
Linear Algebra Algorithms in a Heterogeneous Cluster of Personal Computers

J. Barbosa�, J. Tavaresyand A.J. Padilha
FEUP-INEB

Grupo de Arquitecturas e Sistemas
Praça Coronel Pacheco, 1, 4050 Porto (P)

fjbarbosa,tavares,padilhag@fe.up.pt

Abstract

Cluster computing is presently a major research area,
mostly for high performance computing. The work herein
presented refers to the application of cluster computing in a
small scale where a virtual machine is composed by a small
number of off-the-shelf personal computers connected by a
low cost network. A methodology to determine the opti-
mal number of processors to be used in a computation is
presented as well as the speedup results obtained for the
matrix-matrix multiplication and for the symmetric QR al-
gorithm for eigenvector computation which are significant
building blocks for applications in the target image process-
ing and analysis domain. The load balancing strategy is
also addressed.

1. Introduction

Several personal computer or workstation based clus-
ter systems have been developed, from commercial off-the-
shelf processors to high performance ones such as SMP ar-
chitectures [3] and using high performance networks like
Myrinet [2, 19]. Most of the work is devoted to the high
performance computing aiming to achieve the performance
of a specific supercomputer at a lower cost.

Our aim is not to build a cluster of personal computers
for parallel processing but to do parallel processing on al-
ready existing group clusters, where each node is a desktop
computer running the Windows operating system. These
clusters are characterized by having a low cost network,
such as a 10 Mbits/s Ethernet, connecting different types
of processors, of variable processing capacity and amount
of memory, thus forming a heterogeneous parallel virtual
computer. Due to network restrictions, which do not allow
simultaneous communication among several nodes, the ap-

�PhD grant BD/2850/94 from PRAXIS XXI
yPhD grant BD/3243/94 from PRAXIS XXI

plication domain is restricted to one or two dozens of pro-
cessors.

The need for a methodology to determine the ideal num-
ber of processors comes also due to network restrictions,
since as the number of processors increases the network
acts as a communication bottleneck and the time spent in
data exchange can overcome the benefits of more process-
ing power. This is not usually referred in the high perfor-
mance clusters literature, due to the usually huge problem
size, however, in [17] a scheduling policy is studied for mul-
tiprocessor systems based on that some applications cannot
exploit the computational power available, due to hardware
and software constraints. In [4] a performance model for
heterogeneous processing was proposed but not in the con-
text of processor co-operation to solve a task.

Our motivation for a parallel implementation of lin-
ear algebra algorithms comes from image and image se-
quence analysis needs, posed by various application do-
mains, which are becoming increasingly more demanding
in terms of the detail and variety of the expected analytic re-
sults, requiring the use of more sophisticated image and ob-
ject models (e.g., physically-based deformable models), and
of more complex algorithms, while the timing constraints
are kept very stringent.

A promising approach to deal with the above require-
ments consists in developing parallel software to be exe-
cuted, in a distributed manner, by the machines available in
an existing computer network, taking advantage of the well-
known fact that many of the computers are often idle for
long periods of time. It is quite common in many organiza-
tions that a standard network connects several general pur-
pose workstations and personal computers, accumulating a
very substantial computing power that, through the use of
appropriate managing software, could be put at the service
of the more computationally demanding applications.

Existing software, such as the Windows Parallel Virtual
Machine (WPVM) [1], allows building parallel virtual com-
puters by integrating in a common processing environment
a set of distinct machines (nodes) connected to the network.

Although the parallel virtual computer nodes and the under-
lying communication network were not designed for opti-
mized parallel operation, very significant performance gains
can be attained if the parallel application software is con-
ceived for that specific environment.

This paper addresses the problem [22] of determining,
from a pool of available nodes, which ones should be se-
lected for building a parallel virtual computer that achieves
the fastest application response time, and it also discusses
the issue of computational load distribution; the study con-
siders that the nodes available prior to running the appli-
cation may differ from time to time, as different users and
machines are active. At every program initiation phase, the
highest performance computers from the available set are
selected, in a number that is computed for optimizing the
processing time.

The test cases presented, a parallel matrix multiplication
algorithm and the QR algorithm, while pertinent to many
advanced image analysis methods, are also a common mod-
ule in many other fields, such as in simulation problems. In
a previously reported work [5], the step edge operator pro-
posed by Shen and Castan [20] was also tested.

2. Computational model

Several computational models [23, 7, 14] were presented
in order to estimate the processing time of a parallel pro-
gram. Although they could be adapted for the cluster of
personal computers, a specific and simplified model is pre-
sented below. The target machine is composed by nodes
with different processing capacities, resulting from differ-
ent amounts of available memory and from various proces-
sor types and versions, connected by a standard intercon-
nection network, such as the Ethernet. Each node of the
machine is characterized by the processor capacity S, mea-
sured in Mflops. The network is characterized by the num-
ber of messages that are allowed simultaneously, the band-
width LB measured in Mbits/s, and by the existence or not
of broadcasting capacity.

The computational model for the virtual machine, de-
scribing the behavior for a given algorithm, is obtained by
summing the time spent in sequential operations TS and the
time spent in parallel operations TP . Sequential operations
include communications, data input/output and other pro-
cessing that cannot occur in parallel due to each particular
algorithm characteristics. Parallel operations are those that
the time spent by one processor can be divided by p if p pro-
cessors are used. The total processing time, as a function of
the number of processors p and the problem size n is given
by equation 1.

TT (n; p) = TS(n; p) + TP (n; p) (1)

The interconnection network is modeled by a temporal
expression, TC , representing the time required to transmit a
message of nb bits between two network nodes, assuming a
distance 1 network.

TC = TL + nb(
1

LB
+ TE) (2)

The latency time TL represents the time gap between the
processor order to transmit and the beginning of transmis-
sion and TE the packing time. The logical topology of an
Ethernet provides a single channel, or bus, that carries Eth-
ernet signals to all stations, allowing broadcast communica-
tions. There is only one signal channel delivering packets
over the network to all stations. Each message is divided
into packets of length 46 to 1500 bytes of data (packetsize),
to be sent sequentially and individually onto the shared
channel. For each packet the computer has to gain access
to the channel [21]. This division of a message into packets
leads to a latency time for each message that is proportional
to the number of packets (K) into which it is split, resulting
equation 3.

TComm = KTL + nb(
1

LB
+ TE) (3)

The value of K is given by equation 4. A typical value
for packetsize is 1024 bytes.

K = d
nb=8

packetsize
e (4)

For a heterogeneous virtual machine TL and TE depend
on the processor speed S. Several experiments were con-
ducted in order to measure these parameters, for the net-
work referred to in the results section, which is composed
by processors as illustrated in table 1. The values were mea-
sured for the matrix multiplication algorithm over different
matrix sizes, resulting the average values of table 1.

S(Mflops) 244 161 60 50 49
TL(�s=byte) 70 130 180 180 180
TE(�s=byte) 0.05 0.07 0.13 0.13 0.13

Table 1. Processors parameters

Although the Ethernet physically allows broadcasting
the WPVM converts a broadcast in a p processor machine to
p� 1 messages [1]. Therefore, to model correctly a broad-
cast the time spent in one message has to be multiplied by
p� 1.

Independent communications over rows or columns, ei-
ther for 1-D or 2-D grids, can originate network collisions.
Examples are all slave processes trying to send results to
the master process at the same time; or for the matrices
multiplication algorithm, in each step, the distribution of
the matrices are independent over rows, for one matrix, and

over columns for the other matrix. To avoid collisions a
set of communication routines using a ring communication
pattern, as shown in figure 1, were developed. They allow
processes to synchronize by establishing the order of com-
munications according to the processes position on the grid.

Signal

Figure 1. Communication pattern for two in-
dependent row broadcasts

The parallel component TP of the computational model,
equation 5, represents the operations that can be divided
over a set of p processors obtaining a speedup of p, i.e. op-
erations without any sequential part.

TP (n; p) =
 (n)Pp
i=1 Si

(5)

The numerator (n) is the cost function of the algorithm
measured in floating point operations (flops) as a function
of the problem size n. For example, to multiply square ma-
trices of size n, the cost is (n) = 2n3 [8]. This oper-
ation count does not include memory operations resulting,
therefore, a higher complexity. To obtain a correct operation
count one should consider the memory references made and
have an estimation of the memory access time. The nodes of
the virtual machine have different levels of memory (cache,
main memory, and disk) with different access times, and
one cannot predict how many accesses are made to each
one.

Figure 2 shows the processing capacity achieved by an
161 Mflop peak performance processor for the matrix mul-
tiplication algorithm. The computational cost is (n) =
21:5n3flops. Figure 2 also shows that a non block oriented
algorithm cannot assure a constant coefficient of (n),
which is a requirement in order to be able to estimate the
time the processors will take to execute the algorithm. From
this point on the coefficient of (n) will be referred to as the
algorithm constant �. The value � does not depend on the
processor but rather is a characteristic of the algorithm.

The denominator of equation 5 is the processing capacity
used which is obtained by summing the individual process-
ing capacities of the machines. For this equation to be valid
each machine should not take more than TP seconds to pro-
cess its part. This assumes a perfect load balancing in the
heterogeneous machine.

Figure 2. Performance of the matrix multipli-
cation algorithm on a 161 Mflop peak perfor-
mance processor as a function of matrix size

3. Load balancing strategy

In this section a static load distribution algorithm is pre-
sented and issues related to the optimization of processing
time in a heterogeneous environment are discussed.

3.1. Data distribution

To avoid the slowest processors to determine the parallel
processing time, the load should be distributed proportion-
ally to the capacity of each processor. The aim is to assign
the same amount of processing time which may not corre-
spond to the same amount of data.

The matrices are organized in square blocks of data
which are assigned to the processor grid. To achieve a bal-
anced distribution in the heterogeneous machine the number
of blocks assigned to each processor should be proportional
to its processing capacity compared to the entire machine:

li =
SiPp

k=1 Sk
(6)

The load index li although theoretically correct, is not fully
applicable in practice since the number of blocks assigned
has to be an integer value. As an example, for a machine
composed by 6 processors of capacity f244, 244, 161, 161,
60, 50g Mflops, li would be f0.265, 0.265, 0.175, 0.175,
0.065, 0.054g. To distribute a matrix of size 1800 over a
(1,6) processor grid the assignment would be 1800 rows by
f477, 477, 315, 315, 118, 98g columns respectively.

The strategy implemented is to compute the number of
blocks to assign to each processor rounding the real value
obtained down to the nearest integer, so that some blocks
are left to be assigned. Then, to obtain an optimal solution
the remaining blocks are assigned one at a time to the grid

of processors, choosing the one that will take less time to
finish the job.

For the test case presented, consider a block size of 25 el-
ements, which lead to an assignment in terms of number of
blocks, of f19, 19, 12, 12, 4, 3g summing 69 in a total of 72
blocks, leaving 3 blocks unassigned. Using the time com-
plexity analysis presented in the next section for the matrix
multiplication algorithm, TP = 21:5n3=S, the estimated
computational time per processor is f135.6, 135.6, 129.8,
129.8, 116.1, 104.5g seconds. Each block will take f7.14,
7.14, 10.82, 10.82, 29.03, 34.83g seconds in each proces-
sor respectively. This block processing time is summed to
the total time each remaining block being assigned to the
processor that would finish first. The first block is assigned
to processor 6 and the last two blocks to processors 3 and
4, resulting an estimated processing time of f135.6, 135.6,
140.6, 140.6, 116.1, 139.3g seconds. A perfect load bal-
ancing cannot be achieved, however for this block size it is
the optimal assignment, i.e. the assignment that leads to the
minimum processing time. Figure 9 shows the processing
time measured for each processor.

Another issue in data distribution for a heterogeneous
machine is to keep the load balance in the whole algo-
rithm. For some algorithms, such as tridiagonal reduction
and LU factorization, in each iteration part of the matrix is
fully computed and not visited again, the working matrix
being smaller from step to step. This can lead to an imbal-
ance load if the distribution is not cyclic. For the example
above, if contiguous blocks are assigned to each processor,
one of the fastest processors would be idle after computing
19 blocks of the matrix , remaining 53 blocks to be pro-
cessed.

To overcome this load imbalance, blocks are organized
in balanced groups. Being li the load index of processor i,
one define group block GB as:

GB =
1

min(li)
(7)

If GB=Q < 2 then GB = 2=min(li), where Q is the num-
ber of column processors. For a (P;Q) grid the algorithm
is applied to columns and rows independently, considering
the processing capacity by column and row respectively, as
shown in table 2.

For the example given above GB = 1=0:054 = 18
blocks, giving a group block of f5, 5, 3, 3, 1, 1g.

With this strategy it is guaranteed that from the begin-
ning to the end of the algorithm all processors are involved
in proportion of their load indices li, allowing an effective
load balancing. When the last group block is being pro-
cessed, the last 8 blocks would be computed by the slowest
processors; it is reasonable that in cases where some pro-
cessors cannot participate due to the lack of data, it should
be the fastest ones doing the computation. Therefore, the

cyclic distribution is used inside each group block.

3.2. Data redistribution

In order to exploit the computational capacity of the tar-
get machine, the algorithms must be implemented in order
to increase the computation to communication ratio, mainly
due to the slow network. Therefore, data redistribution is
allowed in order to switch to the optimal grid computed for
each algorithm. Data distribution is represented by system
independent objects, allowing the system to switch between
two unrelated processor grids.

The cost of redistribution is estimated by the communi-
cation of n2 elements for a matrix of size n, which is the
worst case, i.e. every element being allocated to a differ-
ent processor. The redistribution algorithm starts from the
first processor (1,1) to the last, changing data synchronously
with the remaining processors.

For related grids, e.g. switching from (1,6) to (1,7), the
system evaluates if the gain in time due to the addition of
one processor is overcome by the data redistribution time.
In that case the grid change does not occur.

3.3. Block size

The block size should be chosen according to the fol-
lowing conditions: first, it should maximize the individual
processing capacity, that as shown in figure 2 degrades for
a block size 1, and second, to allow the implementation of a
load balancing distribution. For the machines tested a block
size in the range 15 to 40 ensure an almost constant process-
ing capacity.

For a sequence of parallel algorithms, e.g. for eigenvec-
tor computation where different grids are used, the block
size should satisfy all grids in terms of load balancing since,
although there is data redistribution, this parameter remains
unchanged.

3.4. Processor selection policy

The system keeps a record of the computers enrolled in
the parallel virtual machine ordered by decreasing compu-
tational capacity. If only part of the machine is needed to
execute the algorithm the computers are selected from the
fastest to the slowest one.

A computer is considered available for parallel process-
ing if there is no user activity for at least half the process-
ing time of the last parallel algorithm. If a user starts us-
ing his/her computer during a parallel execution, the system
does not transfer the work to another computer; it completes
the current job and then marks the computer as unavailable.
For the problem size addressed, whose processing time is
expected to be of a few minutes, this policy is satisfactory.

4. Optimization of the processing time

A parallel algorithm may have two aims: to obtain a
better accuracy of results by using a more detailed domain
which could not be possible in a single processor, usually
due to memory limitations, or, for a given accuracy, to ob-
tain a reduction in the processing time. The time gain ob-
tained with the parallel algorithm is usually called Speedup
and is defined as the quotient of the serial algorithm time
(T1) over the parallel algorithm time (TT).

Speedup =
T1

TT
(8)

Depending on how the serial processing time is mea-
sured one can have different definitions of Speedup. Rel-
ative Speedup is obtained if the serial time is the processing
time of the parallel algorithm in a single node of the parallel
computer. Real Speedup is obtained if the serial time is the
processing time of the most efficient sequential algorithm
in a single node of the parallel computer. Absolute Speedup
is defined when the serial time is obtained for the fastest
sequential algorithm executed in the fastest sequential com-
puter available [18]. In the context of the envisaged applica-
tions of the parallel virtual machine, we define Speedup as
the ratio between the processing time of the serial version
in the computer that controls the parallel execution (mas-
ter), over the processing time of the parallel program. This
is the effective gain as seen by the user, who has a choice
between his/her own single machine (master) or the parallel
virtual machine; the definition is also globally fair when the
master computer is one of the fastest available, which is the
case in the test cases presented below. In a parallel virtual
machine it is quite common that each node of the computer
network is not fully available for the user that is running
a parallel application. The application should not schedule
work for nodes that are in use by other users, and therefore
it should have a record of the ones that are free. The aim
in scheduling work for distributed processing is to obtain a
processing time that is as small as it can be obtained for that
particular network, even if some of the nodes are left in the
idle state. Therefore, the relevant parameter to be consid-
ered is the Speedup in detriment of the Efficiency, which is
often used in other contexts.

Given the above definitions, one can state the goal of the
work herein reported as the determination of the optimum
number of processors using a criterion of minimum process-
ing time. The optimal number of processors p, which min-
imizes TT (n; p), is the one for which an increase on the
serial component, due to the addition of one more proces-
sor, will be balanced by the gain obtained on the processing
time of the parallel component.

4.1. Application to a homogeneous machine

For a given algorithm, characterized by the constant �,
and for size n matrices, p can be obtained by solving equa-
tion 9 in order to p [5].

@TT

@p
= 0 (9)

For a homogeneous machine equation 5 simplifies to
TP (n; p) = (n)

pS
and the communication parameters TL

and TE assume the same value for all machines, allowing a
straightforward solution.

4.2. Application to a heterogeneous machine

For a heterogeneous machine another degree of com-
plexity is added to equation 9: first, processors have differ-
ent computational capacities (S) and second, the communi-
cation parameters TL and TE also vary with S, as shown in
table 1.

To tackle this problem one first orders the nodes by de-
creasing value ofSi (the capacity of node i), and then sched-
ules the work from the fastest to the slowest free node, re-
sulting the denominator of equation 5: ST (p) =

Pp
i=1 Si.

To compute the first derivative of TT in order to p it is re-
quired to find the sum ST (p), which cannot be computed
beforehand since one does not know how many processors
will be used. The function ST (p) increases monotonically
with p, having a growth rate that decreases with increasing
p, as shown in figure 3 for a machine composed by proces-
sors of capacities f244, 244, 161, 161, 60, 50, 49g Mflops
in decreasing order.

Figure 3. Processing capacity of the hetero-
geneous machine as a function of the proces-
sors used

The aim is to approximate ST (p) by a polynomial func-
tion in p in order to be able to solve equation 9. A first

order polynomial function as used for a homogeneous ma-
chine is not adequate here. The ideal polynomial function
would be one that passes in all points of ST (p); however, its
computation time may be significant for a large number of
processors. The solution adopted was an iterative quadratic
approximation. The first function is defined by zero and the
extreme points of ST (p). The iterative process allows the
reevaluation of the cost function TT (n; p) in the neighbor-
hood of the solution computed. In each iteration only half of
the processors used in the last iteration are considered being
the polynomial function defined by: if P is the total number
of processors, p(i�1) the solution for iteration (i � 1) then
in iteration i the function is defined by the three points of
equation 10.

ST (p
i�1 � P=2i+1) and ST (p

(i�1)) i = 1; 2; :::
(10)

The second degree polynomial function has the same be-
havior as ST (p) and is written as:

PS(p) = ap2 + bp+ d (11)

resulting the first derivative of TP (n; p) in order to p in:

@TP (n; p)

@p
=

@

@p

�
 (n)

ap2 + bp+ d

�
= 0 (12)

which must be solved in order to obtain the number of pro-
cessors p that minimizes the total processing time.

If the logical grid of processors affects the processing
time, then changing to a 2D grid (e.g. (r; c) grid) or 3D
(e.g. hypercube), one or two dimensions are added to the
problem respectively. For the 2D grid the quadratic approx-
imation with p = rc becomes:

PS(r; c) = a(rc)2 + b(rc) + d (13)

The communication parameters TL and TE also need
to be modeled by a function of p in order to solve
@TS(n; p)=@p. To transmit a message from computer A to
B the latency and packing time depend on the speed of pro-
cessor A. If one can predict the amount of data each pro-
cessor will be responsible to transmit, one can estimate the
time spent in communications by the whole machine. Ac-
cording to the data distribution algorithm to each processor
is allocated an amount of data proportional to its relative
speed in the heterogeneous machine: li = Si=

Pp
k=1 Sk.

Therefore, functions to model these parameters are defined
by equations 14 and 15, corresponding to an weighted mean
of these values for each possibility of p processors. The val-
ues of (TL)i and (TE)i are shown in table 1.

TTL(p) =
Xp

i=1
li � (TL)i (14)

TTE(p) =
Xp

i=1
li � (TE)i (15)

For the machine considered (figure 3), the functions
TTL(p) and TTE(p) are shown in figures 4 and 5 respec-
tively. In those figures it is also shown a first degree poly-
nomial approximation to be included in TS(n; r; c).

Figure 4. Approximation for TTL(p) per byte

Figure 5. Approximation for TTE(p) per byte

The (r; c) configuration that minimizes the processing
time is obtained by rTT (n; r; c) = 0. Since one wants to
compute the ideal grid (r; c) for a given problem size n, the
first derivative of TT (n; r; c) in order to n is zero. Thus, the
optimal configuration is obtained by solving the system of
equations 16.

8<
:

@TT (n;r;c)

@r
= 0

@TT (n;r;c)

@c
= 0

(16)

4.3. Applying the methodology to a matrix multi-
plication algorithm

The methodology presented above will be tested with an
improved implementation of the matrix multiplication oper-
ations [11]. Figure 6 shows an hypothetical data assignment
for a (2; 3) processor grid. For simplicity, the blocks dis-
played are formed by contiguous data, although the block
cyclic data distribution is used [10].

To compute the matrix productC = A�B, in each iter-
ation of the algorithm each processor multiplies one column
block of A by one row block of B, updating the correspon-
dent block of C. The shadowed area in matrix C represents
the block that processor (0; 0) has to update in each itera-
tion.

A B

X =

C

Figure 6. Matrix multiplication operations

Considering a grid (r; c) of processors, the matricesA =
(m; k), B = (k; l) and C = (m; l) the amount of data
required to broadcast matrix A over the rows of processors
is:

m

r

k

c
(c� 1)rc = mk(c� 1) (17)

Note that (c�1) appears because the broadcast is in fact per-
formed by sequential communications. To broadcast matrix
B over the column of processors it is required to transmit:

k

r

l

c
(r � 1)cr = kl(r � 1) (18)

The time required to compute the inner loop products is
given by:

TP = �
mlk

ST (r; c)
(19)

where ST (r; c) is the processing capacity of the heteroge-
neous machine when rc processors are used. The value �
for the matrix multiplication is 21.5, as given in section 2.
The total estimated processing time, assuming square ma-
trices of size n, is expressed as:

TT (n; r; c) = (
n2(r + c� 2)

packetsize
)TTL(r; c)

+(n2(r + c� 2))(LB�1 + TTE(r; c))

+�
n3

PS(r; c)
(20)

Depending on the data types used (float or double) the
correspondent communication factors have to represent the
amount of data in bytes. LB is the bandwidth per byte.

For the machine of figure 3 the quadratic approximation,
equation 11, becomes PS(r; c) = �17:595(rc)2+261:6rc.
This approximation is close to the real curve ST (r; c) for
values 0 � rc � 7. Outside this domain the polynomial
function may introduce false minima in the processing time
function. Therefore, the minimization must be restricted to
the allowed domain by the number of processors available.
This can be accomplished by introducing the Lagrange mul-
tipliers [15] in the system of equations 16. An additional
function to restrict the domain is included:

8>>>><
>>>>:

@TS(n;r;c)

@r
+ @TP (n;r;c)

@r
= ��c

@TS(n;r;c)

@c
+ @TP (n;r;c)

@c
= ��r

�(rc � 7) = 0

(21)

The following figures, 7 and 8, present results for ma-
trices of size 1800. Figure 7 displays the communication
estimated (Est.) and measured (Meas.) time for one and
two rows of processors, limited to 7 processors. And fig-
ure 8 displays the total processing time TT (n; r; c) obtained
by estimation with the quadratic approximation for machine
processing capacity (Tot. E), by estimation using the exact
processing capacity (Tot. R), and the measured time (Tot.
M). The communication times are modeled correctly, exist-
ing only a slight difference for some grids. The total esti-
mated processing time differs from the measured one due to
the quadratic approximation which underestimates the pro-
cessing capacity in some cases and overestimates in others,
although the behavior is similar to the measured curve and
it does not introduce false minima in the processing time
function. The curve obtained with the real processing ca-
pacity of the heterogeneous machine shows that the overall
model is correct and that the processing time can be accu-
rately estimated.

Solving the system of equations 21, the values of r =
c = 2:65 are obtained for n = 1800 and LB =
100Mbits=s. Since one wants an integer solution, it can
be assumed c = 3 which implies r = 2, since rc � 7.
The grid (3,2) would be equivalent. Figure 8 shows that the
minimum is obtained for grid (2,3), confirming the system
solution, although there is an increase in the processing time
compared to the estimation. This is the consequence of an
imbalance grid which cannot be overcome for that machine.
Table 2 shows the processor layout for grid (2,3). The first
two columns of processors are equilibrated what does not
happen for column 3, in which either processor (1,3) will

Figure 7. Communications for the matrix mul-
tiplication algorithm (matrix size 1800)

Figure 8. Processing time for the matrix mul-
tiplication algorithm (matrix size 1800)

be underloaded or processor (2,3) will be overloaded, de-
laying all other processors as they will be always waiting to
communicate.

Figure 9 shows the processing time for all processors,
where it can be seen that processor 6 is delaying the process
for grid (2,3). Grid (1,6) is better balanced but the ideal
load balance is not achieved due to the data blocks indivis-
ibility. For this network, due to processor relation in pro-
cessing speed, a balanced load can only be achieved with
small blocks of data. The squared block size used was 25.
A smaller block size, e.g. 10, while improving the load bal-
ance, would decrease the individual performance of proces-
sors due to a sub-utilization of the processors cache mem-
ory.
Note that although grid (2,3) is less balanced and there is
one processor that takes more time, it makes a better so-

244 161 60 =465
244 161 50 =455

=488 =322 =110

Table 2. Processor layout for grid (2,3)

Figure 9. Matrix multiplication processing
time

lution than grid (1,6) due to the fact that this grid requires
more communication time, as it can be seen in figure 7.

5. Results

In this section results for tridiagonal reduction (TRD),
LU and QR factorization algorithms in the heterogeneous
machine represented in figure 3 for an Ethernet network
at 100 Mbits/s are presented. Figure 10 shows the perfor-
mance of each algorithm in a single processor. The QR per-
formance is divided by 2 for displaying purposes. As shown
before for the matrix multiplication algorithm, the processor
performance is kept almost constant for the block versions
of these algorithms, for matrices greater than 400 elements.
The correspondent � value considered for each algorithm is
the average in that domain. The square block size used in
all cases varies from 15 to 40. There is some variation in the
processor performance for a given matrix size, mainly due
to the operating system (Windows NT) which stochastically
has some activity; however, this represents a variation in the
processing time below 1%.

The estimated values presented below are obtained by
applying the system of equations 21 using the time function
of each algorithm respectively.

5.1. LU factorization algorithm

The LU factorization algorithm is applied in order to
solve directly a system of equations. The implementation

Figure 10. Performance of LU, QR and TRD
block algorithms on a 161 Mflop peak perfor-
mance processor as a function of matrix size

is the right-looking variant where algorithm details can be
found in [9]. For a (r; c) grid of processors, the amount of
data (double/float) transmitted in the parallel matrix update
is:

(r + c� 2)
n2

2
(22)

and the parallel processing time is:

TP (n; r; c) = �
n3

ST (r; c)
+ �(n2) (23)

The � for LU is 7.5. There is a component of complexityn2

correspondent to the computations made by the pivot pro-
cessor. Figure 11 shows the processing time estimated and
measured for a matrix of size 1800. Although it is hardly
perceptible in the figure, the optimum value estimated for
(r; c) is (1,5). In practice the optimum is grid (1,4), which
outperforms grid (1,5) by only 0.5 seconds. In this case
the difference is due to the quadratic approximation for ma-
chine processing capacity. If the real values are used the
estimated optimum is (1,4).

Figure 12 shows the estimated (E) and measured (M)
communication times for matrices of size 1200 and 1800.
In general the communications are well modeled. The dif-
ferences observed are less than 3 seconds. This can lead to a
grid selection that is not the optimal one; however, since the
processing times obtained for grids (1,4), (1,5) and (1,6) are
69.1, 69.6 and 70.0, the main drawback would be to have
unnecessary processors allocated.

Figure 13 shows the load distribution for the matrix of
size 1800. For up to 5 processors a good load balancing
is achieved, with processors taking almost the same time
to process the data allocated to them. The block size from
processor (1,1) to (1,5) is 1800 rows by 500, 500, 340, 340

Figure 11. LU processing time for a matrix of
size 1800

Figure 12. Estimated (E) and measured (M)
communications for LU algorithm

and 120 columns respectively. Ideally they should receive
504, 504, 333, 333 and 124 columns.

5.2. Tridiagonal reduction algorithm

The tridiagonal reduction algorithm (TRD) is a step in
the computation of the eigenvalues and eigenvectors of a
symmetric matrix. Details of the algorithm can be found in
[6]. For a (r; c) grid of processors, the amount of data to
transmit is:

2n(r � 1) + 4n2(rc� 1) (24)

for computation and broadcast of Householder vectors, par-
allel matrix update and matrix vector products. The parallel
processing time is:

TP (n; r; c) = �
n3

ST (r; c)
+ �(n2) (25)

The � for TRD is 28 and there is also a negligible term
in n2. Figure 14 shows the processing time for a matrix

Figure 13. LU load distribution for a matrix of
size 1800

of size 1200. For grids (1,1) to (1,4) the estimated time is
higher than the measured one; the maximum error occurs
for grid (1,4) which coincides with the maximum error in
the quadratic approximation of computational capacity. The
minimum is correctly determined as grid (1,4). Again if grid
(1,3) was chosen the total time would be marginally higher:
104.7 s instead of 100.0 s. To guarantee the selection of
the best grid the scheduler can operate with real values of
processing capacity for estimating the processing time in
the neighborhood of the solution obtained by the system of
equations 21.

Figure 14. Tridiagonal reduction processing
time for a matrix of size 1200

Figure 15 shows the estimated (E) and measured (M)
communication times for matrices of size 800 and 1200.
The more significant differences are for matrix of size 1200
where communications are overestimated. In all cases the
difference is below 1.1 second.

Figure 16 shows the load distribution for the matrix of
size 1800. For grid (1,4) a good load balancing is achieved.
For grid (1,5) one process takes 3 seconds less than the oth-

Figure 15. Estimated (E) and measured (M)
communications for Tridiagonal reduction al-
gorithm

ers because it was assigned one block less of size 20. The
data allocated to each processor was 1200 rows by 340, 320,
220, 220 and 100 columns respectively; ideally it should be
1200 by 336, 336, 222, 222, 83. Grids (1,6) and (1,7) are
not well balanced also due to block indivisibility.

Figure 16. Tridiagonal reduction load distri-
bution for a matrix of size 1200

5.3. QR iteration algorithm

The QR iteration is the last step in the eigenvector com-
putation sequence, preceded by the tridiagonal reduction of
a symmetric matrix and orthogonal matrix computation.

Synthetically, the procedure is to compute Givens rota-
tions in order to reduce the tridiagonal matrix into a diago-
nal one whose elements are the eigenvalues. Eigenvectors
are computed by updating the orthogonal matrix, resulting
from the tridiagonal operation, with the rotations. Each ro-
tation affects only two columns of the orthogonal matrix; a
detailed explanation is given in [12].

The parallelization implemented takes advantages of the
fact that one rotation updates only two columns without
inter-row dependencies. For the tridiagonal reduction a col-
umn oriented distribution is more favorable; however, that
data allocation will imply communications between bound-
ary columns, with the additional drawback of using cyclic
distributions, which increase the boundary columns drasti-
cally. A column oriented algorithm applying the technique
of considering multiple bulges [13] was implemented, but
only a marginal speedup, below 1.5, was obtained due to
the fact that multiple bulges increase the number of itera-
tions required which, associated to boundary communica-
tions, is not suited for the slow bus network of the target
machine.

Alternatively, it was given the possibility of data redis-
tribution in order to match the ideal processor grid for each
algorithm. In this case, QR iteration was a row oriented
strategy.

The QR iteration has two computational tasks: one, to
do the bulge chase of order n2, and the other to update the
orthogonal matrix of order n3:

TP = �
n3

TT (r; c)
+ �(n2) (26)

The � for QR is 43. The time to compute the chases is in
fact negligible compared to the �(n3) term (e.g., for the
matrix of size 1600 used it takes 2.1 seconds to compute the
chases and 721 seconds to update the matrix in a 244 Mflop
computer). Therefore, the solution adopted was to do the
chases in one computer (1,1), the fastest one, which at the
end of a chase transmits the correspondent rotations to the
remaining processors. Then, all processors update the part
of the orthogonal matrix allocated to them without requiring
any data exchange, i.e. true parallelism.

Figure 17 shows the estimated and measured processing
time for a matrix of size 1000. The difference for grid (1,4)
is mainly due to error of the quadratic approximation which
is maximum for 4 processors. The estimated minimum is
6 processors; in practice it is 7 processors. This is due to
a load imbalance occurring for 6 processors, in which there
is a processor that takes 2 seconds more than the others, as
shown in figure 18.

The communications involved are only to distribute the
Givens rotations, estimated assuming a convergence rate of
, as:

n2(r � 1) (27)

This is an estimation because the number of chases depends
on the rate of convergence of the QR iteration. This rate is
expected to be less than 2 [8]. The estimated values of figure
19 were obtained with = 0:9 obtained experimentally
with the matrix used. In this algorithm the communication
parameters TE and TL refer to the machine that computes

Figure 17. QR iteration processing time for a
matrix of size 1000

Figure 18. QR iteration load distribution for a
matrix of size 1000

the Givens rotations, since it is the only emitter in the QR
iteration.

5.4. Symmetric eigenvector computation

In this subsection the whole algorithm for eigenvec-
tor computation executed in the heterogeneous machine is
compared to a serial version [16] when executed in the
fastest node.

The performance metrics used to evaluate the parallel
application is, first, the runtime, and second the speedup
achieved. To have a fair comparison in terms of speedup,
one defines the Equivalent Machine Number (EMN(p))
which considers the power available instead of the number
of machines that, for a heterogeneous environment, is an
ambiguous information. Equation 28 defines EMN(p) for
p processors used, and S1 is the computational capacity of
the processor that executed the serial code, also called the

Figure 19. Estimated (E) and measured (M)
communications for QR iteration

master processor.

EMN(p) =

Pp

i=1 Si

S1
(28)

For the machine presented in figure 3 EMN(6) = 3:77
andEMN(7) = 3:97, i.e. using 6 processors of the hetero-
geneous machine is equivalent to 3.77 processors identical
to the master processor and to 3.97 if 7 processors are used.

Figure 20 and table 3 compare the virtual machine to the
fastest node of the machine used to run the sequential code.
Different grid configurations are used for the different algo-
rithms, according to the optimal grid computed by equation
21.

Figure 20. Eigenvector computation in a 7 pro-
cessor heterogeneous machine compared
to the sequential algorithm executed in the
fastest node

Table 3. Processors used in each stage of the
eigenvector computation

6. Conclusions

Briefly stated, the methodology presented in this paper
was designed to address problems arising in the context of
using image processing and analysis algorithms for inter-
actively extracting important data and information from im-
ages of a specific application domain, e.g. medical imaging.

Currently, this activity is often conducted by exploring
the functionality (hardware and software) of general pur-
pose systems, which usually trade off algorithm sophistica-
tion and user comfort; this means that more advanced image
tools may be absent in these systems due to practical con-
siderations.

The main goal of the work herein presented was to take
advantage of the existence of a network of computers (this is
a very frequent situation in many user organizations) to try
and move the aforementioned trade-off in the direction of
allowing the provision of more advanced and sophisticated
algorithms without sacrificing user comfort.

The results presented show that, for the important linear
algebra building blocks of many advanced image analysis
methods, the stated goal may be accomplished; an improve-
ment has been achieved in the execution time, by a factor of
about 3, which may bring more image analysis tools into
the feasible condition for new general-purpose software.

A collection of machines with a wide range of process-
ing capacities, from 244 to 49 Mflops in the case presented,
can cooperate and achieve a considerable speedup in linear
algebra algorithms. The load balancing strategy proved to
be a determinant condition for the quality of the results.

A methodology to determine in a computer network the
number of active processors that minimizes the total pro-
cessing time for a specific parallelized algorithm was pre-
sented. The main objective is that the user of a computa-
tionally demanding application may benefit from the com-
putational power distributed over the network, while keep-
ing other active users undisturbed.

This goal can be achieved in a transparent manner for the
user, once the modules of his/her application are correctly

parallelized for the target network and the performance of
the machines in the network is known. The application, be-
fore initiating a parallel module, determines the best avail-
able computer composition for a parallel virtual computer to
execute it, and then launches the module, achieving the best
response time possible in the actual network conditions.

Practical tests of the methodology were conducted both
on homogeneous and heterogeneous networks, using basic
algorithms from linear algebra; in both cases, the theoreti-
cal values computed were confirmed by the measured per-
formance. It was shown that a good load balancing could
be achieved even for a heterogeneous environment, by us-
ing an appropriate processor layout. Other generic modules
will be parallelized and tested, so that an ever increasing
number of image analysis methods may be assembled from
them. Application domains other than image analysis may
also benefit from the proposed methodology.

References

[1] A. Alves, L. Silva, J. Carreira, and J. Silva. Wpvm:
Parallel computing for the people. In HPCN’95 High
Performance Computing and Network Conference, Milan
(http://dsg.dei.uc.pt/wpvm), 1995. Springer-Verlag.

[2] T. Anderson, D. Culler, D. Patterson, and T. N. Team. A case
for now (network of workstations). IEEE Micro, February
1995.

[3] M. Baker, R. Buyya, and D. Hyde. Cluster computing: A
high-performance contender. IEEE Computer, 32(7):79–83,
July 1999.

[4] S. Balsamo, L. Donatiello, and N. V. Dijk. Bound per-
formance models of heterogeneous parallel processing sys-
tems. IEEE Transactions on Parallel and Distributed Sys-
tems, 9(10), October 1998.

[5] J. Barbosa and A. Padilha. Algorithm-dependent method to
determine the optimal number of computers in parallel vir-
tual machines. In VECPAR’98, 3rd International Meeting on
Vector and Parallel Processing (Systems and Applications),
volume 1573, Porto, 1998. Springer-Verlag.

[6] J. Choi, J. Dongarra, and D. Walker. The design of par-
allel dense linear software library: Reduction to hessenberg,
tridiagonal and bidiagonal form. Technical Report LAPACK
Working Note 92, University of Tennessee, Knoxville, Jan-
uary 1995.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. Logp: To-
wards a realistic model of parallel computation. In 4 ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, CA, 1993.

[8] J. W. Demmel. Applied Numerical Linear Algebra. SIAM,
1997.

[9] J. Dongarra, S. Hammarling, and D. W. Walker. Key con-
cepts for parallel out-of-core lu factorization. Technical Re-
port CS-96-324, LAPACK Working Note 110, University of
Tennessee Computer Science, Knoxville, April 1996.

[10] J. Dongarra and D. Walker. The design of linear algebra
libraries for high performance computers. Technical Re-
port LAPACK Working Note 58, University of Tennessee,
Knoxville, June 1993.

[11] R. Geijn and J. Watts. Summa: Scalable universal matrix
multiplication algorithm. Technical Report CS-95-286, Uni-
versity of Tennessee, Knoxville, 1995.

[12] G. Golub. Matrix Computations. The Johns Hopkins Uni-
versity Press, 1996.

[13] G. Henry, D. Watkins, and J. Dongarra. A parallel imple-
mentation of the nonsymmetric qr algorithm for distributed
memory architectures. Technical Report Technical Report
CS-97-352 and LAPACK Working Note 121, University of
Tennessee, March 1997.

[14] J. JáJá and K. Ryu. The block distributed memory model.
Technical Report CS-TR-3207, University of Maryland,
January 1994.

[15] J. E. Marsden and A. J. Tromba. Vector Calculus. W. H.
Freeman and Company, 1981.

[16] W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Comput-
ing. Cambridge University Press, 1997.

[17] E. Rosti, E. Smirni, L. Dowdy, G. Serazzi, and K. Sevcik.
Processor saving scheduling policies for multiprocessor sys-
tems. IEEE Transactions on Computers, 47(2), February
1998.

[18] S. Sahni and V. Thanvantri. Performance metrics: Keeping
the focus on runtime. IEEE Parallel & Distributed Technol-
ogy, pages 43–56, Spring 1996.

[19] C. Seitz. Myrinet - a gigabit per second local-area network.
IEEE Micro, February 1995.

[20] J. Shen and S. Castan. An optimal linear operator for step
edge detection. CVGIP: Graphical Models and Image Pro-
cessing, 54(2):112–133, 1992.

[21] C. Spurgeon. Ethernet Configuration Guidelines. Peer-to-
Peer Communications, Inc, 1996.

[22] A. Steen. Methodology, metrics and presentation of results.
In Tutorial in VECPAR’98, 3rd International Meeting on
Vector and Parallel Processing (Systems and Applications),
Porto, 1998.

[23] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, August 1990.

Biographies

Jorge Barbosa got a diploma in Electrical Engi-
neering from FEUP (Faculdade de Engenharia do Porto), a
MSc. in Digital Systems from UMIST, UK, and he is cur-
rently a PhD. student at FEUP, researching the application
of parallel computing in image processing. João Tavares
got a diploma in Mechanical Engineering and a MSc. in
Electrical Engineering from FEUP, and he is currently
a PhD. student at FEUP researching defornable object
models in image processing. Armando Padilha is associate
professor at FEUP and GROUP research leader at INEB
(Biomedical Engineering Institute, http://ineb.fe.up.pt).

