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Abstract _ An approach for tracking lines along 
temporal image sequences is presented. Three 
independent Kalman filters are used in the process, 
taking either Mahalanobis normalised distances or 
geometric constraints as measures of the matching 
degree. 

I - INTRODUCTION 

In computer vision, the need to track lines in 
image sequences often occurs. For example, this 
need arises when the goal is to extract three-
dimensional information from lines in the scene 
[1], or when the tracking of moving objects, 
modelled as wire frame structures, is desired. 

In our approach, it is considered that: 

• the entities to track are line segments, 
each one defined by the position of its 
midpoint, its direction, and its length. 

• in the tracking process, three independent 
Kalman filters [2] are used: one for the 
midpoint position, one for direction, and 
one for the line length; all filters use a 
kinematics model of locally constant 
acceleration and a matching criterion 
based on Mahalanobis normalised 
distances or on geometric constraints. The 
use of three independent filters is justified 
by the fact that the parameters of the 
chosen line model are uncorrelated. 

• a 2D model for the entities is used; when 
a new entity is visible, it is inserted in the 
model with a confidence factor of value 
3; if this entity is visible again in the next 
image, its confidence factor is 
incremented, up to a maximum value of 5; 
on the other hand, if an entity in the 
model is not visible (that is, the matching 
fails) in an image, its confidence factor is 
decremented; if the confidence factor of 
an entity reaches the value zero, it is 
removed from the model. In this way, the 
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elements of the 2D model are continually 
updated. 

The following section addresses the 
parameterization of the entities. Then, the 
approach used for matching the entities in image 
sequences is described. After some experimental 
results, the main conclusions are drawn. 

II - PARAMETERIZATION OF THE ENTITIES 

The line entities require a convenient 
parameterization. One possible solution could be 
the use of the line endpoints; however, a major 
drawback of this approach is the fact that the lines 
may be visible differently in successive images 
[3]. Another solution might use for parameters the 
orientation θ, the length l, the distance c of the 
line to the frame origin, and the distance d 
between the line midpoint and the intersection of 
the line with its perpendicular through the origin 
[Fig. 1]. 
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Fig. 1 - Parameterization θ, l, c and d, for line segments. 

This approach presents some problems too: the 
parameters are correlated requiring the use of a 
single Kalman filter with proper dimension, 
which is computationally costly; the parameters c 
and d are strongly dependant on line position, 
making the matching process more difficult [3]. 

The parameter choice adopted in our work 
avoids the aforementioned problems; it consists 
on the use of the position of the line midpoint, its 
orientation, and its length. These parameters 
being uncorrelated, it is possible to use three 
independent Kalman filters: one for the 
coordinates, xm and ym, of the line midpoint; 



another for the orientation θ ; and a last one for 
the length l. In this way, the computational 
efficiency is improved [3, 4]. 

III - MATCHING LINES IN IMAGE SEQUENCES 

The kinematics model associated to each one 
of the three Kalman filters is a model of locally 
constant acceleration, considered as a first order 
Gauss-Markov process and equal to a fraction α 
of the previous acceleration value. The estimated 

acceleration tends to zero; if one entity disappears 
(that is, if it is not matched in subsequent images, 
causing high uncertainty) the filter will gradually 
reduce the last known acceleration by powers of 
α. This kinematics model is flexible and 
adaptable to other types of application. 

As a measure of match, normalised 
Mahalanobis distances are used [2] or, when this 
method fails, geometric constraints are 
considered. Fig. 2 shows the approach used. 
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Fig. 2 - Matching of the entities in the adopted approach. 

The Kalman filters, the normalised 
Mahalanobis distance, the geometric constraints, 
and the measurement and matching phase are 
described in the following subsections. 

A - Kalman filter 
The Kalman filter is used to estimate the 

values of the characteristics of the entities along 
time, that is, along the image sequence. The 
Kalman filter is a statistical approach to estimate 
a vector of time varying characteristics x̂ t from a 
set of noisy measures ẑ t. It is a recursive scheme 
developed to describe the dynamic system model, 
the error statistics between model and reality, and 
the uncertainty associated to the measurement. 
The following phases may be considered: 

• Prediction: 

The estimate of the characteristics 
vector x̂  at time t is: 

x̂ t
- = Φ x̂ t-1

+ , (Eq. 1) 

where: 
− Φ is the kinematics matrix, a 

constant matrix involving the 
characteristics considered and their 

derivatives in subsequent time 
samples; 

− the superscripts ± designate the 
estimate after and before measure-
ment, respectively. 

At time t = 0 the unknown charac-
teristics are taken as null, and the other 
ones have the value determined by 
measurement. 

The estimate for the uncertainty 
associated to the vector of characteristics x̂  
at time t is: 

Pt
- = Φ Pt-1

+ Φ T + Q, (Eq. 2) 

where Q is a diagonal matrix, the elements 
of which are determined according to the 
application at hand, conveying the 
introduction in the model of the noise 
variance. In our application, the noise 
variance has been modelled as zero mean 
Gaussian, to avoid too much convergence 
of the Kalman filters. 

At time t = 0 the uncertainty matrix is 
defined as diagonal with arbitrary values; 



the values are, in fact, defined by 
experience. 

• Measurement and matching: 

Having the estimates of the 
characteristics vector and of their 
uncertainties, their measurement in a given 
area is performed. Note that the derivatives 
need not be measured, as the Kalman filter 
allows their recursive estimation; further-
more, these estimates being given by 
integration, they are more immune to noise 
than the instantaneous derivatives com-
puted by differences [5]. 

The next step is to select, among the 
candidate entities, the one that has 
characteristics closer to the estimates. After 
this match, the vector of measured 
characteristics ẑ t assumes the values of the 
characteristics of the matched element, and 
the measured variances are assigned to the 
uncertainty matrix Rt. 

• Updating: 

After measurement and matching, the 
gain Kt of the Kalman filter must be 
computed; this gain conveys the relative 
weight to assign to the measurement and to 
the estimate, and it is computed based on 
their relative uncertainties. The equation 
for the Kalman filter gain is: 

Kt = Pt
-HT[HPt

-HT + Rt]
-1

, (Eq. 3) 

where: 

− H is the matrix that transforms the 
coordinate system of the estimated 
characteristics vector x̂ t into the 
coordinate system of the measured 
characteristics vector ẑ t; 

− Rt is the measured variance matrix. 

Having the gain of the Kalman filter, the 
updating of the estimate is performed using 
the measurement. The updating is made 
according to: 

x̂ t
+ =[I - KtH]x̂ t

- + Kt ẑ t,  (Eq. 4) 

where I is the identity matrix. 

The correction of the uncertainty matrix 
is: 

Pt
+ =[I - KtH]Pt

-[I - KtH]
T
+ KtRtKt

T. 
 (Eq. 5) 

Note that, from Eqs. 4 and 5, that the 
updating assigns greater weight to the 
measurement relative to the estimate for 
larger Kalman filter gain; if the measure-
ment uncertainty is smaller than the 
estimation uncertainty, the Kalman filter 
assigns greater weight to the measured 
values. 

Fig. 3 shows the flow diagram of the Kalman 
filter. 
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Fig. 3 - Flow diagram of the Kalman filter. 

Note from Fig. 3 that when a new entity is 
initiated it must be updated; this is necessary to 
maintain the order measurement and matching - 

updating - prediction. Moreover, by doing this, 
the errors related to the initialisation assignments 
are reduced. 



B - Normalised Mahalanobis distance 
Inside the matching area given by the Kalman 

filter for midpoint position, it is necessary to 
define a measure of the match of each possible 
candidate to the entity characteristics estimated 
by the three Kalman filters. In our approach, 
normalised Mahalanobis distances are first used 
as match measures. The normalised Mahalanobis 
distance is defined as the difference of charac-
teristics normalised by their variances, as: 

dχ
N
2 =

(Xm - Xe)T(Vm + Ve)-1(Xm - Xe)
2

 (Eq. 6) 

where: 

− Xm is the vector of characteristics and Vm is 
the matrix of variances of the matching 
candidate; 

− Xe is the vector of characteristics and Ve is 
the matrix of variances, estimated by the 
corresponding filter. 

In the case of a single scalar characteristic, the 
previous equation simplifies to: 

dχ
1
2 =

(xm - xe)2

2(vm + ve)
 (Eq. 7) 

where: 
− xm is the candidate characteristic and vm its 

variance; 

− xe is the characteristic and ve its variance, 
as estimated by the filter. 

This distance has a χ2 distribution, with a 
number of degrees of freedom equal to the 
number of characteristics considered. Thus, for 
example, when a 95% probability of successful 

match is desired and there is only one degree of 
freedom, the threshold for dχ2 should be 3.841458. 

 C - Geometric constraints 
When there is no successful match with the 

normalised Mahalanobis distances, a match is 
searched for again by using geometric constraints. 
These are: 

• The difference between the length lm of the 
candidate segment and the length le 
estimated by the respective Kalman filter, 
which must be less or equal to a given 
value MAXladm, that is: 

dl = lm - le ≤ MAXladm. (Eq. 8) 

• The difference dθ between the direction θm 
of the candidate segment and the direction 
θe estimated by the respective Kalman 
filter, which must be less or equal to a 
given value MAXθ adm, that is: 

dθ = θm - θe ≤ MAXθ adm. (Eq. 9) 

• The difference dp between the position 
(Xm , Ym) of the candidate midpoint and the 
position (Xe , Ye) of the estimated midpoint 
given by the respective Kalman filter, 
which must be less or equal to a given 
value MAXpadm, that is: 

dp = (Xm - Xe)2 + (Ym - Ye)2 ≤ MAXpadm 
 (Eq. 10) 

Fig. 4 displays the geometric constraints used. 
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Fig. 4 - Geometric constraints used: a) difference of lengths, b) difference of directions, and c) difference between midpoint 
positions. Solid lines represent the candidate segment characteristic and dotted lines the one predicted by the Kalman filter. 

D - Measurement and matching phase 
The estimation of the uncertainty matrix 

associated with the characteristics vector 

estimated by the Kalman filter for position 
determines an elliptical area, inside which the 
estimated entity must be. Defining matrix M by 
the equation: 



M = HPt
- (Eq. 11) 

where, for the Kalman filter for midpoint 
position: 

• H is the matrix that transforms the 
coordinate system of the estimated vector 
x̂ t into the coordinate system of the 
measured vector ẑ t; 

• Pt
- is the estimated uncertainty matrix; 

it is possible to determine the elliptical matching 
area by considering that: 

• the eigenvalues of matrix M define the 
major and minor lengths of the matching 
ellipse; 

• the eigenvectors of matrix M define the 
major and minor axis of the ellipse. 

This matching ellipse is, of course, centred on the 
midpoint position estimated. After the ellipse 
definition (see Fig. 5), it is necessary to perform 
the matching with the entity that has closer 
characteristics to the estimation. 

 
Fig. 5 - Ellipse resulting from the Kalman filter for midpoint position. Solid lines represent entities actually in the image, while the 

dotted line represents the 'entity' estimated by the three Kalman filters. 

In a first step, matching is done according to 
the following algorithm: 

Begin 
{ 

Take as candidate entities all those which 
have a midpoint inside the matching ellipse 
and that were not matched before. 
If there is no such candidate then end. 
Do for all matching candidates: 
{ 

Compute the Mahalanobis distance 
dχ

1
2 (θi , θe) between direction θi of the 

candidate and the Kalman filter predicted 
direction θe. 
If the computed distance is larger than a 
specified threshold then continue. 
Compute the Mahalanobis distance 
dχ

1
2 ( li , le) between the length li of the 

matching candidate and the length le 
predicted by the corresponding Kalman 
filter. 
If the computed distance is larger than a 
specified threshold then continue. 

Compute the Mahalanobis distance  
dχ

2
2((x , y)i ,(x , y)e) between the midpoint 

position (x , y)i of the matching candidate 
and the one predicted by the corresponding 
Kalman filter (x , y)e. 
If the computed distance is larger than a 
specified threshold then continue. 
Compute the product of the three distances 
previously computed. 
If the computed product is smaller than the 
current minimum then take the current 
candidate as the best match1. 

} 
} 

If matching is successful then the measured 
state is the following: 

•••• 

  

 For the direction Kalman filter: 
The direction element of the measured 
characteristics vector assumes the value of 
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the direction of the matched entity θi; the 
element corresponding to the direction 
variance in the uncertainty matrix 
associated with measurements, assumes the 
value of the variance computed inside the 
matching ellipse. 

•••• 

  

 For the length Kalman filter: 
The length element of the measured 
characteristics vector assumes the value of 
the direction of the matched entity li; the 
element corresponding to the length 
variance in the uncertainty matrix 
associated with measurements, assumes the 
value of the variance computed inside the 
matching ellipse. 

•••• 

  

 For the midpoint position Kalman filter: 
The elements of the measured 
characteristics vector corresponding to the 
midpoint position coordinates x and y 
assume the values of the matched entity xi 
and yi; the elements in the uncertainty 
matrix associated with measurements, 
corresponding to the variances sxx, sxy, syy 
and syx, assume the respective values 
computed inside the matching ellipse. 

When matching is not successful up to this 
point, an attempt is made to perform matching 
based on geometric constraints, as follows: 

Begin 

{ 
Do for all unmatched entities: 
{ 

Compute the difference dθ between 
direction θi of the candidate entity and the 
one predicted by the filter θe. 
If  dθ is larger than the threshold then 
continue. 
Compute the difference dl between length li 
of the candidate entity and the one predicted 
by the filter le. 
Se dl is larger than the threshold then 
continue. 

Compute the difference dp between the 
midpoint position pi of the candidate entity 
and the one predicted by the filter pe. 
Se dp is larger than the threshold then 
continue. 
Compute the product dθdldp. 

If the product  is smaller than the current 
minimum then take the current candidate as 
the best match2. 

} 
} 

When a match is achieved, the measured state 
is computed as before, but centring the ellipse at 
the midpoint of the matched entity. 

If matching is not achieved, that being caused 
by the permanent or temporary absence of the 
entity, the measured state is assumed as: 

•••• 

  

 For the direction Kalman filter: 
The direction element of the measured 
characteristics vector assumes the value of 
the direction estimated by the respective 
Kalman filter θe; the element corresponding 
to the direction variance in the uncertainty 
matrix associated with measurements, 
assumes the value assigned for 
initialisation. 

•••• 

  

 For the length Kalman filter: 
The length element of the measured 
characteristics vector assumes the value of 
the direction estimated by the respective 
Kalman filter le; the element corresponding 
to the length variance in the uncertainty 
matrix associated with measurements, 
assumes the value assigned for 
initialisation. 

•••• 

  

 For the midpoint position Kalman filter: 
The elements of the measured 
characteristics vector corresponding to the 
midpoint position coordinates x and y 
assume the values estimated by the 
respective Kalman filter xe and ye; the 
elements sxx and syy of the uncertainty 
matrix associated with measurements, 
assume the values assigned for 
initialisation. 

In this way, when matching fails the 
uncertainty of the measurement is increased, so 
that the Kalman filters give a larger weight to the 
predictions by reducing their gain. In the next 
prediction, the area of the matching ellipse is 
larger. 

Note that for small differences among 
successive images the matching process is easier 
and so is the tracking of lines. This means that the 
movement of the lines should not change too 
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much from one image to the next, especially when 
the Kalman filters have already converged. The 
use of geometric constraints, however, reduces 
this requirement. 

IV - EXPERIMENTAL RESULTS 

For the testing of the adopted approach, a 
sequence of 12 images having 10 lines was 

synthetically generated (other experimental 
results, including real cases, are presented in [1]). 
Some of the images in the sequence are shown in 
Figs. 6-8. Note that not all lines are present in 
each image; this was done to simulate the 
possibility that some lines may be invisible in an 
image and then visible again in the next image 
and vice versa. 

 

 
Fig. 6 - Image 1 of the test 

sequence. 
Fig. 7 - Image 6 of the test 

sequence. 
Fig. 8 - Image 12 of the test 

sequence. 
 
Fig. 9 shows the image of the superposition of 

the first and last image in the sequence, where the 
total displacement of the lines is clearly 
discernible. 

 
Fig. 9 - Superposition of the 

first and last images in the test 
sequence. 

Table I, at the end of the paper, presents some 
results achieved for the test sequence, showing 
how the tracking process has occurred for two of 
the lines, using the current implementation 
(described in detail in [6]). 

V - CONCLUSIONS 

An approach for tracking lines in image 
sequences has been presented. The line 
parameters are the midpoint position, the length 
and the direction. Three independent Kalman 
filters are used for tracking, one for each 
parameter. The matching measure between the 

characteristics of a candidate line and the ones 
predicted by the filters is the normalised 
Mahalanobis distance or, if matching fails, 
geometric constraints are tested. The kinematics 
model for all filters is one of locally constant 
acceleration. 

The approach used offers good results, as 
evident in the experimental results shown. The 
use of geometric constraints facilitates the 
tracking, as expected. The measurement and 
updating techniques adopted proved correct, 
enabling the tracking of lines even in the cases 
where they vanish and then reappear. It was also 
observed that when the Kalman filters start 
diverging or converging 'in excess', the use of the 
geometric constraints allows their faster self-
adjustment. 

In the experiments, it has been found that the 
Kalman filters could converge excessively, 
making the matching ellipses too small, thus 
preventing successful matches. The solution for 
this problem was the introduction of noise in the 
model, although the use of geometric constraints 
reduces the occurrence of these situations, as 
previously stated. The initialisation of the model 
is also made more flexible by the geometric 
constraints. 

The use of a confidence factor for the entities 
in the model has proved useful, namely by 
keeping the model updated and avoiding it to 
grow unnecessarily. 
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Table I - Results of the tracking process for the test sequence. 

Image 1 Image 2

Ref. St. P. End P. Mtc. Ref. St. P. End P. Mtc.

1 26 256 235 411 I 1 24 240 235 396 KM

2 235 411 26 502 I 2 235 396 25 488 KM 

Image 3 Image 4

Ref. St. P. End P. Mtc. Ref. St. P. End P. Mtc.

1 23 225 235 381 KM 1 Not visible

2 235 381 24 474 KM 2 235 366 23 459 KM 

Image 5 Image 6

Ref. St. P. End P. Mtc. Ref. St. P. End P. Mtc.

1 21 193 235 351 KM 1 20 177 234 335 KM

2 235 351 21 445 KM 2 234 335 20 430 KM 

Image 7 Image 8

Ref. St. P. End P. Mtc. Ref. St. P. End P. Mtc.

1 19 161 234 320 KM 1 18 128 234 288 KGC

2 234 320 19 415 KM 2 234 288 18 384 KGC 

Image 9 Image 10

Ref. St. P. End P. Mtc. Ref. St. P. End P. Mtc.

1 16 111 234 272 KGC 1 15 95 234 256 KM

2 234 272 16 369 KGC 2 234 256 15 353 KM 

Image 11 Image 12

Ref. St. P. End P. Mtc. Ref. St. P. End P. Mtc.

1 14 78 234 240 KM 1 13 67 234 230 KM

2 234 240 14 337 KM 2 234 230 13 328 KM 

Legend: 

Ref. - Reference of the line, I - Initialisation of the line, St. P. - Image coordinates of the starting point, 
End P. - Image coordinates of the end point, Mtc. - Type of matching: KM - Kalman filter and 
Mahalanobis distances, KGC - Kalman filter and geometric constraints. 
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