaining modes are non-rigid [4, 5]. In general, lower 
frequency modes describe global deformations while 
higher frequency modes essentially describe local 
deformations. This type of ordering from global to local 
behaviour is quite useful for object pairing and 
comparison. 

The eigenmodes also form an orthogonal, object-centred 



co-ordinate system for the location of the point data, 
that is, the location of each point is uniquely described, 
in terms of the displacement for each eigenmode. The 
transformation between the Cartesian image co-
ordinates and the modal system co-ordinates is achieved 
through the eigenvectors of the finite element model. 

Two groups of image data points, corresponding to two 
different images in a sequence, are to be compared in 
the modal eigenspace. The main idea is that the low 
order modes of two similar objects will be very close 
even in the presence of affine transformation, non-rigid 
deformation, local shape variation, or noise. 

Using the above concept data correspondence is 
determined by modal matching. This process obtains a 
number of highly reliable data point matches; the 
displacement of other points will then be estimated by 
using the physical model as a smoothing restriction, in a 
manner similar to the one used for active contour 
models [1, 6]. 

Finally, based on the correspondence of many of the 
data points of the two objects, their shape differences 
can be measured. As the modal analysis decomposes the 
deformation in an orthogonal set, one can selectively 
measure rigid body differences, low-order projective 
variations, or essentially local deformations. The 
process is quite flexible and general. 

Alternatively, one can align two objects or distort one 
object’s shape to fit the shape of the other. This 
alignment and distortion process is useful in fusing data 
obtained from different sensors or in registering image 
data acquired under different conditions. It is also useful 
in computer graphics applications, where the process is 
known as morphing. 

The modal representation is supported by biologists 
involved in studying the morphology of animal 
skeletons and shapes, according to which the shapes of 
different species are related by deformation [1]. Recent 
studies also use modal deformation analysis to describe 
the growth of animal organs and to match organs of the 
same type [7, 8, 9]. 

In short, the modal analysis technique offers three 
advantages over other methods: i) it can automatically 
identify and label corresponding points in two objects, 
allowing for their registration, comparison and 
morphing; ii) the modal representation separates 
different types of deformation; iii) the deformation 
parameters correspond qualitatively to what is believed 
to be also used by humans and thus they can be used for 
animation and database searching [1]. 

One possible disadvantage of the method is the 
computational cost for determining the eigenmodes, 
which can be very high when the number of object data 
points is very large. This problem can be addressed by 
using multi-resolution models [1, 2]. Moreover, for 
particular classes of similar objects the modes can be 
predetermined and generalised [10], and in some cases, 
for tubular and spherical topologies, Nastar ([11]) 

demonstrates that the eigenmodes can be obtained 
analytically. 

The following sections present a brief introduction to 
dynamic pedobarography, the object models used and 
some experimental results. Final conclusions are drawn 
and further work is identified. 

2. DYNAMIC PEDOBAROGRAPHY 
Pedobarography refers to measuring and visualising the 
distribution of pressure under the foot sole. The 
recording of pedobarographic data along the duration of 
a step in normal walking conditions permits the 
dynamic analysis of the foot behaviour; the introduction 
of the time dimension augments the potential of this 
type of clinical examination as an auxiliary tool for 
diagnostics and therapy planning [12]. 

The basic pedobarography system consists of glass or 
acrylic plate trans-illuminated through its polished 
borders in such a way that the light is internally 
reflected; the plate is covered on its top by a single or 
dual thin layer of soft porous plastic material where the 
pressure is applied (see Figure 2). 

reflected light glass 

pressure
opaque layer

lamp

lamp transparent layer

 
Figure 2. Basic (pedo)barography principle. 

When observed from below, in the absence of applied 
pressure, the plate is dark; when pressure is applied on 
top of the plastic layer, the plate displays bright areas 
that correspond to the light crossing the plate after 
reflection on the plastic layer; this reflection occurs due 
to the alteration of the local relation of light refraction 
indices resulting from the depletion of the air interface 
between the glass plate and the plastic layer. A good 
choice of materials and an adequate calibration of the 
image acquisition system allow a nearly proportional 
relation between the local pressure and the observed 
brightness. 

Using a practical set-up as the one shown in Figure 3, a 
time sequence of pressure images is captured; Figures 4-
9 show a few of the images captured in a sample 
sequence (displayed with inverted brightness); the 
image data is very dense, as opposed to other measuring 
methods, and very rich in terms of the information it 
conveys on the interaction between the foot sole and the 
flat plate. 

3. OBJECT MODELS 
In the initial stages of the work, the object contours in 
each image were extracted and the matching process 
was oriented to the contours’ pixels. A practical 
difficulty arising from this approach is the possible 



existence of more than one contour for the object in 
each image; two possible solutions were considered, 
upon labelling the various contours in each image: i) use 
of a Kalman filtering2 approach to estimate and track the 
location of the contours’ centroids in the image 
sequence; ii) use of a measure of the deformation 
energy to align two contours, selecting the lower energy 
pairs. 

pedobarography table 

camera 

computer

mirror 

glass + contact 
layer 

 
Figure 3. Set-up of a pedobarography system. 

 
Figure 4. Image 4 of a 

sample sequence. 

 
Figure 5. Image 5 of a 

sample sequence. 

 
Figure 6. Image 6 of a 

sample sequence. 

 
Figure 7. Image 7 of a 

sample sequence. 

 
Figure 8. Image 8 of a 

sample sequence. 

 
Figure 9. Image 9 of a 

sample sequence. 

However, an additional problem is present: the 
possibility that along the image sequence various 
contours will merge or split. In order to accommodate 

                                                           
2 See [13], for example. 

this possibility a new model has been developed, similar 
to the one used in various applications with controlled 
environment, such as in face analysis and recognition 
[14, 15, 16, 17]. The brightness level of each pixel is 
considered as the third co-ordinate of a 3-D surface 
point. The resulting single surface model solves the two 
aforementioned problems. 

The use of the surface model also simplifies the 
consideration of isobaric contours, which are important 
in pedobarographic analysis, either for matching 
contours of equal pressure along the time sequence or 
for matching contours of different pressure in a single 
image. 

The following sections describe the object models used 
and their construction. Each model has its own 
advantages and shortcomings; for every particular 
problem, the best choice must be made. 

3.1. Contour Model 

Two modelling approaches were used to determine the 
correspondence and the deformation energy among two 
contours in distinct images: 

• A single 2D isoparametric Sclaroff model is 
used for each contour. In building this type of 
element no previous ordering of the nodes is 
required; Gaussian shape functions are used. 
The method to determine the mass and stiffness 
matrices for this 2D element is described in 
e.g. [1, 2]. 

• Each contour is built by linear axial 2D finite 
elements (Figure 10). For this type of 
discretisation a previous ordering of the 
contour nodes is required. The matrix 
formulation for these elements can be found in 
[5], for example. 
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Figure 10. Modelling of a contour by a set ei  
of axial finite elements. 

Standard image processing and analysis techniques are 
used to determine the contour pixels, namely 
thresholding, edge enhancement, hysteresis line 
detection and tracking [13]. For example, Figures 12 
and 13 show an intermediate result and the final contour 
determination for the image in Figure 11. 

 



 
Figure 11. Image (negated) 

where contours must be 
found. 

 
Figure 12. Result image 
after edge enhancement. 

 
Figure 13. Contours obtained by a line detection and 

tracking algorithm with hysteresis. 

3.2. Surface Model 

For the surface model, two approaches were also used: 

• A single 3D isoparametric Sclaroff finite 
element model is used for each surface. Again 
it must be noticed that there is no requirement 
for previous ordering of the nodes. The matrix 
building for these finite elements can be found 
in [1]. 

• Each surface is built by linear axial 3D finite 
elements (Figure 14). The previous ordering of 
the surface nodes is required. The matrix 
formulation for these finite elements can be 
found in [5], for example. 

 
Figure 14. Modelling of a surface by a set of axial 3D 

finite elements. Each node is connected to its 
neighbours through axial elements. 

The method to determine the nodes that form the 
surface in each image can be summarised as follows: 

1. noise pixels (that is, pixels with brightness 
lower than a calibration threshold) are removed 
and a Gaussian-shaped smoothing filter is 
applied to the image (Figure 15); 

2. the circumscribing rectangle of the object to be 

modelled is determined and the image is 
sampled within that area (Figure 16); 

3. a 2D Delaunay triangulation3 is performed on 
the sampled points, using the point brightness 
as the third co-ordinate; 

4. the triangular mesh is simplified using a 
decimation algorithm3 in order to reduce the 
number of nodes and thus the computational 
cost; 

5. a Laplacian smoothing algorithm3 is used to 
reduce the high frequency noise associated to 
the mesh; 

6. a scale change is performed on the third co-
ordinate (derived from brightness) in order to 
have similar ranges of values in all co-
ordinates (Figure 17). 

 
Figure 15. Image (negated) 

after noise removal and 
Gaussian filtering. 

 
Figure 16. Object sampling. 

 
Figure 17. Resulting surface. 

3.3. Isobaric Contour Model 

As in the two previous models, the approaches used to 
match isobaric contours and to determine the 
deformation energy are: 

• A single Sclaroff isoparametric finite element, 
either 2D or 3D, to model each contour. 

• Linear axial finite elements, either 2D or 3D, to 
build the contours. 

The isobaric contours are extracted (Figure 18) after 
using the procedure described in the previous section. 

4. EXPERIMENTAL RESULTS 
The methodology just presented has been implemented 
in Microsoft Visual C++, for Microsoft Windows 
95/98/NT platforms; the system also integrated the C++ 
Newmat [20] library for matrix computation and the 
C++ VTK - The Visualization Toolkit - [18, 19] for 3D 
                                                           
3 See, for example, [18, 19]. 



visualisation, for mesh triangulation, simplification and 
smoothing, and for the extraction of isobaric contours. 
This section presents some results obtained for dynamic 
pedobarography, using the methods previously 
described. Other results, for other types of images, are 
presented in [21, 22, 23]. 

 
Figure 18. Ten isobaric contours extracted from 

the surface in Figure 17. 

4.1 - Results for Contour Modelling 

From the 62-pixel contour shown in Figure 19, a new 
contour (Figure 20) is built by a rigid geometric 
transformation consisting of a -15º rotation around the 
image origin, a -100 pixel translation on the x-axis, a -
25 pixel translation on the y-axis, and a scaling relative 
to the origin by a factor 1.25. 

 
Figure 19. Contour 1. 

 
Figure 20. Contour 2. 

Using the contour modelling by linear axial finite 
elements made of rubber, 60 matches were successfully 
obtained; from those matches the rigid transformation 
was estimated, using a custom implementation of the 
unit quaternions method of Horner [24]. The estimated 
results were: -99.75 for the x-axis translation, -24.98 for 
the y-axis translation, a rotation of -14.88º and a scale 
factor of 1.25. By applying the estimated 
transformation, except the scaling, to contour 1 and 
superimposing it on contour 2, the result is as shown in 
Figure 21, where the matched points are connected for 
better viewing. 

 
Figure 21. Matches between contours 1 and 2 after the 
application of the estimated rotation and translation. 

Considering now the contours 3 (64-pixel) and 4 (51-
pixel) represented in Figures 22 and 23, and using the 
Sclaroff isoparametric elements made of rubber, 34 

successful matches were obtained, as shown in Figure 
24. After computing the nodal and modal 
displacements, the former were applied to contour 3; the 
result of this transformation is shown in Figure 25. The 
computed value for the deformation energy was 33.6. 

 
Figure 22. Contour 3. 

 
Figure 23. Contour 4. 

 
Figure 24. Matches 

between cntours 3 and 4. 

 
Figure 25. ... after 

applying the estimated 
node displacments. 

Repeating the process for contours 4 (51-pixel) and 5 
(50-pixel) shown in Figures 23 and 26, 33 successful 
matches are obtained and the computed deformation 
energy is 6.53; this much lower energy value reflects the 
fact that these two contours are much more similar than 
the preceding pair, as shown in Figure 27. 

 
Figure 26. Contour 5. 

 
Figure 27. Matches 

between contours 4 and 5. 

4.2. Results for Surface Modelling 

Considering now the 127-node in Figure 28 and the 
133-node surface in Figure 29, the use of Sclaroff 
isoparametric elements made of rubber results in 66 
successful matches, shown in Figures 30 and 31. The 
computed deformation energy is 785.97. 

 
Figure 28. Surface 1. 

 



 
Figure 29. Surface 2. 

 
Figure 30. Matches between surfaces 1 and 2. 

 
Figure 31. Matches between surfaces 1 and 2 

(other view). 

Repeating the above process for the 127-node surface in 
Figure 28 and the 109-node surface in Figure 32, 58 
successful matches are obtained, and the resulting 
deformation energy is 1141.77; the increase in the 
deformation energy is due to the larger difference 
between the surfaces, as shown in Figures 33 and 34. 

 
Figure 32. Surface 3. 

 
Figure 33. Matches between surfaces 1 and 3. 

 
Figure 34 - Matches between surfaces 1 and 3 

(other view). 

4.3. Results for Isobaric Contour Modelling 

Considering the 80-node isobaric contour in Figure 35 
and the 70-node isobaric contour in Figure 36, both 
pertaining to the same surface, and modelling the 
contours by Sclaroff isoparametric 3D finite elements 
made of rubber, 43 matches are obtained (Figure 37) 
and the computed deformation energy is 844.33. 

 
Figure 35. Isobaric 

contour 1. 

 
Figure 36. Isobaric contour 

2. 

 
Figure 37. Matches between isobaric 

contours 1 and 2. 

The same process applied to the contour in Figure 35 



and the one in Figure 38 (60-node) results in 58 
successful matches and in a deformation energy value of 
1315.43; again the deformation energy measures 
correctly the shape dissimilarity, as shown in Figure 39.  

 
Figure 38. Isobaric 

contour 3. 
 

 
Figure 39. Matches 

between isobaric contours 
1 and 3 

5. CONCLUSION AND FURTHER WORK 
A methodology has been presented for obtaining the 
correspondence between 2D and 3D objects, rigid or 
non-rigid, and it has been illustrated for dynamic 
pedobarography images. The objects are modelled by 
finite elements and modal analysis is used to define an 
eigenmode space where the matching is performed. The 
estimation of the nodal displacement of non-matched 
nodes is achieved by minimising the deformation 
energy, through a least squares method, where the 
material properties of the physical model intervene. 

The experimental results shown confirm that 
satisfactory results are obtained for dynamic 
pedobarographic image data, both in terms of matching 
results and in terms of the estimated nodal 
displacements; the computed deformation energy is also 
consistent with the subjective similarity between the 
objects. 

In dynamic pedobarography, the use of the pixel 
brightness values as a third Cartesian co-ordinate is very 
satisfactory, both in terms of its interpretation as 
pressure, and in solving the problems associated to 
merging or the splitting of objects. 

Currently, a parallel version of the system is being 
implemented for a target machine composed by a 
variable number of heterogeneous networked 
computers, running under WPVM - Windows Parallel 
Virtual Machine; the preliminary results already 
obtained are very promising regarding the 
computational speedup achieved. 
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