Self-Tuned Parallel Processing System for
Heterogeneous Clusters

J. Barbosa

J. Tavares

A. Padilha
DEEC, Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract Automatic program erecution
control is a demanding tool for heteroge-
neous environments, due to the wvariable
avatlability of processors and network band-
width. Issues such as load distribution have
to be re-analyzed since strategies developed
for homogeneous machines fail to optimize
the computation time in heterogeneous net-
works. The final user should not be involved
in deciding which machines should be se-
lected, the data distribution policies that best
fit each algorithm, etc.
presents such a tool, designed for interactive

The present work

processing in a distributed computing envi-
ronment, whose main objective is to min-
mize the applications computation time. Re-
sults are presented for an object tracking al-
gorithm, either in homogeneous and hetero-
geneous networks showing the advantage of
automatic control.

Keywords: personal computer cluster, automatic
scheduling, linear algebra, object tracking, execu-
tion time minimization

1 Introduction

A strong motivation for parallel processing in
interactive applications comes from image and
image sequence analysis needs posed by vari-
ous application domains, which are becoming
increasingly more demanding in terms of the
detail and variety of the expected analytic re-
sults, requiring the use of more sophisticated
image and object models, such as physically-

based deformable models [16, 19].

The approach adopted was to develop par-
allel software to be executed, in a distributed
manner, by the machines available in an exist-
ing computer network, taking advantage of the
well known fact that many of the computers
are often idle for long periods of time [17]. The
automatic control tool implements the appro-
priate managing software in order to put idle
computers at the service of the more computa-
tionally demanding applications.

Distributed processing is frequently divided
in two classes: High Throughput Comput-
ing (HTC) and High Performance Computing
(HPC). HTC systems are characterized by the
amount of floating point operations they can
execute in a given period of time, for exam-
ple, a day or a week. These machines are built
by general purpose computer networks, already
available and used for sharing peripherals, file
systems and other resources. The use of this
kind of computational environment for parallel
processing is based on the utilization of proces-
sor cycles that would be otherwise lost, thus
maximizing the use of the processing capacity
installed. Since the network is not designed for
parallel processing it imposes performance lim-
itations, although they can be used efficiently
to execute sequential tasks in parallel or paral-
lel tasks of high granularity. Examples of HTC
systems are Condor [17], Batrun [20] and Hec-
tor [18].

HPC systems are machines built by com-
plete computers, such as workstations, con-
nected by a high bandwidth network. Exam-



ples are the NOW [1] and HPVM [7] systems.
The aim of these systems is to achieve a per-
formance level that can be compared to some
supercomputers, with the benefit of lower ma-
chine acquisition and maintenance costs.

An important difference between HTC and
HPC systems is that in the former it is usually
implemented load sharing instead of load bal-
ancing; the first assigns tasks to available pro-
cessors without consideration of the processing
time, while in the second the aim is to assign
the same amount of work to each processor (a
characteristic of HPC systems). In [2] and [3]
a survey of these two types of systems is pre-
sented.

The system presented in this work does not
nicely fit into any of the classes mentioned,
however, it is closer to the characteristics of
HTC systems. The aim is to execute interac-
tive applications in an existing local computer
network, in order to reduce the response time
through the use of the available processing ca-
pacity.

2 Computational environ-
ment and algorithms

The target computational environment are ex-
isting group clusters formed by desktop com-
puters. These clusters are characterized by
having a low cost interconnection network,
such as a 10/100 Mbits Ethernet, connecting
different types of processors, of variable pro-
cessing capacity and amount of memory, thus
forming a heterogeneous parallel virtual com-
puter.

Although several computational models [10,
15, 21] have been proposed to estimate the pro-
cessing time of a parallel algorithm in a dis-
tributed memory machine, considering the tar-
get machine, a simplified model was proposed
in [5]. This model accounts separately for the
communication and computation time used by
an algorithm. The time to send a message (T¢)
of nb bytes is given by

nb
T =T K+ —— 1
o(nb) = TLK + oo 1)

where K is the number of packets and BW
the network bandwidth. The parallel compo-
nent Tp of the computational model represents
the operations that can be divided over a set
of p processors obtaining a speedup of p, i.e.
operations without any sequential part:

Tpn.p) = <o )
=144
The numerator (n) is the cost function of
the algorithm measured in floating point oper-
ations (flop) as a function of the problem size
n. For example, to multiply square matrices of
size n, the cost is ¢(n) = 2n3 [11].

Each algorithm or task is decomposed in in-
divisible operators for which parallel code ex-
ists. When a parallel algorithm is launched in
one machine (the master process), the work is
scheduled according to the available processors
and choosing, for each operation, the proces-
sor grid that optimizes its execution time [4],
allowing data redistribution if the optimal grid
changes from operation to operation.

The operators considered in this work are a
set of basic linear algebra operations that are
applied in the field of image analysis, e.g. for
object modeling. They are the right looking
variant of LU factorization [12], tridiagonal re-
duction of symmetric matrices [9], QR itera-
tion [13] and matrix correlation.

The operators were rewritten in order to
consider heterogeneous environments whose
alm is to assign the same amount of process-
ing time instead of the same amount of work,
as for homogeneous machines. In particular,
the QR iteration was implemented by a paral-
lelization strategy different from the one pro-
posed in [8], adapted to the machine. It re-
duces the communications among slave proces-
sors to zero, and it keeps only communications
from the master process to the slaves.

3 Parallel processing system

The system is a self-tuned tool that auto-
matically selects processors, data distribution
strategies and processor layout that minimize



the processing time of a given application,
based on the amount of data required to com-
municate and process in each operation. Fig-
ure 1 shows the system configuration.

Operation to Data distribution

Data instances

be executed objects

v \
& 8 %

Parallel Virtual Machine

‘ Slave ‘ ‘ Slave ‘
‘ Monitor ‘ ‘ Monitor ‘ ‘ Monitor ‘ Monitor

| | | Bus |

Figure 1: Interaction of system components

The system is divided in three main blocks:
scheduler, distributed processing management
(DPM) and user interface. The scheduler is im-
plemented by one object created in the master
process and it has the function of deciding, for
each operator, the processor layout that mini-
mizes its execution time. Each operator codes
in its definition class the amount of work to
be done and the required communications, re-
ferred to the amount of data, which are the
parameters for the computational model. The
scheduler output is the complete algorithm to
execute which has the additional information
of the processor grid and data layout to use in
each operator and, if necessary, the redistribu-
tion operations introduced between operators.

The DPM, implemented in the slave and
monitor processes, uses the scheduler output
to create simultaneously in every participat-
ing processor the data distribution objects re-
quired to allocate and address the data objects
in each processor according to the amount of
work assigned. The data blocks assigned to
each processor are determined by the data dis-

tribution algorithms (linear, cyclic, group! [6]
which are coded in the data distribution class.

The data objects are distributed over the
processors that participate in the computation.
In each one there is a copy of the data distri-
bution object to control the data access. The
DPM has a set of instructions to manage the
parallel machine, such as packing and broad-
casting data buffers, creation and release of
data structures, processor grid control, pro-
cess synchronization and collection of processor
state information.

The user interface is implemented in two lev-
els: algorithm definition (macros) and execu-
tion. To define an algorithm the user has to
identify which operators are involved and de-
scribe them as a sequence of operations. The
data buffers are indexed by numbers, and to
use the result of one operation in another,
only those numbers have to be indicated. Fig-
ure 2 shows the interface for macro definition.
There is a set of instructions available for in-
put/output, and only the buffers mentioned in
an output instruction will be saved to the disk
or shown in the display.

¢ Wpvmlmage - [modal01.mer] [_ (O]
Image Input/Output  Edge Detection  Basic Op WEEWERERE

= = II EI §I 7 I R’?I | Load and Distribute b atrix

Macro Properties

Load and Broadcast Matrix
I atrix Generation

Change Distribution
Macro Name: IModaI AN b atie Multiplication

Descriptiol . wo i
File Mame: Chuzershil ecompaozitian
mLDB 30 Matri Inversion

mGEN 0 31 Tzt I Tridiagonal Reduction

mLDB 31 Comp. @
mGEN 10 Eigen values and vectars [1)
Eigen values and vectars [2]

[rezcription:

mTRD 0 0 mlé[éi %030 15000020 Eigen values and vectars [3)
mTRD 10 ( mLDE 1 Carrelation Matris
mGEM 1031 3500002 Save Matix
mTRQ 00 mTRD 00000
mTRQ 10 ( mTRO 100000
mTRE 00000
mEIG3 00 mTRE 100000
mEIG3 10 mEIG300000
mEIG3100000
mCRLZ2 D1 mCRLZ2 0105051 100
0 I mSAWE 50

Figure 2: Macro definition interface

!The group block distribution has been proposed to
improve the processing time of inherently sequential al-
gorithms such as the linear algebra operators in hetero-
geneous clusters



The macro execution interface allows a non-
expert user to execute algorithms defined pre-
viously. After opening a macro, the user only
has to choose the run command, which will in-
voke a dialog to ask for the input and output
files, as mentioned in the macro by load, input,
save and output instructions.

4 Results

The results presented next demonstrate the ap-
plicability of the parallel processing system in
an image analysis algorithm, namely the modal
matching algorithm [19]. The aim is to model
the deformation of an object in an image se-
quence as shown in figure 3, in order to obtain
the correspondence between object points.

instant ¢ instant ¢ +n

matching

Figure 3: Modal matching algorithm

This is a simple example where deforma-
tion occurs only in rotation and scale, however,
the method can be applied for shape deforma-
tion. From the set of points describing each
object (instants ¢ and 7+ n), the algorithm cre-
ates two symmetric matrices representing the
objects and performs finite element analysis.
The operators that compose the algorithm are
eigenvector computation and matrix correla-
tion. The first is further subdivided into three

operations: tridiagonalization, orthogonaliza-
tion and QR iteration.

instant 4 (left) instant ¢ + 1 (right)

Figure 4: Footprint data acquisition; pixel in-
tensity expresses pressure

Figure 5: Modal matching algorithm in pedo-
barography

Figure 4 shows two segmented images of
a footprint, in normal walking conditions,
where the pixel intensity represents the pres-
sure made on the acquisition platform, which
is the relevant information for the clinical anal-
ysis. In this case there is a significant shape
deformation. The set of points represents a 2D
surface with an intensity value per point that
is mapped into the third dimension. Therefore,
a 3D representation can be obtained, and the
matching is computed for this representation
(figure 5). An object of n points is represented
by a (3n,3n) matrix, thus increasing consider-
ably the problem size as compared to the 2D
analysis.

Table 1 presents results for a machine com-
posed by {244, 244, 161, 161, 60, 50, 49}
M flops processors, connected by a 100 Mbit
Ethernet, in matching the objects of figure 4,



Operator | Processor grid
Object A ‘ B
TRD (1,3) | (1,3)
ORT (1,6) | (1,6)

QR (6,1) | (6,1)
MC (1,6)
T\ /Ty | 1621.7/615.8
Speedup 2.63
Ey 69.9 %

Table 1: Results for heterogeneous machine;
A:331 and B:329 points

where the left and right objects are described
by 331 and 329 points, respectively.

The processor grid changes between oper-
ators by data redistribution operations, whose
time is included in the virtual machine process-
ing time (Typs). The speedup achieved is not
high, considering that six processors are used
in the computation. However, for a hetero-
geneous machine this performance measure is
ambiguous since it does not reflect the increase
of processing capacity compared to the sequen-
tial processing. Therefore, efficiency is com-
puted based on the equivalent machine num-
ber:

n

Z (3)

EMN(p) =>_

=1

£

where 5] is the capacity of the processor that
executes the sequential version (the fastest
in our tests) [5]. Heterogeneous efficiency
(Ey(p)), using p processors, is computed as:

B(p) = S (@
For this example EM N(6) = 3.77, obtaining
Ey = 69.9%. Efficiency measures the quality
of parallelization by giving a measure of the
time spent in computation over the total time.
To assess the machine the eigenvector algo-
rithm was run individually, which corresponds
to the first stage of the computation of the
modal analysis algorithm, operations (TRD,
ORT, and QR) of table 1, for several matrices.

Stage |Humber of processors used Grid
[n) 400 600 8500 1000 1200 1400 1600] (po)
TRD 1 2 3 3 4 4 4 | (1,9
@Othy| & B B B 7 7 N )

QR it 5 B |5 |5 5 B E | (p1)
Speedup | 10 1.7 23] 26 29| 30] 31
Endr 36| 38| 35| 38 40] 40 40
Eh 0.25) 045[061) 0.658) 073 076 076

Table 2: Results for eigenvector computation

Table 2 shows the results of speedup and het-
erogeneous efficiency; the processor grid used
depends on the matrix and the operator. It
can be observed that for matrices over 6002
elements the heterogeneous efficiency is over
45%. For 800? matrices By = 61% with 3.8
equivalent processors. In [14] it was measured
an efficiency of 57.9% with 4 vector processors
of the distributed memory computer Fujitsu
VPP300, in the computation of the eigenvec-
tor algorithm, using the same algorithm and a
8022 element matrix.

In terms of parallelization quality the results
obtained for the virtual machine, when using
the automatic processing control tool, are in
the same range of values obtained with ded-
icated machines. However, the computation
times are naturally very different: 1.783 and
97.7 seconds for Fujitsu and our virtual ma-
chine, respectively.

=g BTp
O T_Whd

418

Laon o Lo a5 @1 3=0 391

Whioo1 z = < bl g

Mumber of Processors

Figure 6: Modal analysis results in a homoge-
neous machine

The automatic tool presented here can be
useful also for homogeneous machines, due to
the scheduler capacity. As shown in the for-
mer example, the processor grid can change,



Operator | Processor grid
Object A ‘ B
TRD (1,2) | (1,2)
ORT (1,6) | (1,5)

QR | (51) | (41)
MC (1,6)
T /Ty 697/290
Speedup 2.40
Ef ficiency 40.0 %

Table 3: Results for homogeneous machine;
A:251 and B:174 points

due to different operator scalabilities, which
will also be true for homogeneous machines.
Figure 6 compares the processing time, for two
other objects of 251 and 154 data points (not
shown), obtained using the scheduler (Ty,r)
and the time obtained using the same number
of processors all over the algorithm, from 1 to
6. The machine is formed by 6 processors of
140 M flops and a 10 Mbits Ethernet. With-
out processing time estimation, an user hav-
ing 6 processors available, probably would use
all of them from the beginning, although the
minimum time is obtained with 4 processors.
However, this is higher than the time obtained
with the automatic tool (T} ). Table 3 shows
the results for the homogeneous machine.

5 Conclusions

An automatic high-level parallel processing
tool was presented in this work. It allows a
non-expert user to run pre-defined algorithms,
referred to as macros. At each run the tool
selects, from the pool of available processors,
those for which the estimation based on the
computational model guarantees the minimum
processing time, scheduling work in proportion
to their processing capacity. It was shown that
the tool reduces the waiting time in interactive
applications, achieving high efficiency both in
homogeneous and in heterogeneous machines.

Speedup results presented in tables 1, 2 and
3, are lower bounds, since the parallel process-
ing time (Typs) is compared to the sequential

time measured in the fastest machine available
on the network. Higher speedup values would
be obtained if any other machine was chosen,
which is also a valid option since the paral-
lel job can be submitted from any computer.
From the user point of view the option is to
execute locally (any single computer) or in par-
allel. The sequential time is estimated for the
computer that submits the work and the par-
allel processing time is constant as long as the
same computers are available.

In conclusion, the use of the automatic con-
trol tool permits an efficient utilization of ex-
isting computer networks allowing that inter-
active applications use more sophisticated al-
gorithms without requiring an investment in
equipment. Nevertheless, the upgrade or ac-
quisition of new equipment benefits all users
independently of who submits the job.

References

[1] T. Anderson, D. Culler, D. Patterson, and
The NOW Team. A case for NOW (Network
of Workstations). IEEE Micro, (2):54-64,
February 1995.

[2] M. Antonioletti. Load sharing across
networked computers. Technical re-
port, The University of Edinburgh,
http://www.epcc.ed.ac.uk/epcc-tec/-
documents/tw-load/, December 1997.

[3] M. Baker, G. Fox, and H. Yau. Cluster
computing review. Technical report,
Syracuse University, http://www.npac.-
syr.edu/techreports/hypertext/sccs-
0748/, November 1995.

[4] J. Barbosa and A.J. Padilha. Algorithm-
dependent method to determine the op-
timal number of computers in paral-

In VECPAR’9S,

3rd International Meeting on Vector and

Parallel Processing (Systems and Appli-

cations), volume 1573. Springer-Verlag

LNCS, 1998.

lel virtual machines.



[5]

[10]

[11]

[12]

J. Barbosa, J. Tavares, and A. J. Padilha.
Linear algebra algorithms in a heteroge-
neous cluster of personal computers. In
Proceedings of 9th Heterogeneous Comput-
ing Workshop, pages 147-159. IEEE CS
Press, May 2000.

J. Barbosa, J. Tavares, and A.J. Padilha.
A group block distribution strategy for a
heterogeneous machine. In Submitted to
Euro-Par 2001.

A. Chien, M. Lauria, R. Penning-
ton, M. Showerman, G. Tannello,
M. Buchanan, K. Connelly, L. Gian-

nini, G. Koenig, S. Krishnamurthy,
Q. Liu, S. Pakin, and G. Sampemane.
Design and evaluation of an HPVM-based
Windows NT Supercomputer. The In-
ternational Journal of High-Performance
Computing Applications, 13(3):201-219,
Fall 1999.

J. Choi, J. Dongarra, L. S. Ostrouchov,
A. P. Petitet, D. W. Walker, and R. C.
Whaley. The design and implementa-
tion of the ScaLAPACK LU, QR, and
CHOLESKY factorization routines. Sci-
entific Programming, 5:173-184, 1996.

J. Choi, J. Dongarra, and D. Walker. The
design of parallel dense linear software li-
brary: Reduction to hessenberg, tridiago-
nal and bidiagonal form. Technical Report
LAPACK Working Note 92, University of
Tennessee, Knoxville, January 1995.

D. Culler, R. Karp, D. Patterson, A. Sa-
hay, K.E. Schauser, E. Santos, R. Subra-
monian, and T. von Eicken. Logp: To-
wards a realistic model of parallel com-
putation. In 4 ACM SIGPLAN Sympo-
stum on Principles and Practice of Paral-
lel Programming, San Diego, CA, 1993.

J. W. Demmel. Applied Numerical Linear
Algebra. STAM, 1997.

J. Dongarra, Sven Hammarling, and
David W. Walker. Key concepts for par-

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

allel out-of-core lu factorization. Techni-
cal Report CS-96-324, LAPACK Working
Note 110, University of Tennessee Com-
puter Science, Knoxville, April 1996.

Gene Golub. Matriz Computations. The
Johns Hopkins University Press, 1996.

D. L. Harrar and M. R. Osborne. Solv-
ing large-scale eigenvalue problems on vec-
tor parallel processors. In VECPAR’9S,
3rd International Meeting on Vector and
Parallel Processing (Systems and Appli-
cations), volume 1573, pages 100-113.
Springer-Verlag LNCS, 1998.

J.F. JaJ4 and K.W. Ryu. The block dis-
tributed memory model. Technical Re-
port CS-TR-3207, University of Mary-
land, January 1994.

M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: Active contour models. Interna-
tional Journal of Computer Vision, pages
321-331, 1988.

M. Litzkow, M. Livny, and M. Mutka.
Condor - a hunter of idle workstations. In
Proceedings of IEEE International Con-
ference on Distributing Systems, pages
104-111, 1988.

S. Russ, J. Robinson, B. Flachs, and
B. Heckel. The hector distributed run-
time environment. IEEE Trans. on Par-
allel and Distributed Systems, 9(11):1102—
1114, November 1998.

L. Shapiro and J. M. Brady. Feature-
based correspondence: an eigenvector
approach. Butterworth-Heinemann Lda,
10(5), June 1992.

F. Tandiary, S. C. Kothari, A. Dixit,
and W. Anderson. Batrun: Utilizing
idle workstations for large-scale comput-
ing. IEEE Parallel and Distributed Tech-
nology, pages 41-48, Summer 1996.

L. G. Valiant. A bridging model for paral-
lel computation. Communications of the
ACM, 33(8):103-111, August 1990.



